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ABSTRACT 

We review some of the exciting features of the whispering gallery modes of dielectric 

microspheres. We present recent results on the applications of these whispering gallery 

modes in quantum optics, especially in the area of cavity quantum electrodynamics. 
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1. Introduction 

One of the central issues of quantum optics has been the precise control of the radiative 

properties of atoms. It is now well understood that a suitable modification of the 

environment can lead to renormalization of the basic characteristics of an atom, namely, 

its decay rate and the transition frequency 1,2. All through this paper we will refer to the 

environment as the cavity (at least in a generalized sense). Over the past few decades 

there has been a tremendous growth of the research activities centered on the cavity 

induced modifications of the atomic characteristics, leading to the now vast topic of 

cavity quantum electrodynamics (QED) 3. The interest in this area is motivated by several 

factors. The QED manipulation of the atom can lead to enhancements, for example, in the 

spontaneous rate and the nonlinearity parameters 4, leading to zero threshold nonlinear 

processes. In fact, zero threshold lasing has been reported using the QED enhancement in 

different kind of cavities 5,6. Depending on whether the cavity is “good” or “bad” one can 

distinguish between two regimes of cavity QED. In a bad cavity, when the photon 

emitted by the excited atom is short lived, it escapes the cavity before it can interact back 

with the atom. This irreversible process leading to nominal modifications of the decay 

rate and a frequency shift can be treated in the framework of a perturbation theory and is 

referred to as the weak-coupling regime. On the contrary, in a good cavity a novel kind of 

physics can be expected since the photon being long lived, can reexcite the atom. This 

leads to a periodic exchange of energy between the atom and the photon. The periodic 

exchange results in a doublet in the spectrum due to the so-called vacuum field Rabi 

splittings 7-10. 
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It is thus clear that in order to achieve the strong interaction regime it is necessary to have 

a cavity with larger and larger quality factors. In the context of Fabry-Perot (FP) cavities 

this has been achieved by using better and better mirrors, in some cases replacing the 

mirrors by distributed feedback structures. Naturally all these achievements needed 

considerable technological efforts. In contrast, there are systems, which due to their 

morphology, support very high quality factor modes. A classic example is the whispering 

gallery modes (WGM) of dielectric microspheres 11. Quality factors of the order 1010 in 

the visible domain are now regularly achieved. Note that the fabrication technology for 

such microspheres is comparatively simple 12. The structures, and hence the modes are 

robust. In view of the large Q-factors and associated large local field enhancement of the 

WGM’s almost all nonlinear phenomena including lasing and bistability have been 

observed 13-16. We need to stress that most of these processes are characterized by very 

nominal threshold powers. Note also that unlike in FP cavities the WGM’s are not 

equispaced, leading to the remarkable possibility of having lasing at several different 

frequencies. Another property of the WGM, which is quite attractive from the viewpoint 

of cavity QED, is their low mode volume. This is a direct consequence of the localization 

of the mode near the rim of sphere. This was noted by Agarwal etal 17 who first suggested 

the use of WGM’s to probe the strong interaction regime of cavity QED. Earlier there 

have been several observations of WGM induced weak interaction effects both in liquid 

and solid systems 18,19. 

The organization of the review is as follows. We start with a basic and then more in-

depth introduction to the WGM’s in Section 2. We also consider briefly the effects of 

minor deviations from sphericity. In Section 3 we discuss modern methods for exciting 
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and characterizing such modes. Section 4 deals with the scope of WGM’s in the context 

of nonlinear optics and lasing. Section 5 discusses the weak interaction regime of cavity 

QED, while in Section 6 we present a model calculation for the strong interaction regime. 

In Section 7 we present a unified Green’s dyadic based approach, which explains both the 

regimes in terms of the specifics of the Green’s function. Finally in Section 8 we indicate 

some of the important current and future directions in WGM cavity QED. We 

concentrated mostly on WGM’s while, whenever necessary, we cited the results for 

planar micro cavities. This was done in order to ensure a broader perspective dealing with 

the same physical principles. 

 

2. Whispering gallery modes of microspheres 

Imagine that a ray resident inside a microsphere of a radius  and relative refractive 

index  hits the interface at an angle larger than the critical angle for total internal 

reflection. Obviously the ray will bounce off the surface after each act of total internal 

reflection, never escaping the sphere. This may result in a ‘mode’ of the sphere provided 

that the principal quantum number n associated with this mode satisfies the inequality  

,          (1) 

where  is the size parameter. The left (right) inequality in Eq.(1) represents the 

resonance condition just outside (inside) of the sphere: the optical path outside (inside) 

has to be integer multiples of wavelength l. We assumed that the sphere is in vacuum. 

Many of such simple features of electromagnetic wave scattering by dielectric spheres 

can be understood based on the ray optics or eikonal approximation 21 especially for large 

spheres (x >> 1) and plane wave illumination. But the limitations of such approaches are 
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also evident. A complete analysis valid for all parameter ranges calls for an exact Lorenz-

Mie theory. In what follows, we briefly recall the essential steps associated with Lorenz-

Mie theory 11. This is done more to bring out role and importance of the Mie coefficients, 

which surface now and again in most of the problems. These can be as varied as 

extinction or QED aspects of decay rate modification of atoms or energy transfer between 

them. 

Let the microsphere be illuminated by a x-polarized plane wave propagating along the z-

direction. In view of the spherical symmetry of the scatterer the incident wave needs be 

decomposed in the vector spherical harmonics  and  as follows 

      (2) 

where  is the incident field amplitude. Similarly the internal and scattered fields can 

also be expanded as  

       (3) 

       (4) 

respectively. The vector spherical harmonics in Eqs.(2)-(4) are given by 

,  (5) 

  (6) 
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The vector functions  and  are obtained from Eqs.(5),(6) by replacing  by 

. The internal (external) Mie coefficient  can be evaluated by satisfying 

the standard boundary conditions of continuity of the tangential components of the 

electric and magnetic fields at . This yields, for example, for  and , the 

following 

     (7) 

      (8) 

where the denominators A and B are given by  

      (9) 

      (10) 

In Eqs.(7)-(10) ,  are the Ricatti Bessel functions and  is the logarithmic 

derivative 11. Note that the internal field coefficients (expressions not given here) have 

the same denominators  and , respectively. In terms of the scattered field 

coefficients, the extinction coefficient  is given as  

       (11) 

It is clear from Eq.(11), (7) and (8) that resonances in extinction will occur at the zeroes 

of A (B) which will be accompanied by the enhancement of the external as well as the 

internal field coefficients . Moreover, since  is associated with  (see 

Eq.(4) with no radial component of electric field, it is natural to call the corresponding 

resonance as a TE (transverse electric) mode. On a similar footing TM (transverse 

magnetic) modes can be associated with the poles of  (zeroes of A). Thus the 
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dispersion relation for the TE and TM modes are given by B = 0 and A = 0, respectively. 

A close look at any of these dispersion equations reveals that for a given mode number n 

there can exist several zeroes of the dispersion equation. These zeroes (and the 

corresponding modes) originating from the oscillations of the Bessel function are labeled 

by the order number l. Since the radial distribution is given by the spherical Bessel 

functions jn or their derivatives, l represents the number of nodes in the radial 

distribution. Thus l determines the number of intensity peaks in the radial distribution 

inside the sphere. The physical meaning of n is clear even from Eq.(1). It gives half the 

number of intensity maxima along the great perimeter of the sphere. Thus in the simplest 

possible case of a perfect sphere the mode resonances can be labeled by two integers, viz. 

mode number n and order number l. A typical extinction feature for a water droplet is 

shown in Fig.1a where each peak is labeled by the corresponding mode. 

We now pay attention to some of the relevant and salient features of these modes which 

are listed below  

A. Extra high quality factor: These modes, especially for large n, (correspondingly 

large x (from Eq.(1)) and low l, possess extraordinarily high quality factors. Some of 

the very first experiments reported a quality factor of 108 in the optical domain 16. 

Recently a quality factor of a 1010 in the visible range has been reported 12. Possibility 

of achieving a quality factor of 1012 has also been pointed out 21. We need to stress 

here that in a standard Fabry-Perot cavity one needs to have finesse of the order of 

108 in order to achieve such quality factors (~1010), which is quite challenging from 

an experimental angle. 
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B. Localization of the internal fields and large local field enhancements: It was 

mentioned earlier, that the internal radial field distribution is given by the spherical 

Bessel functions  or their derivatives. As a consequence, for large n (in large 

spheres) and for lower order modes the resonant field is localized near the edge of the 

microsphere. The radial distribution is confined 22 mostly in the region  (see 

Fig.1b). The localization of the field at resonance leads to large local field 

enhancements. A typical high-Q mode, namely,  mode of a silica sphere (with 

) of radius  was shown to lead to an enhancement by six orders 

of magnitude23. The implications of such local field enhancements for the purpose of 

nonlinear and quantum optics are obvious. Atoms or molecules placed near the 

antinodes of the field will experience large fields resulting in ‘zero’ threshold optical 

processes. In fact, lasing, bistability and wave mixing have all been reported which 

exploit this property of the WGM. The role of WGM’s as a probe for the strong 

interaction regime of cavity QEDs was also pointed out. 

Till now we have been discussing the case of perfect spheres. A lot of activity has been 

devoted to the case when the spheres are deformed. For deformed spheres a third 

quantum number, namely, m comes into play. A perfect sphere has all the m-modes 

degenerate with 2n+1 fold degeneracy. For axisymmetric deformation (viz. for prolate or 

oblate spheroids) the degeneracy is partially lifted leading to distinct frequencies for m 

values . The plus (minus) refers to the counter clockwise (clockwise) 

modes. Note that in perfect spheres or spheres with axisymmetric deformation the 

degeneracy of the clockwise and counter clockwise modes (also known as Kramer’s 
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degeneracy) are still present. In a recent beautiful experiment this degeneracy was shown 

to be lifted by the inhomogeneities of a sphere 24 with eccentricity 10-3. A stabilized diode 

laser radiation was coupled into the sphere through a prism coupler. Both forward and 

backward scattered light was monitored and was shown to lead to well defined splitting. 

However, the eccentricity leading to the lifting of the degeneracy of the  modes (with 

spacing 500MHz) was not the source of splitting which was just few hundred kHz. The 

splitting resulting from the lifting of Kramer’s degeneracy was explained in terms simple-

minded model of coupled oscillators depicting the counter propagating modes. 

We now comment on the computational difficulties associated with Mie scattering, 

especially for large spheres. For large size parameters x the convergence of the infinite 

series giving the extinction coefficient or other relevant physical quantities can pose a 

nontrivial problem 25. Due to this and also with a motivation for gaining physical insight, 

a lot of research was directed towards developing approximate analytical expressions for 

the location, width and the strengths of the WGM’s 26-30. Some of them, especially the 

uniform approximation method of Guimaraes and Nussenzveig 30 needs to be mentioned 

due to their high accuracy at least for moderate size parameters (x~10). 

 

3. Excitation and characterization of the WGM’s 

In the early days the WGM’s were excited basically by coupling in the radiation using a 

prism coupler, much like in waveguide geometries. The evanescent wave in the gap 

between the prism and the sphere results from total internal reflection of the incident 

wave off the base of the prism. For proper angles of incidence and the frequency of the 

incident radiation this is sufficient to couple selectively to some of the WGM’s. Recent 

m
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techniques use the evanescent field of single mode optical fibers 31-34. Generally the fiber 

is mounted on a flat substrate and side polished to expose the field of the propagating 

mode. For example, in some experiments the fiber 33 with a core radius  was side 

polished to a thickness of . Coupling efficiency is higher if the microsphere is 

embedded in a liquid that is index matched to the fiber cladding. The analysis of the 

fiber-microsphere system requires an extension of the standard Lorenz-Mie theory for 

plane wave illumination and is referred to as the generalized Lorenz-Mie theory 35. In 

essence the fiber–microsphere system has a direct relevance to the problem of off-axis 

excitation of the sphere by a gaussian beam. It turns out that a resonant off-axis gaussian 

beam excites the WGM’s of a microsphere more efficiently than does a plane wave 34. 

For a very long time the assignment of the mode and order numbers to the experimentally 

observed peaks in extinction or scattering remained a formidable problem. Since the 

location and widths of the resonances are sensitive to deformation and many other 

factors, a correspondence of the experimental data with Mie calculation with just two 

parameters, namely, x and  proved to be nontrivial 25. Due to the phenomenal 

achievements in the near field optics, it is now possible to directly probe the intensity 

distribution due to the excitation of various WGM’s and assign the corresponding 

quantum numbers 31,36. In a nice experiment, Haroche and coworkers mapped the 

intensity pattern in a sphere with broken spherical symmetry 31. Later they were able to 

assign the quantum number n by looking at the standing wave pattern along the equator 

of the sphere. In both these experiments polished half-fiber were used to excite the 

WGM’s. In the first experiment the source of broken spherical symmetry was the fiber 

stem, which was used for manipulating the position of the microsphere. Both the 

mµ9.1
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experiments used the micron sized molten tip of a fiber as the near field probe. The idea 

of using the fiber tip as the near field probe was borrowed from an experiment 37, where 

the field inside a Fabry-Perot cavity was probed by folding the resonator on a total 

internal reflection prism and mapping the evanescent field on the prism surface. This tip 

was used as the aperture and placed in the evanescent field just outside the sphere. The 

tip was moved on the surface and the radiation collected by it was sent to the detector via 

the fiber channel. In the system with broken spherical symmetry single (polar) angular 

peak was observed for the  mode. Number of observed peaks was given by 

 which was justified by an asymptotic expression for the angular pattern.  

 

4. Scope of the WGM’s: Lasing and Nonlinear Optics  

In the foregoing we had stressed the extraordinary properties of the WGM’s like their 

extra-high quality factor and associated large local field enhancement. These have found 

immediate applications in lasing, Raman scattering and nonlinear optics. In fact, the very 

first report, which showed a quality factor 108, had demonstrated the bistable response 

and indicated the possible use of microspheres as logic elements 16. A vast amount of 

research has been devoted to lasing mostly in liquid droplets, because of the simplicity of 

generating these droplets by vibrating orifice aerosol generators. A proper doping by a 

suitable dye and pumping by another laser led to “zero effort” lasing. The main drawback 

of the droplet lasers is that the whole surface of the drop lases leading to the loss of one 

of the major useful properties of the standard lasers, namely, the directionality. In order 

to avoid this problem Micro disk lasers have been proposed and realized using 

semiconductor heterostructures 38. These have been shown to be efficient low threshold 

nm =
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integrated sources, much needed by industry. Most of the work on liquid droplet systems 

is now well-documented 13-15. In view of the aforesaid, we review some of the important 

work on solid-state systems, which shows the current trend with definite potential for 

device application. Perhaps the first systematic and thorough investigation of a solid-state 

microsphere laser was carried out by Baer 39. Continuous wave lasing was reported in a 

ground and polished single crystal of Nd-YAG microsphere with diameter 5mm. 

Gonokami et al. carried out a considerable amount of research on dye doped polystyrene 

microspheres 40. They used modern fiber probes to monitor the radiation. Polystyrene 

spheres with diameter ranging from  to  were doped with nile red and 

pumped by a 520 nm nanosecond pulsed dye laser. For low pump powers, the emission 

spectrum was broad with no distinctive features. An increase in pump power led to sharp 

lines in the emission due to many of the WGM’s, both TE and TM. The rim of the sphere 

was shown to be brighter than the center for pump levels above threshold. A minor 

modification of this experimental arrangement allowed Gonokami et al.41 to show the 

remarkable possibility of the microsphere to be the ‘atomic’ constituents in an ‘optical 

molecule’ (see below). Yet in a remarkable experiment by the Haroche’s group a very 

low threshold ( ) green lasing at 540nm was reported very recently 42. The Er+3 

doped silica or ZBLAN microspheres with diameters ranging between  were 

fabricated by melting using a plasma torch (for ZBLAN) or a CO2 laser (for silica). The 

microspheres were attached to the end of a fiber for easy manipulation. Cascaded 

transitions using a IR beam of a diode laser at 801 nm was used for pump which was 

coupled to the pump WGM through a prism coupler. The fluorescence studies revealed 

much different life times for ZBLAN (0.55 ms) and silica (700 ns) for the lasing  
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level. This explained the observed effect of lack of lasing in Er+3 doped SiO2  For the 

ZBLAN microspheres a linear dependence of the output green radiation was noted as the 

absorbed pump power was varied. From the break of the curve, the threshold was 

estimated to be 30μW. Note that this threshold is about 300 times lower than the lowest 

in Er+3 and 100 times lower than any previously reported IR to visible laser in any 

material.  

It was mentioned earlier that there have been extensive studies on nonlinear optical 

effects like optical bistability, wave mixing, Raman scattering (both spontaneous and 

stimulated) etc. Here we make a brief mention of some of the really low threshold 

experiments exploiting the high quality factor (Q ~ 109) and small mode volume 

 Kerr bistability with a very nominal threshold of few microwatts 

was observed in a recent experiment 43. A variety of stimulated optical processes 

(stimulated Raman scattering and four-wave mixing) under relatively low cw power in 

liquid droplets 4 were demonstrated. The low threshold power (e.g. 30 W/cm2 for SRS) 

for these processes was attributed to the cavity QED enhancements (>100 times) of the 

nonlinear coefficients. The role of QED enhancement can be appreciated if one notes that 

these effects are observable in bulk samples only under intense nanosecond pulse 

excitations. Considerable theoretical efforts have gone in understanding the various 

nonlinear optical phenomena [see Ref.6 and references therein]. A recent theoretical 

proposals 44 deals with the possibility of the soliton propagation in a large totally 

reflecting microsphere. In the anomalous dispersion regime, the corresponding 

propagation equations are reduced to a nonlinear Schrödinger equation with a loss term, 

which is identical to that for a nonlinear lossy fiber. Thus possibility of bright soliton 

).150~300(~ 33 mµl
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propagation is predicted when the size of the sphere is constrained to support only one 

radial mode. Another interesting theoretical observation addresses the issue of the 

existence of the nonlinear lasing modes 45 in micro disks with nonlinear polarization 

modeling the nonlinear response of the lasing medium.  

 

5. Weak coupling Regime of Cavity QED. 

It is often a common misunderstanding that the features of an atom like spontaneous 

emission rate and the frequency shift are its inherent properties. In fact, there is nothing 

sacred about them since they are manifestations of atom-vacuum coupling. They would 

be meaningless if there were no vacuum fluctuations. Once this is appreciated, tailoring 

of the vacuum fluctuations is bound to lead to an atom with changed decay rate and 

energy shift. A quantitative measure of the properties of vacuum is the photon density 

states which for extended media is given by the smooth function  

.         (12) 

In a cavity the density of states consists of peaks at the resonance frequencies with half-

width , where  is the lifetime of the cavity mode. As mentioned in the 

introduction, in the weak coupling limit (as in a bad cavity) when the leakage of the 

photon dominates over reexcitation of the atom, one can apply Fermi golden rule, 

modified by replacing the vacuum density of states  by a position dependent cavity 

density of states  1. Thus the transition probability for atoms in a cavity is given 

by  
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         (13) 

Since the measured rate is mostly for a collection of atoms a spatial averaging over the 

cavity volume V is needed to arrive at the cavity density of states . The 

modification of the decay rate is then given by the ratio of the transition rate  to that of 

free space  (same as  except that  replaced by ) or the ratio of the 

corresponding density of states. One thus has an enhancement of the spontaneous 

emission at cavity resonance frequencies, which are associated with the peaks of the 

cavity density of states. On the other hand spontaneous emission will be inhibited where 

there are no photon modes e.g., in a planar cavity below cut off (length of the cavity is 

less than half the wavelength of the transition). In the context of planar geometries a large 

number experiments has been performed 1,2,5,46-51, which clearly demonstrated the 

enhancement/inhibition features. A lot of attention was paid to microcavities (with length 

L ~ ). It was shown that a  cavity leads to inhibition (enhancement) of 

spontaneous emission 46. In a later study ‘zero- threshold’ lasing was demonstrated in a 

 cavity while a  cavity exhibited a pronounced threshold behavior 5.  

In the context of microspheres it was shown by several authors that in the weak 

interaction regime modified Fermi Golden rule can be applied. Since the theoretical issue 

lacks major controversies we pay attention to some early but classic experiments with 

liquid droplets 18. The experiment was performed with a linear stream of droplets doped 

with chelated Eu ions. The excitation beam was focused to one drop at a time creating an 

excited Eu+3 population concentrated near the droplet rim. By imaging the droplets at 

various distances as they fall, the temporal evolution of the Eu+3 spectral emission was 
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sequentially mapped. Sharp WGM features on a broad fluorescence background were 

noted. For a  diameter sphere, both these features were shown to decay at the free 

space rate. However, for a  diameter droplet the WGM features decayed more 

quickly (2.5 times) and the background decayed more slowly (1.5 times) than free space 

Eu+3 ion excitation. In order to understand the absence of rate modification for the larger 

droplet, a careful analysis of Purcell’s formula was carried out and the three relevant 

frequency scales were identified. These turned out to be the emission bandwidth , 

spectral width of the WGM  and the mode spacing (for same order l)  is 

inversely proportional to radius a and its asymptotic expression is given by  

.      (14) 

If  (i.e., the emission spectrum is broad enough to cover several 

whispering gallery modes, there is practically no lifetime change. It was shown that in the 

intermediate regime  the enhancement factor reduces to 

. Thus droplets with narrow homogeneous width could 

exhibit lifetime changes. Each WGM with width narrower than the emission profile 

contributes equally to the Purcell integral since the product of spectral width  and 

the peak density per mode  is a constant. Hence the intermediate regime is 

characterized by an absence of the dependence on quality factor of the modes. 

Experiments on enhancement/inhibition of spontaneous emission in solid-state systems 

have also been performed. Wang et al 19 used a Nd-glass microsphere near the 890 nm 

band. They noted considerable differences in the emission spectra depending on whether 

the central part or the rim of the sphere was excited. Location dependent enhancement of 
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spontaneous rate reaching a maximum of 103 times the free space value was reported. 

New lasing lines at 890 nm were also observed. 

 

6. Strong interaction regime of cavity QED: Vacuum Rabi splitting: 

In the previous section we considered the interaction of the atomic system with a ‘bad’ 

cavity, where issues related to enhancement/inhibition could be settled by using Purcell’s 

formula. It is clear that for high-Q modes application of Fermi Golden Rule is no more 

justified. Longevity of the photon in the cavity allows it to re-excite the atom leading to 

the periodic exchange of the energy between the atom and the cavity mode. This periodic 

exchange results in the vacuum field Rabi splitting 7-9. The phenomenon of splitting can 

easily be understood if one uses a resonant absorber as the atomic system and takes a 

Fabry-Perot cavity as the other constituent 10,52. Let the resonant absorber be 

characterized by the dielectric function  which has a resonance at  with half-

width  and can be written as follows  

        (14) 

In Eq. (12), the plasma frequency  can be related to the number density and the dipole 

matrix elements of the atoms. The modes of the cavity with mirror reflection coefficient r 

can be determined from the dispersion relation given by 

       (15) 

where L is the length of the cavity. The mirrors of the cavity were assumed to be identical 

and loss less. Let the atoms be resonant with one of the empty cavity resonances i.e., let 
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 (  is given by  with integer m). The roots of Eq.(15) are given 

by  

        (16) 

where k is the half width of the cavity resonance. In writing Eq.(14) we assumed that 

. The splitting given by Eq.(14) brings out two salient features, namely,  

(a) The splitting is proportional to  which in turn depends on the square root of the 

number density of the atoms. This is consistent with the quantum results 9. 

(b) The split resonances have line width equal to the averages of the two rates  and 

. Thus one can have subnatural line width  if . 

Analogous arguments can be successfully extended to cavities with other geometries, in 

particular to microspherical cavities 17,23,10. A detailed and exact calculation was launched 

for the extinction of microspheres doped with resonant absorbers to show the vacuum 

Rabi splittings for modes with moderate Q (using b56,2, b61,1 modes of water droplets) as 

well as high-Q modes (  mode of a silica microsphere) The results for  are 

shown in Fig.2 where we have plotted the extinction coefficient as functions of detuning 

for two values of the atomic decay. It is clear from these curves that with an increase in 

the density of the dopants (~ ) the amount of splitting increases. The corresponding 

dispersion equations were solved exactly for the locations and the widths of the split 

modes. It was shown that splitting could be achieved at very nominal densities of the 

dopant atoms for high-Q modes like . Effects of small frequency mismatch 
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between the atom and cavity resonances was studied and was shown to lead to 

asymmetry in the split extinction profiles.  

There have been several experimental observations of the vacuum Rabi splitting, most of 

them involving planar microcavities 52-55. Some of the recent studies are centered on 

quantum wells or inorganic/organic semiconductor microcavities 56-60. A giant splitting of 

160 meV was reported at room temperature using a Zn-porphyrin derivative59. A very 

interesting polariton induced optical asymmetry was found in a coupled semiconductor 

microcavities 60. 

 

7. Quantum electrodynamic effects mediated by whispering gallery modes: A 

general approach for both weak and strong coupling regimes  

As was mentioned earlier a large number of interesting and important effects arise as a 

result of the interaction of the vacuum of the electromagnetic field and matter. These 

include the life times of the excited atomic and molecular states, radiative shifts of the 

energy levels, van der Waal forces, dipole-dipole interactions etc. These effects have 

been extensively studied. In this section we bring out the remarkable effects of the 

presence of a medium particularly when the medium supports natural modes of 

oscillation, which are in addition very long lived. The latter is the case when the medium 

is in the form of a sphere. This is because the medium supports whispering gallery modes 

many of which can have very high Q value. In what follows, we will present an outline of 

our calculation of such effects and present some of the more important results. 

A standard approach to the calculation of the QED effects 62 requires (a) quantization of 

the electromagnetic field in presence of a finite medium, (b) application of the time 
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dependent perturbation theory. For the purpose of simplicity we do not go through the 

quantization route. Instead, we use classical equations of motion, which capture all the 

essential physics 3,62,63. We then use a kind of translation rule to get the corresponding 

QED results. In our approach the key quantity is the dyadic Greens function . 

Furthermore, the approach based on the equations of motion also enables us to go to the 

nonperturbative regime of electrodynamic interactions. 

Let us consider the specific geometry shown in Fig.3. Here we have two dipoles similarly 

oriented and located on the two sides of a sphere. Let  be the frequency of oscillation 

of each dipole unperturbed by any interaction. Let us examine the net electromagnetic 

field at say the position of the dipole A. The field consists of two contributions, namely, 

(a) the self field, i.e., the field produced by the dipole A at its own position, (b) the field 

produced by the dipole B at the position A. Note that each of these fields depend on the 

presence of the medium. Further note that each of these fields can be calculated in terms 

of the dyadic Greens function, which contains all the information on the properties and 

the geometry of the medium. They are to be calculated from the corresponding wave 

equations subject to the proper boundary conditions. Due to the presence of the source, 

like in any linear inhomogeneous problem,  can be broken up in two parts: the 

translationally invariant solution  and the boundary contributions . Thus  can 

be written as61,64 

,         (17) 

where  and  satisfy the following equations 

     (18) 
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.      (19) 

Let us stress that Eq.(19) being a homogeneous equation has solutions with unknown 

coefficients, which are to be determined from the boundary conditions. Thus the 

information about the environment (boundaries) enters through these coefficients. 

Modification of the environment leading to resonance enhancement of any of these 

coefficients will lead to dramatic changes in the response of the dipolar system. Note also 

that free space Green’s function lacks any resonant features and its effect can be 

incorporated through introducing the decay rate and the renormalized oscillation 

frequency. 

The literature on Green’s function is really vast and they have been calculated for various 

planar and spherical geometries 61,64-66. We restrict ourselves only to the case of 

microspheres for which the surface component of the Green’s function is given by 64 

.    (20) 

Note that the same Mie coefficients as in Eqs.(7) and (8) figure in Eq.(20). 

Let us now analyze the role of Green’s function in the radiative characteristics of the 

dipoles. A dipole oscillating at the frequency  and located at the point B produces a 

field at the position, say, A 

.       (21) 
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Remember that in case of arbitrary time dependence of the dipole one could do a Fourier 

analysis and use the relation (21) for each Fourier component. This is important, as even 

when we start a dipole at the frequency , it will develop new frequency components as 

a result of interaction with the fields mentioned above. Thus a complete theory should 

treat such time dependences in a consistent manner and it is best to work in Fourier 

domain. Thus we define  (j=A, B) as Fourier transform of , i.e., for a dipole 

with frequency  one will write , where the unit vector  gives 

the orientation of the dipole. Clearly the system of two dipoles will satisfy coupled 

equations in the Fourier domain 

,    (22) 

where  

,  i, j = A, B.      (23) 

The equation for the second dipole is given by Eq.(22) except for the replacement 

. The normal modes of oscillation are given by the roots of the dispersion 

equation which follows from Eq.(22) 

. (24) 

Note that the Green’s functions in Eqs.(22) and (24) include both the free space and the 

surface contributions. As mentioned earlier, the free space contribution can be 

incorporated by assuming a renormalized frequency  and by introducing the free space 

decay rate  given by the following 

0w

)(wjp
! )(tp j

!

0w )()( 0wdw jjj npp !!
= jn

!

0)()( 2

22

2

22
22

0 =÷÷
ø

ö
çç
è

æ
-÷÷

ø

ö
çç
è

æ
-- BABAAA pG

mc
epG

mc
e wwwwww

( ) jjiiij nrrGnG !!!"!
××= ww ,,)(

BA«

0)()()(
2

2

22

2

22
22

02

22
22

0 =÷÷
ø

ö
çç
è

æ
-÷÷
ø

ö
çç
è

æ
--÷÷

ø

ö
çç
è

æ
-- wwwwwwwwww ABBBAA G

mc
eG

mc
eG

mc
e

0w

0g



 23 

,       (25) 

Note that the effects of free space interaction between the dipoles  can be 

implemented in the same vein or simply neglected for dipoles separated by many 

wavelengths. The surface contributions have a strong dependence on the geometry and 

for the specified system (see Fig.3), the relevant Green’s functions are given by 62,64 

      (26) 

     (27) 

In Eqs.(26), (27) we separated out the imaginary and the real parts of the Green’s 

function for convenience. We now emphasize that all the physics about radiative 

characteristics and their modifications due to the medium would be described by the 

solutions of Eq.(24). The solutions in turn would depend on the strength of interaction 

( , ) enhanced by the natural modes of oscillation of the sphere (in our case by the 

a-modes).  

We now consider specific cases pertaining to the various regimes. Consider a single 

dipole near the microsphere. The characteristic equation for this case follows from 

Eq.(24) and can be written as 
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The solution to this equation will depend on the strength of the coupling of the dipole to 

the sphere. Let us first assume that the coupling is weak. Then we can ignore the 

frequency dependence of the Green’s function in the neighborhood of the frequency  

replacing K and W by their values at . In other words we assume that the solution of 

the full equation yields only a complex correction to . We can further approximate 

 by . Then the result for the complex oscillation frequency becomes 

.      (29) 

It is clear from (29) that the real part of the Green’s function W leads to frequency shift 

while the imaginary part K is responsible for the change in radiative decay. Analogous 

arguments can be extended to the case of two dipoles near the microsphere in order to 

determine the resonant energy transfer 67 between them. 

In order to demonstrate the role of WGM’s in enhancing the QED effects we carried out 

an extensive numerical study of the frequency dependence of the Green’s functions 62. 

Spheres of two radii, namely, 5 µm and 200 µm were chosen in order to compare the 

results for moderate and high Q WGM’s. For the larger (smaller) sphere out of the variety 

of modes we selected a2312,167 (a39,1) mode with frequency = 1.8026933000486 µm-1 

(1.096835618 µm-1) and quality factor Q = 1.28x109 (1.22x103). The results for  and 

 for equidistant dipoles ( ) and a2312,167 mode for two normalized 

distances, namely, = 0.1 and 1.0 are shown in Fig.4b. The increasing distance of the 

dipoles from the surface leads to a significant reduction of the enhancement factor 

 from 1349.81 to 154.47. Note that single dipole enhancement factor 

 has the same magnitude for the configuration under study. Analogous results for 
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a39,1 mode are shown in Fig.4a. In contrast to the case of a2312,167 mode, the enhancement 

factors for the same distances, i.e., = 0.1 and 1.0, are now reduced to 3.4 and 0.07, 

respectively. The distortion of the curves in Fig 4a is due to a nearby WGM a44,1. These 

results clearly demonstrate that the dipole-dipole interaction, mediated by high Q WGM’s 

like a2312,167, can reach giant proportions. It is interesting to note that at such distances 

(>400 µm) the free space interaction between the dipoles is truly negligible. 

As shown above the excitation of the extra high-Q WGM’s can lead to giant 

enhancement in the Green’s functions. In this regime it is necessary to take into the 

account the frequency dependence in the Green’s dyadic. A close look at the frequency 

dependence as in the Fig.4b reveals that such resonances can be well approximated by a 

lorentzian characterized by the WGM resonance frequency  and its half width . For 

example, the single point Green function (normalized to ) can be broken up into the 

resonant (R) and the nonresonant (N) parts as 

,       (30) 

with the following dependence for the resonant contribution  

.        (31) 

In Eq.(31) is determined by the spatial distribution of the mode and has a weak 

frequency dependence. Furthermore we assume that both f and N can be replaced by their 

values at resonance. Then Eq.(24) can be reduced to the following 

      (32) 
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In Eq.(32)  and the WGM was assumed to be in resonance with the dipole, 

i.e., . Moreover, we used the abbreviations, say, , . 

The equation for the complex frequency correction for a single dipole near the 

microsphere can be obtained from Eq.(32) by setting . The numerical results 

for a single dipole for both the modes a39,1 and a2312,167 are shown in Fig.5 . We have 

displayed both the real (solid line) and imaginary (dashed line) parts of D as functions of 

normalized distance from the microsphere. It is clear from Fig.5 that shorter distances 

lead to larger splittings in the frequency due to stronger interaction. In Fig.6 we have 

shown the frequency splittings in the case when both the dipoles (see Fig.3) interact via 

the microsphere. Clearly one now has four roots out of which the real parts of two almost 

coincide (the central branch) for the high-Q a2312,167 mode (Fig.6b). Note that these modes 

are not degenerate since their imaginary parts are distinct (not shown). 

In order to have some insight in the frequency splittings, we ignore the nonresonant 

contributions (which is quite justified for high–Q WGM’s like ). Under this 

approximation, and noting that , the roots of Eq.(32) are given by  

     (33) 

The first two roots give the bare atom or the bare cavity modes, the other two roots 

represent the manifestation of the d-d interaction. If the enhancement is not significant 

i.e. when  

,        (34) 
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one has a modification of the decay rates from the average of the decay rates  

In presence of large enhancements, when the inequality (34) is violated one has vacuum 

Rabi splitting, where the decay rate of both the split modes are characterized by the 

average of the two rates (see also Eq.(16) for the FP cavity). As is the case with most 

high-Q WGM’s, the enhancements in the interaction is enough to lead to splittings at 

least for dipoles close to the surface. Thus the naturally given WGM’s of a microsphere 

and the field enhancement associated with them are enough to lift the degeneracy of the 

atom–cavity system. We also note that the effect of a nearby mode (a typical example of 

such a resonance is the mode a44,1 of a water droplet, which is very close to the mode 

a39,1) can be incorporated in the same spirit by introducing another lorentzian. The 

presence of such a resonance (which is often the case with the WGM’s of microspheres) 

leads to a mode repulsion effect. 

 

8. Future Directions 

Despite the considerable volume of theoretical research on the strong interaction regime 

in microspheres leading to vacuum Rabi oscillations, till now there is no experimental 

verification of the same. The difficulties that hindered experimental observation are 

mainly related to the complexity of the WGM spectra. It is clear that in spherical 

geometries it is extremely difficult to get a ‘clean’ mode spectrum like in Fabry-Perot 

cavities with length comparable or less than the wavelength. The other important reason 

has been the inhomogeneous broadening due to the spatial distribution of atoms. This can 

be reduced by laser cooling techniques. Since high-Q WGM’s produce very small 

( ) 20 kg +
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evanescent field outside, strong coupling could be easier to observe with atoms on the 

surface or in the rim of the microsphere, where there is a large local field enhancement. 

A deeper understanding of the exotic properties of the WGM’s opened up possibilities for 

novel directions. Kimble and coworkers came up with the idea of atom galleries 68, 

whereby the atom revolves around dielectric microsphere. They showed that such motion 

is possible for three level atoms near the surface of the sphere with external two-

frequency excitation. Another scheme for quasi-orbital motion was proposed by Klimov 

etal 69. Here the vacuum field of the WGM is responsible for driving the ultra cold two 

level atom with arbitrary orientation of its dipole moment. Conditions for quasi-orbital 

motion was discussed in detail. 

Another interesting area where research activities have just started is to probe the solitary 

wave solutions in nonlinear microspheres. A great deal of work needs to be done in order 

to find the nonlinear eigen modes of microspheres and their characteristics. Nonlinear 

mixing of the modes with orthogonal polarizations in deformed spheres pose yet another 

open question.  

Perhaps the most interesting issue involves the fabrication of ‘macroscopic’ optical 

molecules. Gonokami and coworkers experimentally realized a tight-binding photonic 

molecule 41. The molecule consisted of two dye doped polymer microspheres of diameter 

ranging from 2 to 5 µm. The bonding was via the coupling of the whispering gallery 

modes. The near perfect size control allowed for sufficiently narrow line width and large 

separation of the WGM’s. Thus intricate and unwanted band mixing was avoided. 

Intersphere coupling constant was estimated to be larger than the WGM line width. This 

proved the feasibility of tight-binding hopping of light in a chain of connected 
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microspheres. Note that a similar goal of micro-manipulating the light path can be 

achieved in much more complicated systems having photonic band gap structures where 

the hopping is via the defect modes 70. 
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Figure Captions 

 

Fig.1. (a) Extinction coefficient Qext as a function of frequency w for a water droplet 

with  and . Various peaks are marked by the corresponding 

WGM’s. (b) Radial distribution for the b56,2 and b61,1 modes. Note the localization 

near the rim of the sphere. 

Fig.2. Qext as a function of detuning  for a2312,167 mode for various values of . 

Curves 1,2 and 3 in (a) are for =4.0x10-9 µm-1, =0.0 µm-1, 4.0x10-9 µm-1 

and 8.0x10-9 µm-1. Curves 1,2 and 3 in (b) are for =1.0x10-9 µm-1, =0.0 µm-

1, 1.0x10-9 µm-1 and 4.0x10-9 µm-1.. 

Fig.3. Schematic view of the microsphere of radius a with two similarly oriented dipoles 

on the z-axis, at distances of  and  from the surface of the microsphere. 

Refractive index of the sphere material is , with vacuum as the outside 

medium. 

Fig.4. Dipole-dipole characteristics  (solid line) and  (dashed line) as functions 

of detuning  for  for (a) a39,1 mode and (b) a2312,167 mode. Both 

the curves in (a) are normalized to the enhancement factor 

= =3.4. The corresponding curves for  are identical 

except that now =0.07. The corresponding enhancement factors for (b) at 

distances =0.1 and 1.0 are 1349.81 and 154.47, respectively. 
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Fig.5. Real (solid line) and imaginary (dashed line) parts of the frequency correction  

as functions of normalized distance d/l for a single dipole interacting with the 

WGM (a) a39,1 and (b) a2312,167. 

Fig.6. Roots for the real part of the frequency correction as functions of normalized 

distance of the second dipole  for dipole-dipole interaction mediated by the 

WGM (a) a39,1 and (b) a2312,167. The first dipole is kept on the surface, i.e., d1=0.0. 

D
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