Tutorial 3

S Dutta Gupta School of Physics University of Hyderabad Adjunct Professor of TIFR

Photonics-2018

Tamm plasmons and Bloch surface waves

Quantum plasmonics: Two photon interference: Photon coalescence and anticoalescence

Bloch surface waves and Tamm states

BSW and Surface Plasmons	Tamm States and Tamm Plasmons
Finite surface component of wave vector	 Zero or finite surface component
Surface resonance	Surface States With TE and TM

Large local field enhancement (PRB 96, 045308, 2017) low mode volume

suitable for CQED, NLO, SERS, Sensing

Surface plasmons

Bloch surface waves

 $\epsilon_i=6.145, \epsilon_f=1,$ Spacer layer: $d_s=1\mu m, \epsilon_s=1$ DBR parameters: $\epsilon_a=4+0.001i$ (ZnO), $\epsilon_b=1.88+0.001i$ (MgF₂), $d_a=d_b=120nm$, periodicity n=30

Coupled BSW

 $\epsilon_i=6.145, \epsilon_f=1$ Spacer layer: $d_s=1\mu m, \epsilon_s=1$ DBR parameters: $\epsilon_a=4+0.001i$ (ZnO), $\epsilon_b=1.88+0.001i$ (MgF₂), $d_a=d_b=120nm$, periodicity n=30

Coupled BSW-Plasmon

$$\begin{split} &\epsilon_i = 6.145, \ \epsilon_f = 1 \\ &\text{Thickness of Gold } d_{Au} = 50 \text{nm} \\ &\text{Spacer layer: } d_s = 1 \mu \text{m}, \ \epsilon_s = 1 \\ &\text{DBR parameters: } \epsilon_a = 4 + 0.001 \text{i} (\text{ZnO}), \ \epsilon_b = 1.88 + 0.001 \text{i} (\text{MgF}_2), \\ & d_a = d_b = 120 \text{nm}, \text{ periodicity } n = 30 \end{split}$$

Tamm Plasmons

DBR Parameters: $n_a=3.7$, $n_b=3$, periodicity=14

Bragg frequency $\hbar\omega_0 = 1$ eV, corresponding wavelength being $\lambda_c = 1.24 \mu m$.

Thickness of gold layer=0.03µm;

Intensity reflection for TE and TM

Fields under normal incidence inside (Air-Au-DBR-Air)

Coupled Tamm plasmons

Coupling of Tamm plasmons is controlled by the thickness of the gold layer.

CPA with coupled Tamm plasmons

d_{au}=0.0275μm, θ=45deg, TM pol

 d_{au} =0.018µm, θ =45deg, TM pol with phase delay of π

Recent literature on BSW & Tamm plasmons

Wang et al, Nat. Com. 8:14330 (2017) Bloch surface waves confined in one dimension with a single polymeric nanofibre

Wang et al, ACS Nano, 11, 5383 (2017) Diffraction-Free Bloch Surface Waves

BSW-based optical chip

EPFL group Probe with SNOM tip

DBR: SiN-SiO₂ guide and disk: TiO₂ radius: 100 micron

Dubey et al, Opt Lett. 41, 4867 (2017)

Near field characterisation of a BSW-based 2D disk resonator

Graphene-BSW-based

Baghbadorani et al, Appl. Opt. 56, 462 (2017)

Biosensors based on Bloch surface waves in onedimensional photonic crystal with graphene nanolayers

Exciton-TP coupling

Hu et al, Appl. Phys. Lett. 110, 051101 (2017) Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons

$$\varepsilon(\omega) = \varepsilon_b + \sum_{i=A,B} \frac{f_i}{\omega_i^2 - \omega^2 - i\Gamma_i\omega} = \varepsilon_1 + i\varepsilon_2,$$

Graphene-dielectric metamaterials

Hajian et al, J. Appl. Phys. 121, 033101 (2017)

Long-range Tamm surface plasmons supported by graphene-dielectric metamaterials

$$\cos(K_B d) = \cosh(qd) - \frac{\alpha q}{2\varepsilon} \sinh(qd).$$
$$H_y(z) = \begin{cases} A[\sinh(qz) + \gamma \cosh(qz)] & z \ge 0\\ B \exp(q_s z), & z < 0 \end{cases},$$

without and with a cap layer

$$q = \sqrt{\beta^2 - k_0^2 \epsilon}, \quad q_s = \sqrt{\beta^2 - k_0^2 \epsilon_s}, \quad \alpha = \sigma_g/(i\omega\epsilon_0)$$

BSW and Tamm plasmons for quantum optics

Anti-coalescence of bosons on a lossy beam splitter

B. Vest, 1 M.-C. Dheur, 1 E. Devaux, 2 A. Baron, 3 E. Rousseau, 4 J.-P. Hugonin, 1 J.-J. Greffet, 1 G. Messin, 1 F. Marquier 1*

June 2017 Science article

Quantum plasmonics

Quantum plasmonics

M. S. Tame¹*, K. R. McEnery^{1,2}, Ş. K. Özdemir³, J. Lee⁴, S. A. Maier¹* and M. S. Kim²

Jachura et al, OL 2015

Plasmonic circuit

Quantum interference in plasmonic circuits

Reinier W. Heeres*, Leo P. Kouwenhoven and Valery Zwiller

Single photon at a beam splitter

$$|1,0\rangle_{out} = \cos\theta |1,0\rangle + i\sin\theta |0,1\rangle$$

$$|1,1\rangle_{out} = (\cos^2\theta - \sin^2\theta) |1,1\rangle + \sqrt{2}i\cos\theta\sin\theta(|2,0\rangle + |0,2\rangle)$$

HOM setup with gap plasmons

SDG & GSA, Opt. Lett. 39, 390 (2014) Two-photon quantum interference in plasmonics: theory and applications

French expt: plasmonic chip

Photon coalescence and anti-coalescence

with two different beam splitters

Important papers

Loudon, Fermion and boson BS statistics, Phys. Rev A58, 4904 (1998)

Barnett et al, Quantum optics of lossy BS, Phys. Rev A57, 2134 (1997)

Generalized beam-splitter as a 4-port system

$$\left(\begin{array}{c}c\\d\end{array}\right) = \left(\begin{array}{c}t&r\\r&t\end{array}\right) \left(\begin{array}{c}a\\b\end{array}\right)$$

$$\left[c,c^{\dagger}\right] = \left[d,d^{\dagger}\right] = 1, \quad \left[c,d^{\dagger}\right] = 0$$

lossless: unitary $|r|^2 + |t|^2 = 1$, $rt^* + r^*t = 0$

Symmetry and anti-coalescence

 $|\Psi_{spatial}\rangle = (1/\sqrt{2})(|a\rangle_1 |b\rangle_2 \pm |b\rangle_1 |a\rangle_2$

Add polarization degrees of freedom

 $|\Psi_{pol}\rangle = (1/\sqrt{2})(|H\rangle_1 |V\rangle_2 \pm |V\rangle_1 |H\rangle_2)$

$$|\Psi_{total}\rangle = |\Psi_{pol}\rangle \otimes |\Psi_{spatial}\rangle$$

 $|\Psi_{total}\rangle$ symmetric for both $|\Psi_{pol}\rangle$ and $|\Psi_{spatial}\rangle$ antisymmetric

Symmetry and anti-coalescence - contd

Assume

- 1. nonpolarizing BS
- 2. detectors not sensitive to polarization

Consequence: Setup operates only on the spatial part

Output correlation can reveal anti-coalescence

Bosons can mimic Fermions

Criticality of phase relations

Lossless BS
$$|r|^2 + |t|^2 = 1$$
, $rt^* + r^*t = 0$
 $t = \pm ir$, $\Delta \phi = \phi_r - \phi_t = \pm \pi/2$

Lossy BS
$$|t \pm r|^2 \le 1$$

$$|t|^{2} + |r|^{2} \pm (rt^{*} + r^{*}t) \le 1$$

Absorption =
$$1 - |\mathbf{t}|^2 - |\mathbf{r}|^2$$

Correlations: quantum vs classical

$$P(1_a, 1_b) = |t|^4 + |r|^4 + ((rt^*)^2 + (tr^*)^2)I$$

- I overlap integral of individual wavepackets
- I = 0 Classical $P_{cl}(1_a, 1_b) = |t|^4 + |r|^4$

I = 1

CoalescenceAnti-coalescence $t = \pm ir$, $P(1_a, 1_b) = 0$ $t = \pm r$ $P(1_a, 1_b) = 2P_{cl}$ $\Delta \phi = \pm \pi/2$ $\Delta \phi = 0, \pi$ HOM dipHOM peak

Coupled BSW

Higher losses: 0.001 i

Coupled BSW

Lower losses: 0.00001 i

Coupled Tamm plasmons

Anti-coalescence at the short range mode

Anti-coalescence at the long range mode

Conclusions

- Highly dispersive plasmonic systems for quantum optics
- Novel plasmonic structures
- Flexibility with the Bloch surface waves and Tamm plasmons
- Ability to explore both photon coalescence and anticoalescence in the same structure

Thank You