Tutorial 1

S Dutta Gupta School of Physics University of Hyderabad Adjunct Professor of TIFR

Photonics-2018

Nano-Optics and Plasmonics: Promises and Challenges

Basics

- Metal Dielectric and Metamaterials
- Response function theory and Kramers-Kronig relations
- Parallel between Optics and Quantum Mechanics
- Wigner Delay, GH shift and Hartman effect
- Stratified Media, Surface and Guided modes
- Optical invisibility cloaks
- Metasurfaces: recent trends

Metamaterials and NIM

Victor Veselago 1968

$$\begin{array}{c|c} II & \mu & I \\ \hline \epsilon < 0, \ \mu > 0 & \epsilon > 0, \ \mu > 0 \\ metals, \ doped \\ semiconductors & materials \\ \hline \epsilon < 0, \ \mu < 0 & \epsilon > 0, \ \mu < 0 \\ negative \ index \\ materials \\ III & IV \end{array} \hspace{1.5cm} \begin{array}{c} \epsilon > 0, \ \mu < 0 \\ magnetic \ metal \\ like \ ferrites \\ IV \end{array} \hspace{1.5cm} \begin{array}{c} \epsilon > 0, \ \mu < 0 \\ magnetic \ metal \\ like \ ferrites \\ IV \end{array}$$

Sir John Penury 2000

$$\begin{aligned} \text{Lorentz and Drude models} \\ P = Np = -Nex. \\ F = -eE(z,t) = -eE_0\cos(kz - \omega t). \\ \frac{d^2x}{dt^2} + 2\gamma \frac{dx}{dt} + \frac{\omega_0^2 x}{\omega_0^2} = -\frac{eE_0}{m}e^{-i\omega t}. \\ x(t) = \frac{-e/m}{[(\omega_0^2 - \omega^2) - (2i\gamma\omega)]}E_0e^{-i\omega t} = \frac{-e/m}{[(\omega_0^2 - \omega^2) - (2i\gamma\omega)]}E(t) \\ P(t) = \frac{Ne^2/m}{[(\omega_0^2 - \omega^2) - (2i\gamma\omega)]}E(t). \\ P(t) = \varepsilon_0\chi E(t). \\ \chi(\omega) = \frac{Ne^2/(m\varepsilon_0)}{[(\omega_0^2 - \omega^2) - (2i\gamma\omega)]}. \end{aligned}$$

Drude model

Motivation for plasmonic structures Composite media

Highly anisotropic medium Hyperbolic medium

Granular multi-component composite media

Maxwell-Garnett or Bruggemann composites

$$\epsilon_{eff} = \epsilon_h + 3f\epsilon_h \frac{\epsilon_1 - \epsilon_h}{\epsilon_1 + 2\epsilon_h}$$

$$\epsilon_1 + 2\epsilon_h = 0$$

Localized plasmon resonances

Linear Response Function Theory

Time domain

$$\mathbf{P}(t) = \epsilon_0 \int_0^\infty \bar{\mathbf{R}}(\tau) \cdot \mathbf{E}(t-\tau) d\tau,$$

$$\bar{\mathbf{R}}(\tau) = 0, \quad \text{for} \quad \tau < 0.$$
 Causality
$$P_i(t) = \epsilon_0 \sum_j \int R_{ij}(\tau) E_j(t-\tau) d\tau.$$

Frequency domain

$$\begin{aligned} \boldsymbol{\mathcal{E}}(\omega) &= \int_{-\infty}^{\infty} \mathbf{E}(t) e^{i\omega t} \, dt, \\ \mathbf{E}(t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \boldsymbol{\mathcal{E}}(\omega) e^{-i\omega t} \, d\omega. \end{aligned}$$

Linear Response Function Theory contd.

$$\mathbf{P}(t) = \epsilon_0 \int_0^\infty d\tau \ \bar{\mathbf{R}}(\tau) \cdot \left[\int_{-\infty}^\infty \frac{d\omega}{2\pi} \ \mathbf{E}(\omega) e^{-i\omega(t-\tau)} \right],$$
$$= \epsilon_0 \int_{-\infty}^\infty \left\{ \int_0^\infty \bar{\mathbf{R}}(\tau) e^{i\omega\tau} d\tau \right\} \cdot \mathbf{E}(\omega) \ e^{-i\omega t} \ \frac{d\omega}{2\pi}$$

We introduce the linear electric susceptibility $\bar{\bar{\chi}}_e(\omega)$ as

$$\bar{\bar{\boldsymbol{\chi}}}_e(\omega) = \int_0^\infty \bar{\bar{\mathbf{R}}}(\tau) e^{i\omega\tau} d\tau,$$

$$\mathbf{P}(t) = \epsilon_0 \int_{-\infty}^{\infty} \bar{\bar{\boldsymbol{\chi}}}_e(\omega) \cdot \mathbf{E}(\omega) \ e^{-i\omega t} \ \frac{d\omega}{2\pi}$$

Causality in frequency domain: susceptibility analytic in upper half complex plane

$$\chi'(\omega) = \frac{-\pi}{\pi} P \int_{-\infty}^{\infty} \frac{-\pi}{\omega' - \omega} d\omega,$$

$$\chi''(\omega) = \frac{-1}{\pi} P \int_{-\infty}^{\infty} \frac{\chi'(\omega')}{\omega' - \omega} d\omega'.$$

Kramers-Kronig relations contd: symmetry for real frequencies

$$\chi^*(\omega) = \int_0^\infty R(\tau) e^{-i\omega^*\tau} d\tau.$$
$$\chi^*(\omega) = \chi(-\omega^*).$$
$$\chi^*(\omega) = \chi(-\omega),$$
$$\chi'(\omega) = \chi'(-\omega), \quad \chi''(\omega) = -\chi''(-\omega).$$
$$\chi'(\omega) = \frac{1}{\pi} \operatorname{P} \int_{-\infty}^\infty \frac{\chi''(\omega')(\omega' + \omega)}{\omega'^2 - \omega^2} d\omega',$$

$$= \frac{1}{\pi} P\left[\int_{-\infty}^{\infty} \frac{\omega' \chi''(\omega')}{\omega'^2 - \omega^2} d\omega' + \int_{-\infty}^{\infty} \frac{\omega \chi''(\omega')}{\omega'^2 - \omega^2} d\omega'\right]$$
$$= \frac{2}{\pi} P \int_{0}^{\infty} \frac{\omega' \chi''(\omega')}{\omega'^2 - \omega^2} d\omega'.$$

Stratified medium: reflection and transmission

$$\begin{split} & \underset{\mu_{i}}{\varepsilon_{i}} \xrightarrow{k_{i}} \frac{k_{i}}{\mu_{i}} \underbrace{k_{i}}{\psi_{i}} \underbrace{k_{i}}{\psi_{i}}$$

$$\begin{pmatrix} \sqrt{\mu_0} H_{jy} \\ \sqrt{\epsilon_0} E_{jx} \end{pmatrix} = \begin{pmatrix} e^{ik_{jz}z} & e^{-ik_{jz}z} \\ p_{jz}e^{ik_{jz}z} & -p_{jz}e^{-ik_{jz}z} \end{pmatrix} \begin{pmatrix} \sqrt{\mu_0} A_{j+} \\ \sqrt{\mu_0} A_{j-} \end{pmatrix},$$

Stratified medium contd.

$$\begin{pmatrix} H_y \\ E_x \end{pmatrix}_j = M_j \begin{pmatrix} H_y \\ E_x \end{pmatrix}_{j+1}$$

$$\bar{E}_{jx} = \sqrt{\epsilon_0} E_{jx}, \quad \bar{H}_{jy} = \sqrt{\mu_0} H_{jy}.$$

$$M_j = \begin{pmatrix} \cos(k_{jz}d_j) & -(i/p_{jz})\sin(k_{jz}d_j) \\ -ip_{jz}\sin(k_{jz}d_j) & \cos(k_{jz}d_j) \\ M_{total} = M_1 M_2 \dots M_N.$$

$$\begin{pmatrix} H_y \\ E_x \end{pmatrix}_{z=0} = M_{total} \begin{pmatrix} H_y \\ E_x \end{pmatrix}_{z=d_N}.$$

$$\begin{pmatrix} H_y \\ E_x \end{pmatrix}_{z=0} = \begin{pmatrix} 1 & 1 \\ p_{iz} & -p_{iz} \end{pmatrix} \begin{pmatrix} \sqrt{\mu_0} A_{in} \\ \sqrt{\mu_0} A_r \end{pmatrix},$$

$$\begin{pmatrix} H_y \\ E_x \end{pmatrix}_{z=d_N} = \begin{pmatrix} 1 \\ p_{fz} \end{pmatrix} \sqrt{\mu_0} A_t,$$

$$\begin{pmatrix} 1 & 1 \\ p_{zi} & -p_{zi} \end{pmatrix} \begin{pmatrix} A_{in} \\ A_r \end{pmatrix} = M_{total} \begin{pmatrix} 1 \\ p_{zf} \end{pmatrix} A_t.$$

$$r = \frac{A_r}{A_{in}} = \frac{(m_{11} + m_{12}p_f)p_i - (m_{21} + m_{22}p_f)}{(m_{11} + m_{12}p_f)p_i + (m_{21} + m_{22}p_f)},$$

$$t = \frac{A_t}{A_{in}} = \frac{2p_i}{(m_{11} + m_{12}p_f)p_i + (m_{21} + m_{22}p_f)},$$

$$R = |r|^2$$
, and $T = \frac{p_f}{p_i} |t|^2$,

Symmetric stratified medium

$$H_{0y} = A_0(e^{ik_{0z}z} \pm e^{-ik_{0z}z}),$$

$$E_{0x} = p_{0z}A_0(e^{ik_{0z}z} \mp e^{-ik_{0z}z}),$$

$$\begin{pmatrix} 1 & \pm 1 \\ p_{0z} & \mp p_{0z} \end{pmatrix} \begin{pmatrix} A_0 \\ A_0 \end{pmatrix} = M_T \begin{pmatrix} 1 \\ p_{tz} \end{pmatrix} A_t.$$

Guided modes

$$\varepsilon_d \bar{k}_{tz} - \varepsilon_t k_{0z} \tan(k_{0z} d_0/2) = 0,$$

$$\varepsilon_d \bar{k}_{tz} + \varepsilon_t k_{0z} \cot(k_{0z} d_0/2) = 0.$$

Coupled surface plasmons

$$M_T = M_0(d_0/2)M_1(d_1)\cdots M_j(d_j)\cdots M_N(d_N).$$

for the symmetric mode

$$m_{21} + m_{22}p_{tz} = 0,$$

$$(m_{11} + m_{12}p_{tz})A_t = 2A_0,$$

for the antisymmetric mode

$$m_{11} + m_{12}p_{tz} = 0,$$

$$(m_{21} + m_{22}p_{tz})A_t = 2p_{0z}A_0.$$

Coupled surface plasmons contd.

$$M_T = M_0(d_0/2)M_1(d_1)\cdots M_j(d_j)\cdots M_N(d_N).$$

for the symmetric mode

$$m_{21} + m_{22}p_{tz} = 0,$$

$$(m_{11} + m_{12}p_{tz})A_t = 2A_0,$$

for the antisymmetric mode

$$m_{11} + m_{12}p_{tz} = 0,$$

$$(m_{21} + m_{22}p_{tz})A_t = 2p_{0z}A_0.$$

Coupled surface plasmons contd.

$$k_{0z} = i\sqrt{k_x^2 - k_0^2}\varepsilon_m = i\bar{k}_{0z}, \quad k_{tz} = i\sqrt{k_x^2 - k_0^2}\varepsilon_t = i\bar{k}_{tz}.$$

$$\varepsilon_m k_{tz} + \varepsilon_t k_{0z} \tanh(x) = 0,$$

$$\varepsilon_m k_{tz} + \varepsilon_t k_{0z} \coth(x) = 0,$$

$$x = \frac{\bar{k}_{0z} d_0}{2} = \frac{k_{0z} d_0}{2i}$$

Surface plasmons

 $\boldsymbol{H} = (0, H_y, 0)$ TM p-polarization

 $\boldsymbol{E} = (0, E_y, 0)$ TE s-polarization

$$\tilde{k}_x = \tilde{k}'_x + i\tilde{k}''_x = \frac{\omega}{c_0}\sqrt{\frac{\tilde{\varepsilon}_1\tilde{\varepsilon}_2}{\tilde{\varepsilon}_1 + \tilde{\varepsilon}_2}}$$

How to excite these modes?

22

Excitation of guided modes

 $k_{g/sp} = k_0 \sin(\theta) + mK, \quad m = \pm 1, \pm 2, \dots$

$$p_{tz} + ip_{0z} \tan(k_{0z} d_0/2) = 0,$$

$$p_{tz} - ip_{0z} \cot(k_{0z} d_0/2) = 0,$$

Analogy between electron and photon tunneling

$$\tilde{t}(\omega) = |\tilde{t}(\omega)| e^{i\phi_T(\omega)}.$$
$$E_T(z,t) = e^{i(\beta z - \omega_c t)} \int A(\omega) |\tilde{t}(\omega)| e^{i\phi_T(\omega)} e^{-i(\omega - \omega_c)t} d\omega.$$

$$\phi_t(\omega) = \phi_T(\omega_c) + \left. \frac{\partial \phi_T}{\partial \omega} \right|_{\omega_c} (\omega - \omega_c) + \cdots$$

$$E_T(z,t) = e^{i(\beta z - \omega_c t + \phi_T(\omega_c))} \int A(\omega) |\tilde{t}(\omega)| e^{-i\left(t - \frac{\partial \phi_T}{\partial \omega}\Big|_{\omega_c}\right)(\omega - \omega_c)} d\omega.$$

$$E_T(z,t) = |\tilde{t}(\omega_c)| F\left(t - \frac{\partial \phi_T}{\partial \omega}\Big|_{\omega_c}\right) \exp i(\beta z - \omega_c t + \phi_T(\omega_c)).$$

$$\tau_t = \left. \frac{\partial \phi_T}{\partial \omega} \right|_{\omega_c}$$

Goos-Hanchen shift $E_I(x,t) = e^{i(\alpha_0 x + \beta z - \omega_0 t)} \int A(\alpha) e^{i(\alpha - \alpha_0) x} d\alpha.$

$$E_R(x,t) = e^{i(\alpha_0 x - \beta z - \omega t)} \int A(\alpha) e^{i(\alpha - \alpha_0)x + i\phi_R(\alpha)} d\alpha,$$

$$E_R(x,t) = e^{i(\alpha_0 x - \beta z - \omega t + \phi_R(\alpha_0))} \int A(\alpha) e^{i(\alpha - \alpha_0) \left(x + \frac{\partial \phi_R}{\partial \alpha}\Big|_{\alpha_0}\right)} d\alpha$$

$$F(x) = \int A(\alpha) e^{i(\alpha - \alpha_0)x} d\alpha,$$

$$E_R = F\left(x + \frac{\partial \phi_R}{\partial \alpha}\Big|_{\alpha_0}\right) e^{i(\alpha_0 x - \beta z - \omega t) + i\phi_R(\alpha_0)},$$

$$d_{GH} = - \left. \frac{\partial \phi_R}{\partial \alpha} \right|_{\alpha_{0.}}$$

Resonant tunneling and fast and slow light

Reflectionless potentials

$$\Psi(z, E) \sim e^{i\sqrt{E}z} \text{ as } z \to -\infty,$$

$$\Psi(z, E) \sim te^{i\sqrt{E}z} \text{ as } z \to +\infty,$$

$$V(z) = -2\kappa_1^2 \operatorname{sech}(\kappa_1 z).$$

$$\Psi(z) = \frac{i\sqrt{E} - \kappa_1 \tanh(\kappa_1 z)}{i\sqrt{E} + \kappa_1} e^{i\sqrt{E}z}$$

$$\epsilon(z) = n^2(z) = n_s^2 - \frac{V(z)}{k_0}, \quad \epsilon_s = n_s^2.$$

Reflectionless potentials

 $diam = 444 \ nm$

444 nm

GFP: green fluorescent protein (2-4 nm) $\lambda = 510 nm, \quad NA = 1.4$ $r = 222 \ nm$

Propagating vs evanescent waves

$$\mathbf{E}(x,y;z) = \int dk_x \int dk_y \ \mathcal{E}(k_x,k_y;0) e^{i(k_x x + k_y y)} e^{\pm ik_z z}$$
$$k_z^2 = k^2 - (k_x^2 + k_y^2)$$

Perfect lensing and imaging Beyond the diffraction limit

Smith et al, Science 305, 788, 2004.

EIT Optical nano circuits Invisibility cloaks

Subwavelength focusing

demonstrated in microwave by Grbic *et al*, *Phys. Rev. Lett.*, **92**, 117403, 2004.

Limitation: loss of the system

Superlens: proof of principle

Silver tip Probe tip Air Scan Experimental demonstration of subwavelength imaging through a thin silver-layer Sample Objective Dielectric lens The sample, inscribed in the form of the word 'NANO' in chromium film, is separated by a thin dayer of PMMA from a 35-nm-thick silv acting as a superlens. The image is re<mark>co</mark>rded on a photoresist in the form of opographic modulation.

b, A focused ion beam (FIB) image of the inscribed object. 100 nm 100 nm 100 nm

c, AFM image of the topographic modulation corresponding to the near-field image obtained from the superlens.

Science 308, 534–537 (2005).

Invisibility cloaks

H G Wells The Invisible Man

"You make the glass invisible by putting it into a liquid of nearly the same refractive index; a transparent thing becomes invisible if it is put in any medium of almost the same refractive index. And if you will consider only a second, you will see also that the powder of glass might be made to vanish in air, if its refractive index could be made the same as that of air; for then there would be no refraction or reflection as the light passed from glass to air."

"Yes, yes," said Kemp. "But a man's not powdered glass!"

Transformation optics

Pendry, Schurig and Smith Leonhardt 2006

Conformal mapping curve the optical space

Rochester cloak

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}_{\text{perfect cloak}} = \begin{bmatrix} 1 & L/n \\ 0 & 1 \end{bmatrix}.$$

J Choi etal, Opt Exp. 2015

Metasurfaces: achromatic lens

Yu, Capasso, Nat. Mat. 2014 Harvard

Conventional optical components

Lenses, waveplates and holograms rely on light propagation over distances much larger than the wavelength to shape wavefronts

Metasurfaces

Ultrathin optical components producing abrupt changes over the scale of wavelength in the phase, amplitude and/or polarization of a light beam

Arrays of nano antennas with sub-wavelength separation

Generalised law of reflection & refraction

Capasso

 θ_{i} (deg)

x (nm)

Conclusions

- Theoretical basis of expecting novel
 phenomena
- Plasmonics: from concepts to experiments
- Applications
 Superlensing and super-resolution
 Electromagnetically induced transparency
 Plasmonic sensing
 Near-field imaging
 Optical invisibility cloaks
 Metasurfaces

