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Nano-Optics and Plasmonics:  
Promises and Challenges
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Basics

• Metal Dielectric and Metamaterials

• Response function theory and Kramers-Kronig relations

• Parallel between Optics and Quantum Mechanics

• Wigner Delay, GH shift and Hartman effect

• Stratified Media, Surface and Guided modes

• Optical invisibility cloaks

• Metasurfaces: recent trends
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Metamaterials and NIM
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Lorentz and Drude models
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Drude model
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Motivation for plasmonic structures 
Composite media
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Granular multi-component composite media
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Linear Response Function Theory
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Time domain

Frequency domain
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Linear Response Function Theory contd.
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Causality in frequency domain:  
susceptibility analytic in upper half complex plane



Kramers-Kronig relations contd
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Kramers-Kronig relations contd: symmetry for real frequencies
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Stratified medium: reflection and transmission
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Stratified medium contd.
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Stratified medium contd.
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Symmetric stratified medium
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Guided modes
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Coupled surface plasmons
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MT = M0(d0/2)M1(d1) · · ·Mj(dj) · · ·MN (dN ).
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Coupled surface plasmons contd.
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MT = M0(d0/2)M1(d1) · · ·Mj(dj) · · ·MN (dN ).

for the symmetric mode

m21 +m22ptz = 0,

(m11 +m12ptz)At = 2A0,

for the antisymmetric mode

m11 +m12ptz = 0,

(m21 +m22ptz)At = 2p0zA0.



Coupled surface plasmons contd.
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Surface plasmons
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How to excite these modes?
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Excitation of guided modes
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Coherent perfect absorption
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Analogy between electron and photon tunneling

25

(a) (b)

(c) (d)

d

x

z

d

d1d1
d2

z

z
d1 d1

d2

G
U
ID
E



Wigner delay
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Goos-Hanchen shift
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Resonant tunneling and fast and slow light
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Reflectionless potentials
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Reflectionless potentials
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Imaging: Diffraction limit
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GFP: green fluorescent protein (2-4 nm) 



Propagating vs evanescent waves
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Perfect lensing and imaging
Beyond the diffraction limit

33

Having established the reality of negative
refraction, we are now free to investigate other
phenomena related to negative index materials.
We quickly find that some of the most long-
held notions related to waves and optics must
be rethought! A key example is the case of
imaging by a lens. It is an accepted convention
that the resolution of an image is limited by the
wavelength of light used. The wavelength lim-
itation of optics imposes serious constraints on
optical technology: Limits to the density with
which DVDs can be written and the density
of electronic circuitry created by lithography
are manifestations of the wavelength limita-
tion. Yet, there is no fundamental reason why
an image should not be created with arbitrari-
ly high resolution. The wavelength limitation
is a result of the optical configuration of
conventional imaging.

Negative refraction by a slab of material
bends a ray of light back toward the axis
and thus has a focusing effect at the point
where the refracted rays meet the axis (Fig.
4A). It was recently observed (17 ) that a
negative index lens exhibits an entirely new
type of focusing phenomenon, bringing to-
gether not just the propagating rays but also
the finer details of the electromagnetic near
fields that are evanescent and do not prop-
agate (Fig. 4B). For a planar slab of nega-
tive index material under idealized condi-
tions, an image plane exists that contains a
perfect copy of an object placed on the oppo-
site side of the slab. Although realizable mate-
rials will never meet the idealized conditions,
nevertheless these new negative index concepts

show that subwavelength imaging is achiev-
able, in principle; we need no longer dismiss
this possibility from consideration.

This trick of including the high-resolution
but rapidly decaying part of the image is
achieved by resonant amplification of the fields.
Materials with either negative permittivity or
negative permeability support a host of surface
modes closely related to surface plasmons,
commonly observed at metal surfaces (6), and
it is these states that are resonantly excited. By
amplifying the decaying fields of a source, the
surface modes restore them to the correct am-
plitude in the image plane.

The term lens is a misnomer when describ-
ing focusing by negative index materials. Re-
cent work (18, 19) has shown that a more
accurate description of a negative index mate-
rial is negative space. To clarify, imagine a slab
of material with thickness d for which

! ! –1 and ! " –1

Then, optically speaking, it is as if the slab
had grabbed an equal thickness of empty
space next to it and annihilated it. In effect,
the new lens translates an optical object a
distance 2d down the axis to form an image.

The concept of the “perfect lens” at first met
with considerable opposition (20, 21), but the
difficulties raised have been answered by clar-
ification of the concept and its limitations (22,
23), by numerical simulation (24, 25), and in
the past few months by experiments.

In a recent experiment, a two-dimensional
version of a negative index material has been
assembled from discrete elements arranged on a

planar circuit board (26). A detail of the exper-
iment (Fig. 4C) shows the location of a point
source and the expected location of the
image. Figure 4D shows the experimental
data, where the red curve is the measured
result and lies well within the green curve,
the calculated diffraction-limited result. A
more perfect system with reduced losses
would produce better focusing.

The conditions for the “perfect lens” are
rather severe and must be met rather accu-
rately (23). This is a particular problem at
optical frequencies where any magnetic ac-
tivity is hard to find. However, there is a
compromise that we can make if all the di-
mensions of the system are much less than
the wavelength: As stated earlier, over short
distances the electric and magnetic fields are
independent. We may choose to concentrate
entirely on the electric fields; in which case it
is only necessary to tune to ! " –1 and we
can ignore ! completely. This “poor man’s”
lens will focus the electrostatic fields, limited
only by losses in the system. Thus, it has been
proposed that a thin slab of silver a few
nanometers thick can act as a lens (17 ). Ex-
periments have shown amplification of light
by such a system in accordance with theoret-
ical predictions (27 ).

Photonic Crystals and Negative
Refraction
Metamaterials based on conducting elements
have been used to demonstrate negative re-
fraction with great success. However, the use
of conductors at higher frequencies, especial-
ly optical, can be problematic because of
losses. As an alternative, many researchers
have been investigating the potential of neg-
ative refraction in the periodic structures
known as photonic crystals (28). These ma-
terials are typically composed of insulators
and therefore can exhibit very low losses,
even at optical frequencies.

In photonic crystals, the size and period-
icity of the scattering elements are on the
order of the wavelength rather than being
much smaller. Describing a photonic crystal
as a homogeneous medium is inappropriate,
so it is not possible to define values of ! or !.
Nevertheless, diffractive phenomena in pho-
tonic crystals can lead to the excitation of
waves for which phase and group velocities
are reversed in the same manner as in nega-
tive index metamaterials. Thus, under the
right conditions, negative refraction can be
observed in photonic crystals.

In 2000, it was shown theoretically that
several photonic crystal configurations could
exhibit the same types of optical phenomena
predicted for negative index materials, in-
cluding negative refraction and imaging by a
planar surface (23).

Since then, several versions of photonic
crystals have been used to demonstrate neg-

Fig. 4. Perfect lensing in action: A slab of
negative material effectively removes an
equal thickness of space for (A) the far
field and (B) the near field, translating the
object into a perfect image. (C) Micro-
wave experiments by the Eleftheriades
group (26) demonstrate that subwave-
length focusing is possible, limited only
by losses in the system. (D) Measured
data are shown in red and compared to
the perfect results shown in blue. Losses
limit the resolution to less than perfect
but better than the diffraction limit
shown in green.
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Smith et al, Science 305, 788, 2004.

Subwavelength focusing  

demonstrated in microwave by  
Grbic et al, Phys. Rev. Lett., 92,  
117403, 2004. 
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Superlens: proof of principle

34
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there were no involvements of plasmons. Rather, interferometric 
detection was used to measure the local refractive index for imag-
ing. Knoll and Keilmann used interferometry for infrared imaging32, 
and there have been several other reports33 on similar research. In 
the infrared region, because the dispersion curve of SPP for metal 
approaches the light line (Fig. 1), SPP-assisted light enhancement 
is not expected.

In an interesting proposal for a NSOM probe, a tip was prepared 
by coating a metal thin !lm over a small protrusion on an otherwise 
"at surface, producing a localized !eld at the protrusion to sense the 
local dielectric constant of a sample34. In another study, a microscope 
was invented in which a gold nanoparticle trapped and controlled 
by a laser beam was used as an imaging probe35. By scanning such a 
trapped gold particle over the sample surface, an image of "uorescent 
DNA entangles was demonstrated.

In the early stage of near-!eld microscopy, apertured tips were 
used to con!ne the light by passing it through a tiny hole at the apex 
of the tip. Although this kind of NSOM has certain advantages, such 
as a reduction of far-!eld background or the potential to charac-
terize a plasmonic device, it always su#ers from comparatively low 
resolution that is governed by the size of the aperture.

Enhancement of confined light
In addition to high resolution, plasmonic nano-imaging is advan-
tageous in terms of optical throughput. $e !eld intensity near the 
metallic nanostructure is highly enhanced owing to the resonance of 
localized SPP. $e enhancement factor strongly depends on the shape 
and the size of the metallic nanostructure. Figure 4a illustrates some 
of the nanostructures commonly used for this purpose. An easy way 
to understand the light–metal interaction for a nanostructure is to 
consider the separation of free charge carriers under the in"uence of 
the external electric !eld associated with the propagating light. $is 
separation creates an additional !eld that oscillates with the same 
frequency as the external !eld. As a result, an extremely localized 
and enhanced light !eld is created close to the metal structure, as 
illustrated in Fig. 4a. 

As plasmons tend to radiate at curvature, a spherical shape turns 
out not to be the best shape for enhancement. On the other hand, the 
formation of standing waves of SPP in a structure with appropriate 
geometry provides strong resonances and hence supports stronger 
enhancement36,37. In that sense, a rod with optimized aspect ratio 
seems to be the best deal. Both ends of a rod can have a strongly 
con!ned !eld, usually known as the ‘hot spot’. $e other interest-
ing structures are triangles and cones, which, owing to their sharp 
edges, produce strong concentration of free charge carriers at the 
apex, resulting in a higher !eld enhancement near the apex. Both 
triangular38–40 and conical41 nanostructures have been shown to pro-
duce enormous !eld enhancement. Many groups have also theoreti-
cally calculated the !eld enhancement for di#erent shapes of metallic 
nanoprobes. Figure 4b shows one such numerical simulation result 
for a nanorod that is 150 nm long and has a diameter of 20 nm. $e 
light source is considered as a dipole (indicated by the double-head-
ed arrow) 10 nm from one end of the nanorod, and a hot spot is 
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Figure 3 | Commonly used metallic nanoprobes. a, Numerical calculation 
of light distribution at the apex of a metallic nano-tip shows an 
enhancement of ~100 times41. b, A typical set-up for apertureless NSOM, 
where a nano-tip is illuminated through a thin sample and the signal is 
collected by the same objective lens that illuminates the tip. Image is 
obtained by scanning the sample stage. c–e, Scanning electron microscope 
images of some commonly used metallic nano-tips. c, Cantilever coated 
with silver thin film by evaporation. d, Gold nanoparticle attached to 
pointed optical fibre. e, Electrochemically etched silver wire. Images in  
c, d and e reproduced with permission from, respectively, ref. 26. © 2001 
Elsevier; ref. 28. © 2006 APS; and ref. 29. © 2003 APS.

Figure 2 | Experimental demonstration of subwavelength imaging through 
a thin silver layer. a, An illustration of experimental demonstration of 
subwavelength imaging through a superlens. The sample, inscribed in the 
form of the word ‘NANO’ in chromium film, is separated by a thin layer of 
polymethyl methacrylate (PMMA) from a 35-nm-thick silver film acting as a 
superlens. The image is recorded on a photoresist in the form of topographic 
modulation. b, A focused ion beam (FIB) image of the inscribed object.  
c, AFM image of the topographic modulation corresponding to the near-field 
image obtained from the superlens. Images in a, b and c are reproduced with 
permission from ref. 17. © 2005 AAAS.
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Experimental demonstration of subwavelength 
imaging through a thin silver layer

 
The sample, inscribed in the form of the word 
‘NANO’ in chromium film, is separated by a thin 
layer of PMMA from a 35-nm-thick silver film 
acting as a superlens. 

The image is recorded on a photoresist in the form of 
topographic modulation. 

b, A focused ion beam (FIB) image of the inscribed 
object. 

c, AFM image of the topographic modulation 
corresponding to the near-field image obtained from 
the superlens.
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H G Wells The Invisible Man
"You make the glass invisible by putting it into a liquid 

of nearly the same refractive index; a transparent 
thing becomes invisible if it is put in any medium of 

almost the same refractive index. And if you will 
consider only a second, you will see also that the 

powder of glass might be made to vanish in air, if its 
refractive index could be made the same as that of 

air; for then there would be no refraction or reflection 
as the light passed from glass to air."  

 
"Yes, yes," said Kemp. "But a man's not powdered 

glass!"
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who elegantly showed how to mathematically construct potentials with zero scattering fields,
hence invisible. However, Devaney’s result was for a finite number of discrete directions, and
not for a continuous range of angles.

In this article, we demonstrate a ray optics cloak that is designed for continuously multidirec-
tional angles in 3D (See Fig. 1). This is the first such device, to our knowledge, for transmitting
rays in the visible regime. It also uses off-the-shelf isotropic optics, scales easily to arbitrarily
large sizes, has unity magnification, and is as broadband as the optical material used. Thus,
many of the difficulties encountered in invisibility cloaking schemes so far are solved, albeit
with edge effects that are present. We also provide a concise and effective formalism, using

Fig.� 1.�Example� of� a� practical� paraxial� cloak.� (a)-(c)�A� hand� is� cloaked� for� varying�
directions,�while�the�background�image�is�transmitted�properly�(See�Media�1�and�Media�2�
for�videos).�(d)�On-axis�view�of�the�ray�optics�cloaking�device.�(e)�Setup�using�practical,�
easy�to�obtain�optics,�for�demonstrating�paraxial�cloaking�principles.�(Photos�by�J.�Adam�
Fenster,�videos�by�Matthew�Mann�/�University�of�Rochester)

ray optics, to describe all perfect optical cloaks in the small-angle (‘paraxial’) limit. We ap-
ply our formalism to general optical systems up to four lenses, and show what systems can be
considered ‘perfect’ paraxial cloaks for rays.

2. Theoretical formalism

To begin, we use a slightly different philosophy than transformation optics. Rather than starting
with the bending or reshaping of the space for fields, we first consider replacing the cloaking
space entirely. If the cloaking device can be replaced in a simple manner, then engineering
every field to move around the cloaked space may be unnecessary, or automatic. This can be
accomplished by considering the cloaking device as an optical system that images the back-
ground. Our scope is limited to ray optics, so we do not attempt to preserve the complete phase
of the fields.

2.1. Defining a ‘perfect’ cloak

Let’s first define a ‘perfect,’ or ‘ideal,’ cloaking device. We take the broad definition of a “cloak”
as something that “hides” an object or space, not necessarily as a garment to be worn or wrapped
around an object. An obvious first requirement is that a ‘perfect’ cloak must have a non-zero
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Fig. 2. Investigating ‘perfect’ paraxial cloaking with rays. (a) A ‘perfect’ ray optics
cloaking box. Rays exit the box as if the box was filled with the surrounding medium.
Non-zero volume inside hides an object. Angles do not change, but the positions shift
proportionally to the ray angles and box length. The image seen by the observer should
match the object exactly. (b)-(d) Diagrams for a two lens (b), three lens (c), or four lens (d)
system. f ’s are the focal lengths, t’s are the distances between the elements. (e) All possible
four lens, symmetric, perfect paraxial cloaks for rays. Plot of t1/ f2 (solid), t2/ f2 (dashed),
and L/ f2 (dotted) as a function of a ⌘ f1/ f2. Assumed symmetric left and right halves
( f1 = f4, f2 = f3, and t1 = t3). L is the total length of the system. The physical feasibility
and presence of a non-empty cloaking region must be checked separately.
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Fig. 2. Investigating ‘perfect’ paraxial cloaking with rays. (a) A ‘perfect’ ray optics
cloaking box. Rays exit the box as if the box was filled with the surrounding medium.
Non-zero volume inside hides an object. Angles do not change, but the positions shift
proportionally to the ray angles and box length. The image seen by the observer should
match the object exactly. (b)-(d) Diagrams for a two lens (b), three lens (c), or four lens (d)
system. f ’s are the focal lengths, t’s are the distances between the elements. (e) All possible
four lens, symmetric, perfect paraxial cloaks for rays. Plot of t1/ f2 (solid), t2/ f2 (dashed),
and L/ f2 (dotted) as a function of a ⌘ f1/ f2. Assumed symmetric left and right halves
( f1 = f4, f2 = f3, and t1 = t3). L is the total length of the system. The physical feasibility
and presence of a non-empty cloaking region must be checked separately.
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volume to hide an object. Second, such a cloak should act the same way as if it was not there.
This is equivalent to the device being replaced completely by the ambient medium. These two
conditions then are sufficient and necessary for defining a ‘perfect cloak’ in general. For such,
both the cloaked object and the cloaking device are invisible [2, 6].

We now discuss what a perfect cloak would do to light rays in the ray optics picture. Accord-
ing to our definition, such a device should behave as if its space was replaced by the surround-
ing medium. Then, the ray angles exiting the device would not change, but the ray positions do
shift (See Fig. 2(a)). The image of an object behind the device, as seen by an observer, would
be identical to the object itself. This implies that the image location, size, shape, and color
should be exactly that of the actual object. A perfect ray optics cloak would generate images
with unity magnification, zero transverse and longitudinal shifts, and no aberrations, i.e., no
changes, compared to the actual object, for all ray positions and directions.

2.2. Quantifying a perfect paraxial cloak

So far, our definition of a ‘perfect’ cloak was applicable generally. We will now develop a
formalism using geometric optics, to quantify this definition in the paraxial approximation. To
first-order approximation, called the “paraxial approximation,” light rays are assumed to deviate
minimally from the center axis of the system. Hence, it is a small-angle approximation. In this
regime, also known as “Gaussian optics” [23], propagation of light rays through an optical
system can be described by ‘ABCD’ matrices (see Fig. 6 in Appendix A) [24, 25]. Because a
perfect cloaking device simply replicates the ambient medium throughout its volume, its ABCD
matrix is just a ‘translation matrix’:


A B
C D

�

perfect cloak
=


1 L/n
0 1

�
. (1)

L is the length of the cloaking system, and n is the index of refraction of the surrounding
medium (For a nonuniform ambient medium, see Eq. (19) in Appendix B).

Equation (1) is at the heart of our paper. Since any paraxial system can be written with
ABCD matrices, if an optical system meets Eq. (1) and has a cloaking region, then it is a
perfect paraxial cloak. Any ‘perfect’ cloak should also be perfect in first-order, so Eq. (1) is
a necessary condition for all such cloaks. Note that this does not violate the findings by Wolf
and Habashy [20] and Nachman [21] since this is a paraxial approximation, and hence does not
work for large angles. However, we show this to be a surprisingly effective condition, despite
its simplicity.

Because ABCD matrices have a determinant of 1, Eq. (1) gives only three conditions to be
satisfied: B = L/n, C = 0, and either A = 1 or D = 1. Note that a perfect cloaking system is
“afocal” (C = 0), meaning the optical system has no net focusing power. So an object at infinity
will be imaged to infinity. This is helpful for the design process, since an afocal condition can
be easily checked.

It is worth distinguishing a ‘perfect’ paraxial cloak (Eq. (1)) from a ‘perfect’ cloak. In the
paraxial regime, ray optics is used, there are no aberrations by definition, and sags or edges
of optics are ignored because of the small-angle limit [25, 26]. However, real optics are not
paraxial only, so a perfect paraxial cloak will have aberrations (non-ideal images), and un-
wanted rays may be visible near the edges (what we term as ‘edge effects’). On the other hand,
a ‘perfect’ cloak would hide an object entirely from the full field (amplitude and phase), so no
changes to the field can be observed, including any aberrations. These distinctions do go away
for small-angle, nearly on-axis rays, and large optics.

#223101 - $15.00 USD Received 15 Sep 2014; revised 7 Nov 2014; accepted 11 Nov 2014; published 18 Nov 2014
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Metasurfaces: achromatic lens
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Conventional optical 
components  
 
Lenses, waveplates and holograms 
rely on light propagation over 
distances much larger than the 
wavelength to shape wavefronts
 
Metasurfaces
Ultrathin optical components 
producing abrupt changes over the 
scale of wavelength  
in the phase, amplitude and/or 
polarization of a light beam 

Arrays of nano antennas with
sub-wavelength separation
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!is Review concentrates on recent developments in the 
concept and applications of metasurfaces. We start by introducing 
phase jumps and discuss their implication for light propagation 
(Fig. 1a,b). Our focus is to illustrate a set of distinctive approaches 
to create metasurfaces. Metasurfaces made of optical scatterers that 
control propagating waves are presented in Figs 1–4. Metasurfaces 
based on holograms in the form of structured metallic surfaces 
that control surface plasmons30 are presented in Fig.  5. A holo-
gram can be regarded as a continuous pattern of optical scatterers. 
Metasurfaces based on optically thin #lms of lossy materials are 
presented in Fig. 6.

Optical phase jumps
Richard Feynman used the drowning man’s dilemma in his 
Lectures on Physics to explain the refraction of light at the inter-
face between two media31. Here we use the dilemma to illustrate 
the implication of phase jumps for the propagation of light. !e 
drowning man’s dilemma asks the following question: what is the 
best route for a lifeguard to reach a drowning man at sea? Because 
the lifeguard runs faster than he swims (νland > νsea), he should head 
for a point on the seashore that extends the running distance in 
exchange for a shortened swimming distance. !e optimal route 
satis#es the following equation: sinθi/νland  –  sinθt/νsea  =  0 (white 
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Figure 1 | Generalized laws of refraction and reflection. a, Drowning man’s dilemma. A wall with varying height along the seashore will change the optimal 
route for a lifeguard to reach a drowning man in the sea. Likewise, a gradient of phase jump on the interface between two optical media will change the 
path of stationary phase according to Fermat’s principle, leading to a generalized Snell’s law. b, A gradient of interfacial phase jump dΦ/dr provides an 
e"ective wavevector along the interface that can bend transmitted and reflected light into arbitrary directions. In particular, the component dΦ/dy normal 
to the plane of incidence leads to out-of-plane refraction and reflection. c, Scanning electron microscopy (SEM) image of a metasurface consisting of an 
array of V-shaped gold optical antennas fabricated on a silicon wafer. The metasurface introduces a constant gradient of phase jump along the interface. 
The unit cell of the metasurface is highlighted and Γ =11 μm. d, Experimental far-field intensity profiles showing the ordinary and anomalous refraction 
generated by metasurfaces like the one shown in c and with di"erent interfacial phase gradients. The upper, middle and lower panels correspond to Γ = 13, 
15 and 17 μm, respectively. The incident beam impinges normal to the metasurfaces. The far-field profiles are normalized with respect to the intensity 
of the ordinary beams located at θt = 0°. The arrows indicate the calculated angular positions of the anomalous refraction according to θt = –arcsin(λ/Γ). 
e, Photograph of a fabricated microwave reflect-array consisting of H-antennas separated from a metallic back plane by a dielectric spacer. The reflect-
array introduces an interfacial phase gradient ξ = 1.14ko, where ko is the wavevector of the incident beam corresponding to a 2-cm wavelength. f, Measured 
and simulated far-field intensity profiles for a microwave reflect-array corresponding to ξ = 0.4ko and 0.8ko. The solid blue lines represent calculations by 
finite-di"erence time-domain (FDTD) simulations. g, Anomalous reflections at di"erent incident angles for a near-infrared reflect-array consisting of Au 
patch antennas separated from a gold back plane by a MgF2 spacer with subwavelength thickness. Note the existence of critical angle of incidence above 
which there is no reflected wave, consistent with the generalized law of reflection, equation (1). The grey box corresponds to negative reflection. Inset is 
an SEM image of part of the reflect-array. h, Simulated optical fields at di"erent incident angles indicated by the arrows in g. The red and black arrows 
represent the direction of the incident and reflected light, respectively. Figures reproduced with permission from: b–d, ref. 12, © 2013 IEEE; e,f, ref. 38, 
© 2012 NPG; g,h, ref. 37, © 2012 ACS.

REVIEW ARTICLE NATURE MATERIALS DOI: 10.1038/NMAT3839

© 2014 Macmillan Publishers Limited. All rights reserved

140 NATURE MATERIALS | VOL 13 | FEBRUARY 2014 | www.nature.com/naturematerials

!is Review concentrates on recent developments in the 
concept and applications of metasurfaces. We start by introducing 
phase jumps and discuss their implication for light propagation 
(Fig. 1a,b). Our focus is to illustrate a set of distinctive approaches 
to create metasurfaces. Metasurfaces made of optical scatterers that 
control propagating waves are presented in Figs 1–4. Metasurfaces 
based on holograms in the form of structured metallic surfaces 
that control surface plasmons30 are presented in Fig.  5. A holo-
gram can be regarded as a continuous pattern of optical scatterers. 
Metasurfaces based on optically thin #lms of lossy materials are 
presented in Fig. 6.

Optical phase jumps
Richard Feynman used the drowning man’s dilemma in his 
Lectures on Physics to explain the refraction of light at the inter-
face between two media31. Here we use the dilemma to illustrate 
the implication of phase jumps for the propagation of light. !e 
drowning man’s dilemma asks the following question: what is the 
best route for a lifeguard to reach a drowning man at sea? Because 
the lifeguard runs faster than he swims (νland > νsea), he should head 
for a point on the seashore that extends the running distance in 
exchange for a shortened swimming distance. !e optimal route 
satis#es the following equation: sinθi/νland  –  sinθt/νsea  =  0 (white 
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Figure 1 | Generalized laws of refraction and reflection. a, Drowning man’s dilemma. A wall with varying height along the seashore will change the optimal 
route for a lifeguard to reach a drowning man in the sea. Likewise, a gradient of phase jump on the interface between two optical media will change the 
path of stationary phase according to Fermat’s principle, leading to a generalized Snell’s law. b, A gradient of interfacial phase jump dΦ/dr provides an 
e"ective wavevector along the interface that can bend transmitted and reflected light into arbitrary directions. In particular, the component dΦ/dy normal 
to the plane of incidence leads to out-of-plane refraction and reflection. c, Scanning electron microscopy (SEM) image of a metasurface consisting of an 
array of V-shaped gold optical antennas fabricated on a silicon wafer. The metasurface introduces a constant gradient of phase jump along the interface. 
The unit cell of the metasurface is highlighted and Γ =11 μm. d, Experimental far-field intensity profiles showing the ordinary and anomalous refraction 
generated by metasurfaces like the one shown in c and with di"erent interfacial phase gradients. The upper, middle and lower panels correspond to Γ = 13, 
15 and 17 μm, respectively. The incident beam impinges normal to the metasurfaces. The far-field profiles are normalized with respect to the intensity 
of the ordinary beams located at θt = 0°. The arrows indicate the calculated angular positions of the anomalous refraction according to θt = –arcsin(λ/Γ). 
e, Photograph of a fabricated microwave reflect-array consisting of H-antennas separated from a metallic back plane by a dielectric spacer. The reflect-
array introduces an interfacial phase gradient ξ = 1.14ko, where ko is the wavevector of the incident beam corresponding to a 2-cm wavelength. f, Measured 
and simulated far-field intensity profiles for a microwave reflect-array corresponding to ξ = 0.4ko and 0.8ko. The solid blue lines represent calculations by 
finite-di"erence time-domain (FDTD) simulations. g, Anomalous reflections at di"erent incident angles for a near-infrared reflect-array consisting of Au 
patch antennas separated from a gold back plane by a MgF2 spacer with subwavelength thickness. Note the existence of critical angle of incidence above 
which there is no reflected wave, consistent with the generalized law of reflection, equation (1). The grey box corresponds to negative reflection. Inset is 
an SEM image of part of the reflect-array. h, Simulated optical fields at di"erent incident angles indicated by the arrows in g. The red and black arrows 
represent the direction of the incident and reflected light, respectively. Figures reproduced with permission from: b–d, ref. 12, © 2013 IEEE; e,f, ref. 38, 
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• Theoretical basis of expecting novel 
phenomena

• Plasmonics: from concepts to experiments

• Applications 
Superlensing and super-resolution  
Electromagnetically induced transparency 
Plasmonic sensing  
Near-field imaging  
Optical invisibility cloaks 
Metasurfaces 


