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Chapter 1

Introduction

Plasmonics opens up the gateway to the sub-wavelength world by its inher-
ent ability to beat the Rayleigh limit. What is truly amazing is the fact
that most of the related effects can be understood with an undergraduate
background of classical optics, and all of it was around for so many years.
Indeed the past two decades have been an eyeopener to novel effects arising
from classical Maxwellian optics. Superlensing and super resolution, invisi-
bility cloaks, extraordinary transmission are just a few examples. One now
understands a large variety of effects under the banner of plasmonics with
potential applications ranging from enhanced photovoltaics to imaging, sur-
face enhanced spectroscopy to the precision spectroscopy of single molecules.
In fact, there are many more unexplored areas.

I have a very humble goal in these lectures: to lay open the basic entity,
namely the surface plasmons (SP’s). Perhaps the best possible source to
learn about surface plasmons even today is the monograph of Raether[1].
I will try to show how the SP, being the closest kin of guided modes of
an equivalent dielectric structures, is so very different from them. I won’t
discuss the free electron model or the bulk plasmons of noble metals. One
can find a nice description in the monograph by Maier [3]. Nor would I try
to highlight all the important applications (see part II of [3]). Nevertheless,
I will try to highlight the physics which opens up the possibilities for all such
applications.

In standard textbooks or monographs the surface plasmons and related
phenomena are introduced starting from a single metal-dielectric interface.
One then moves on to two or more interfaces yielding coupled plasmons
and gap plasmons. This approach is good for beginners but lacks the bird’s
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eye view of many related phenomena. In my teaching experience I have
encountered students who miss out on the similarities and differences between
the guided and the surface modes. In these notes I have tried to adopt a
different approach, namely, move from general to specific situations. We
start with a multilayered metal-dielectric stratified medium, in order to have
a general framework encompassing a wide spectrum of effects. We show
how the characteristics of the modes can be calculated through the poles
of the reflection/transmission coefficients, which is the same as solving the
dispersion relation. We specialize to a simpler case study, where we look
at the modes of a general symmetric layered medium, which simplifies the
equations and at the outset distinguishes the symmetric and antisymmetric
modes. We then consider various limiting cases yielding the well known
results for waveguide modes, surface plasmons (both long and short range),
and the gap plasmon modes. While most of this is a blackboard excercise,
I have borrowed few results from my earlier papers involving not-so-simple
numerical calculations (multi-branch dispersion curves). The latter will be
presented in the notes and in order to maintain a smooth flow, I will try not
to switch to slides.

The structure of these notes are as follows. In Chapter 2, we start with
the derivation of the amplitude reflection and transmission coefficients [4, 5],
we define the modes of the structure through the poles of these cofficients.
We take a particular case of a symmetric structure [6], which enables us to
arrive at the dispersion relations of the symmetric and the antisymmetric
modes. By taking suitable limits we show that these dispersion relations
are identical to the standard forms. We solve the dispersion relations for
simple cases of planar waveguides and coupled plasmons. We show that
while waveguide dispersion can be calculated easily by “cheating”, the same
is not possible for the coupled plasmons. We present a simple matlab code
highlighting the complexities of the root finder and few other sources of
problems related to causality. In order to highlight the near field or the
sub-wavelength capabilities of plasmonics we then consider a gap plasmon
(GP) guide where a sub-wavelength dielectric layer is enclosed in between
two semi-infinite/finite metal layers. The fundamental plasmonic mode can
propagate in this guide while any TE mode is prohibited by the Rayleigh
criterion. In this context we demonstrate an avoided crossing phenomenon,
which is often encountered in optical and solid state systems. Chapter 2 gives
few more details about the surface plasmons and coupled surface plasmons,
concentrating mainly on how to excite them. Of course, methods discussed
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here are not exhaustive, but they serve the purpose of highlighting the role
of momentum matching. A brief comparison is made with the quasi phase
matching in nonlinear optics. Chapter 3 deals with a wider spectum of effects
which are also applicable to plasmonic structures. The goal here was to open
up the possibilities of the plasmonic structures to explore effects hitherto
known in atomic samples and quantum well/barrier systems.
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Chapter 2

Reflection and Transmission
through Layered Media and
Eigenmodes

2.1 Characteristic Matrices

Consider the j-th slab of the stratified medium shown in Fig.2.1 with dielec-
tric function εj occupying the space between planes z = zj and z = zj+1 (let
dj = zj+1 − zj be the width). Let y = 0 be the plane of incidence. Because
of our intention of exploring the plasmonic phenomena in these notes, we re-
strict our attention only to the TM-modes (with non-vanishing components
Hy, Ex and Ez). Since noble metals are known to possess strong dispersion,
we shall be incorporating available experimental data via suitable interpola-
tion scheme like spline interpolation [7, 8]. All the media are also assumed
to be nonmagnetic. For TM-polarized light the only non-vanishing magnetic
field component is Hy for the aforementioned slab can be written as

Hjy = Aj+e
ikjz(z−zj) + Aj−e

−ikjz(z−zj), j = 1 · · ·N, (2.1)

while the expression for the corresponding tangential component of the elec-
tric field Ejx is given by

Ejx = pjz(Aj+e
ikjz(z−zj) − Aj−e−ikjz(z−zj)). (2.2)

In Eqs.(2.1) and (2.2), Aj± are the forward and backward wave amplitudes,
while kjz and pjz are expressed through the x-component of the propagation
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constant kx as

kjz =
√
k2

0εj − k2
x, pjz =

kjz
k0εj

, k0 =
ω

c
. (2.3)

In Eq.(3) one has to ensure that the imaginary part of the z-component of the
wave vector is positive. Writing Eqs. (1) and (2) on the left and right faces of
the j-th layer, one can relate the corresponding tangential field components
by the matrix relation (

Hy

Ex

)
j

= Mj

(
Hy

Ex

)
j+1

, (2.4)

where the subscript j refers to z = zj and the characteristic matrix Mj is
given by [4]

Mj =

(
cos(kjzdj) −(i/pjz) sin(kjzdj)

−ipjz sin(kjzdj) cos(kjzdj)

)
(2.5)

For a layered medium with N layers as in Fig.1, the total characteristic
matrix is given by

Mtotal = M1M2....MN . (2.6)

Later the characteristics matrix was generalized to Kerr nonlinear stratified
media and applied to explore various nonlinear optical effects and photon
localization in nonlinear systems [5].

2.2 Amplitude Reflection and Transmission

Coefficients and Dispersion Relation

In this section we present the results for the reflection and transmission
features of a layered structure (see Fig.2.1). Let the structure be illuminated
by a plane monochromatic wave at an angle θi. The amplitude reflection (r)
and transmission (t) coefficients of such a structure are given by [4, 5]:

r =
(m11 +m12pf )pi − (m21 +m22pf )

(m11 +m12pf )pi + (m21 +m22pf )

(2.7)

t =
2pi

(m11 +m12pf )pi + (m21 +m22pf )
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Figure 2.1: Schematic of a layered structure.

where mij (i, j = 1, 2) are the elements of the total characteristic matrix of
the structure (see Eq.(2.6)) and we have suppressed z from the subscripts of
p. The intensity reflection (R) and transmission (T ) of the structure are given
by R = |r|2 and T = |t|2 (for identical media of incidence and emergence).

Note that a common denominator figures in the expressions of both the
reflection and transmission coefficients (Eq.(2.7)). The zeroes of the denom-
inator bear the information about the characteristic frequencies (eigenfre-
quencies) of the system. Physically this corresponds to the situation when
with no input certain specific disturbances can be maintained in the system.
Such specific disturbances with well defined spatial profiles are referred to as
the modes of the structure. The corresponding equation (also known as the
dispersion relation) can be written as [5, 9]

D = (m11 +m12pf )pi + (m21 +m22pf ) = 0 , (2.8)

The dispersion relation (2.8) can be solved in general for complex roots,
which carries all the information about the modes and their associated decay
rates. In fact, the real part of the roots gives the locations of the modes,
while the imaginary part corresponds to the width of these resonances. Due
to the transcendental nature of Eq. (2.8), in general, it cannot be solved
analytically. One has to revert to a graphical or numerical scheme to obtain
the distinct branches for the modes.
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Figure 2.2: Schematic view of the symmetric layered medium, where only
the right half is shown.

2.3 Case Study: A symmetric (2N + 1)-layer

structure

Consider the TM-modes (with non-vanishing components Hy, Ex and Ez) for
the symmetric system shown in Fig. 2.2, comprising of 2N + 1 layers with
any j-th layer characterized by a dielectric function εj(ω) and width dj. The
middle layer is assumed to have a width d0 and dielectric function ε0 (symbol
not to be confused with the vacuum dielectric permittivity). The bounding
media are assumed to be air. Like before we restrict our attention only to the
TM polarized waves. Keeping in view the symmetry of the structure about
the plane z = 0, we write the magnetic and electric field components in the
central layer as

H0y = A0(eik0zz ± e−ik0zz), (2.9)

E0x = p0zA0(eik0zz ∓ e−ik0zz), (2.10)

where k0z =
√
k2

0ε− k2
x and p0z = k0z

k0ε
. Hereafter the upper (lower) sign

in Eqs.(2.9) and (2.10) will refer to the symmetric (antisymmetric) magnetic
modes. Note that symmetry is being judged by the symmetry of the magnetic
field distribution across the layers. Making use of the characteristic matrices
one can then relate the tangential field components at the centre, i.e., at z=0
and at z = zN , which, in terms of amplitudes yields the following relation(

1 ±1
p0z ∓p0z

)(
A0

A0

)
= MT

(
1
ptz

)
At. (2.11)
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In Eq.(2.11) the subscript t refers to the corresponding quantities in the
embedding medium and MT is given by

MT = M0(d0/2)M1(d1) · · ·Mj(dj) · · ·MN(dN). (2.12)

Referring to the different signs in Eq.(2.11) and demanding the nontrivial-
ity of the constant amplitudes, one obtains the dispersion relation for the
symmetric and the antisymmetric modes. For the symmetric mode one has

m21 +m22ptz = 0, (2.13)

(m11 +m12ptz)At = 2A0, (2.14)

while for the antisymmetric mode one obtains

m11 +m12ptz = 0, (2.15)

(m21 +m22ptz)At = 2p0zA0. (2.16)

It is clear that Eqs.(2.13) and (2.15) give the corresponding dispersion rela-
tions while (2.14) and (2.16) define the amplitudes for the mode functions.

2.4 Typical example: Modes of a Symmetric

Waveguide

0 0.5 1 1.5 2 2.5 3
0.9

1

1.1

1.2

1.3

1.4

1.5

d
0
(µm)

n
e

ff

320 1

TM

Figure 2.3: Transverse magnetic modes of a symmetric dielectric wave guide
for parameters λ = 1.55µm, εd = 2.085 and εt = 1.0.

As an example, we first consider the case of a symmetric planar waveguide,
whereby a slab of sielectric constant εd and width d0 is embedded in a dielec-
tric medium with dielectric constant εt (see Fig. 2.2 with dj = 0, j = 1−N).
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For guided modes waves need to be evanescent outside the film. We thus
rewrite ktz as

ktz = i
√
k2
x − k2

0εt = ik̄tz. (2.17)

Equations (2.13) and (2.15) can then be reduced to the well known dispersion
relations for the symmetric and antisymmetric transverse magnetic modes of
a planar guide

εdk̄tz − εtk0z tan(k0zd0/2) = 0, (2.18)

εdk̄tz + εtk0z cot(k0zd0/2) = 0. (2.19)

2.5 Relevant example: Surface Plasmons and

Coupled Surface Plasmons
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1

2

3

4

R
e
(k

x
/k

0
)

0 0.025 0.05
0

0.1

0.2

0.3

0.4

d
0
(µm)

Im
(k

x
/k

0
)

S

S

A

A

Figure 2.4: Real and imaginary parts of the normalized propagation constant
kx/k0 for the coupled modes. The parameters are as follows λ = 1.55µm,
εm = −132 + 12.6i (gold), εt = 1.0.

Consider a single metal film with width d0 and dielectric function εm
embedded in a dielectric (with constant εt) (see Fig.2.2 with dj = 0, j =
1 − N). For surface modes to exist at both the interfaces waves in all the
media need to be evanescent. We thus rewrite the z−components of the wave
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vectors as

k0z = i
√
k2
x − k2

0εm = ik̄0z, ktz = i
√
k2
x − k2

0εt = ik̄tz. (2.20)

Substituting Eqs.(2.20) in Eqs.(2.13) and (2.15) and recalling the structure
of the characteristic matrix (2.5), one can rewrite the dispersion equations
for the symmetric and the antisymmetric modes, respectively,

εmktz + εtk0z tanh(x) = 0, (2.21)

εmktz + εtk0z coth(x) = 0, (2.22)

where x = k̄0zd0
2

= k0zd0
2i

. It is easy to see that Eqs. (2.21) and (2.22) coincide
with Eq.(A.20) of Raether’s monograph [1].

The case of a single metal-dielectric interface can easily be recovered by
taking the limit d0 → ∞ leading to identical values tanh and coth (=1) for
large arguments. Both the equations then reduce to the same form as follows

εmktz + εtk0z = 0. (2.23)

Eq.(2.23) can easily be reduced to the standard dispersion relation for surface
plasmons

kx = k0

√
εtεm
εt + εm

. (2.24)

We now comment on the decay characteristics of the coupled modes. As
can be seen from Fig. 2.4, the antisymmetric (symmetric) modes have much
smaller (larger) decay and thus can propagate a longer (shorter) distance.
Therefore often the antisymmetri (symmetric) modes are referred to as long
range or LR (short range or SR) modes.

2.6 Gap plasmons and avoided crossings

We now restrict our attention to a symmetric metal clad waveguide with
dielectric core thickness d0, and metal claddings with width d1. After the
solution of the dispersion equations are obtained for complex kx, the complete
spatial dependence of the mode functions (for example, for the symmetric
modes) in the various regions are given by
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For z ≤ d0/2

H0y(x, z) = 2A0 cos(k0zz)eikxx, (2.25)

E0x(x, z) = 2ip0zA0 sin(k0zz)eikxx, (2.26)

E0z(x, z) = −2A0kx
k0ε

cos(k0zz)eikxx, (2.27)

for d0/2 < z ≤ d0/2 + d1

H1y(x, z) = (A1+e
ik1z(z−d0/2) + A1−e

−ik1z(z−d0/2))eikxx, (2.28)

E1x(x, z) = p1z(A1+e
ik1z(z−d0/2) − A1−e

−ik1z(z−d0/2))eikxx, (2.29)

E1z(x, z) = − kx
k0ε1

(A1+e
ik1z(z−d0/2) + A1−e

−ik1z(z−d0/2))eikxx, (2.30)

and for z > d0/2 + d1

Hty(x, z) = Ate
iktz(z−(d0/2+d1))eikxx, (2.31)

Etx(x, z) = ptzAte
iktz(z−(d0/2+d1))eikxx, (2.32)

Etz(x, z) = − kx
k0εt

Ate
iktz(z−(d0/2+d1))eikxx. (2.33)

The constant At in Eqs.(2.31)-(2.33) are evaluated using (2.14), while A1± in
Eqs.(2.28)-(2.30) are given by the solution of the following martix equation(

A1+

A1−

)
=

(
eik1zd1 e−ik1zd1

p1ze
ik1zd1 −p1ze

−ik1zd1

)−1 (
1
ptz

)
At. (2.34)

The arbitrary constant A0 is fixed by normalization of the modes. With the
field profiles known, one can also calculate the time averaged Poynting vector
giving the power flow along the guide.

In what follows, we present the results for the numerical calculations
pertaining to the solutions of the dispersion equations (2.13) and (2.15), and
the corresponding mode characteristics. For numerical calculation we chose
the following parameters: λ = 1.55µm, ε0 = 2.085 (silica), ε1 = −132 + 12.6i
(gold) [10], εt = 1.0 (air). We varied d0 and d1. The results for the dispersion
are presented in Fig. 2.5, where we have plotted the effective index neff =
kx/k0 as functions of d0. We presented the results for both the symmetric
and antisymmetric modes as well as the plasmon and oscillating modes. For
reference we have plotted the cases for (a) bare silica guide with outside
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Figure 2.5: Solution of the dispersion relation for neff as functions of the
core thickness d0. The thick lines are for the semi-infinite metal claddings
on the silica guide, the dotted lines are for the bare silica guide. The dashed
lines are for the metal cladding thickness d1 = 0.01µm while the thin lines
are for d1 = 0.03µm. The parameters are as follows λ = 1.55µm, ε0 = 2.085,
ε1 = −132 + 12.6i, εt = 1.0. The leaky and the higher order branches are
not shown.

medium as air (dotted lines) and (b) silica guide with semi-infinite metal
claddings on both sides (thick lines) [10]. A comparison of the two cases
reveal clearly that with metal cladding one can realize very low effective
indices (close to zero) with the oscillatory modes, while the plasmon mode
offers very large values. In contrast, the guided mode indices for the silica
guide are limited in the range between air and silica refractive indices (i.e.,
between 1 and

√
2.085 = 1.44). In case of the GPW, one has the familiar

splitting due to the coupling of the two interface plasmons. The uppermost
branch (TM0 plasmon) corresponds to the symmetric while the lower one to
the antisymmetric oscillatory mode TM1. We label the modes as plasmon
(or oscillatory) depending on whether the magnetic field distribution inside
the silica guide is expressible as a superposition of hyperbolic sine and cosine
(or sines and cosines). Oscillatory modes from left to right are labeled by
an increasing integer. It is clear from Fig. 2.5 that for semi-infinite metal
claddings, there is a cut-off thickness for the oscillatory modes. For example,
for d < 0.5µm, there are no oscillatory modes with the realization of a single
mode operation with just the TM0 plasmon mode. However, the scenario
changes drastically if one restricts the widths of the metal cladding. For
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Figure 2.6: Avoided crossing phenomenon with the TM2 mode. The solid
(dashed) line is for d1 = 0.01µm (d1 = 0.03µm). Other parameters are as in
Fig.2.5

example, for d1 = 0.01µm, the antisymmetric oscillatory mode exists which
has a lower cut-off (see the dashed line). For a slightly larger thickness
of the metal films, namely, d1 = 0.03µm, the behavior almost coincides
with the results for the guide with semi-infinite metal claddings. We have
also studied the losses associated with the modes (not shown). Mode cut-
off is determined by the sudden changes in the losses from small to large
values as one reduces the gap width d0. One also has the avoided crossing
phenomenon like in coupled cavity-exciton systems. This results, when the
metal cladding thickness is very small, leading to the possibility of coupling
of the surface plasmons on the two sides of the thin cladding layer. In other
words, the surface plasmon on the metal/air interface can interact with the
same on the other metal/silica interface. From a somewhat different angle,
this phenomenon can be viewed as the crossing of the dispersion branches of
a air/silica/air guide with that of the metal/silica/metal guide. The resulting
level repulsion for finite width metal cladding is shown in Fig.2.6. Indeed,
the limiting cases are the bare silica guide and the gap plasmon guide with
semiinfinite metal claddings. The case with finite and very low thickness of
the metal cladding is in between and has the avoided crossing features. As
expected, the avoided crossing effect is stronger for the lower thickness of the
metal cladding. Note also that the value of the effective refractive indices for
the modes corresponding to the part of the lower branches in Fig. 2.6 are
less than unity. Thus these modes are leaky.
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Chapter 3

More on Surface Plasmons and
Coupled Surface Plasmons

3.1 Excitation Schemes for Overcoming Mo-

mentum Mismatch

Bound modes like the surface and the guided modes localized in the film
or the interface are characterized by an effective index (=kx/k0) larger than
the refractive index of the medium of incidence. Thus such modes can not
be excited just by shining a laser beam on the film or the interface even
for grazing incidence. For plane wave incidence at an angle θi one can never
satisfy k0 sin(θi) = kx = kg/sp. In order to excite them one has to compensate
for the momentum mismatch. The mismatch can be overcome by a high
index prism in attenuated total reflection (ATR) geometry or by periodic
engravings on the surface. Such schemes are now widely used and are referred
to as the prism and the grating coupling, respectively. Note that a rough
surface can also couple the incident light to the relevant mode.

3.1.1 Prism Coupling: Otto, Kretschmann and Sarid
Geometries

In ATR geometry one loads the guiding film or the metal-dielectric interface
with a high index prism with dielectric constant εp, after a spacer layer, and
operates at angles larger than the critical angle. Thus the waves in the spacer
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Figure 3.1: Otto, Kretschmann and Sarid geometries for ATR.

layer are evanescent and one can satisfy the momentum matching as follows

k0
√
εp sin(θi) = kg,sp. (3.1)

In absence of the excitation of any modes, the reflectivity would be unity due
to total internal reflection. For specific angles of incidence corresponding to
Eq.(3.1) the modes can be excited leaving sharp dips in reflection. This
signifies the channeling of the energy from the incident wave to the specified
mode resulting in a corresponding drop in the reflected light. There can be
variations of the ATR geometry (Fig. 3.1). The Otto geometry [11] has a low
index spacer layer between the high index prism and the metal film, whereas,
in the Kretschmann configuration [12] the metal film is deposited on the base
of the high index prism. A different geometry, which can support coupled
surface plasmons in very thin metal films, was suggested by Sarid [13]. In
the Sarid geometry one can excite both the symmetrical short-range (SR)
and the antisymmetrical long-range (LR) surface plasmons.

3.1.2 Grating Coupling: Analogy to Quasi Phase Match-
ing

In this scheme the incident light falls on a grating with grating vector K
(= 2π/Λ, Λ grating period). The period can be chosen such that one of the
diffraction orders, namely, the m-th order matches the guided/surface mode

kg/sp = k0 sin(θ) +mK, m = ±1,±2, . . . (3.2)

Momentum matching with the +1 diffraction order is shown in Fig. ??. The
dips for the coupled plasmon modes of a free standing metal film (see Fig.
??) are shown in Fig. 3.3 [14, 15]. The results for the specular intensity
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Figure 3.2: Schematics of grating coupling.
??
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Figure 3.3: Reflected intensity as a function of angle of incidence for a silver
corrugated film. The parameters are λ = 633 nm, εm = −18.0 + 0.51i,
εt = 1.0, d = 150 nm in (1) and d = 50 nm in (2), a = 8 nm and Λ = 1.893µm.

reflection for a silver film of corrugation amplitude a are shown in Fig. 3.3
which clearly shows the splitting for lower film thickness.

There is an interesting example where such grating assisted momentum
compensation is employed in nonlinear optics. For example, for efficient
second harmonic generation the momentum mismatch ∆k defined as ∆k =
2kω − k2ω is compensated by the m-th order of the domain reversal grating

∆k = mK, (3.3)

and for a first order process domain reversal period is chosen as Λ = 2π/∆k
which is just double of the coherence length beyond which synchronised prop-
agation of fundamental and second harmonic is not possible.
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3.2 Local field Enhancements: Applications

A close inspection of the expressions of the reflection and transmission am-
plitudes (2.7) and a mere appreciation of the fact that modes correspond
to poles of these coefficients (see Eq.(2.8)), immediately leads to the under-
standing of the remarkable potentials of these modes. ‘Diverging’ r and t
implies dramatic enhancements of the local fields which opens up a host of
applications. The narrower the mode resonance (lower decay), the tighter it
is bound to the surface and the larger is the enhancement. In the context
of Kretschmann geometry, large transmitted amplitude does not violate any
energy conservation, since the transmitted wave is evanescent and it does not
carry any energy.

The long-range surface plasmons (LRSP) have the added advantage of
large local field enhancements associated with them (Sarid, Deck, Craig,
Hickernell, Jameson and Fasano [16, 17]. Various nonlinear optical phenom-
ena exploiting narrow LRSP modes were demonstrated by Sarid’s group and
others [18, 19, 20]. Optical bistability with surface plasmons at a metal-
nonlinear dielectric interface was demonstrated by many (see references in
[5]). We investigated optical bistability in the prism-metal film-nonlinear
substrate configuration without the assumption of a plane wave solution for
the nonlinear dielectric [21]. Exact results for optical bistability with surface
plasmons in a layered structure on a nonlinear substrate were presented by
us [22] using the solutions of Leung [23].

There have been other notable applications of the local field enhancement
effect in surface enhanced Raman processes, in high resolution spectroscopy,
single molecule spectroscopy and many other areas. As mentioned before
detailed description of all such applications is much beyond the scope of
these notes.
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Chapter 4

Related Interesting Physics

In this chapter we report on some interesting fundamental effects which could
be explored for plasmonic systems to lead to yet exciting novel applications.
I will just cite one example: phase sensitive measurements via the Goos-
Hänchen shift have recently led to order of magnitude enhancement in the
resolution of a SPP sensor [24].

4.1 An Interesting Parallel

We first look at a parallel between seemingly different phenomena. The first
one is in the time domain when one poses a question on the time taken
by a localized pulse (like a Gaussian pulse) in passing through a sequence of
barriers and wells. Equivalent question in optics will address the propagation
of a pulse through a stratified medium. The second one refers to a finite in
space beam, say, a Gaussian fundamental beam being reflected at an interface
between two dielectrics. The former leads to the Wigner delay [25], while
the latter gives a longitudinal shift known as the Goos-Hänchen shift [26].
Both the effects are due to the age-old finite vs infinite issue. In the following
we study them using the same stationary phase approximation and arrive at
analogous expressions.

4.1.1 Wigner Delay

In this subsection, we generalize the derivation of Wigner [25] with bichro-
matic light to the case of a temporal pulse centered around the carrier fre-
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quency ωc. Let the incident pulse be given by

EI(z, t) = F (t)ei(βz−ωct), (4.1)

where the Fourier decomposition of the temporal profile at z = 0 is written
as

F (t) =
∫
A(ω)e−i(ω−ωc)tdω. (4.2)

Let t̃(ω) be the complex transmission coefficient of the medium given in terms
of the real amplitude and phase as follows

t̃(ω) = |t̃(ω)|eiφT (ω). (4.3)

Using Eqs.(4.1) - (4.3), the transmitted pulse (in the region z > L) can be
written as

ET (z, t) = ei(βz−ωct)
∫
A(ω)|̃t(ω)|eiφT (ω)e−i(ω−ωc)tdω. (4.4)

The temporal shift of the transmitted pulse, depends on φT which bears the
signature of the dispersion of the medium. In order to estimate the temporal
shift of the pulse we expand φT in Taylor series around ωc

φT (ω) = φT (ωc) +
∂φT
∂ω

∣∣∣∣∣
ωc

(ω − ωc) + · · · · · · . (4.5)

On substituting the above expansion in Eq.(4.4) and retaining only terms up
to the first order we get

ET (z, t) = ei(βz−ωct+φT (ωc))
∫
A(ω)|t̃(ω)|e

−i
(
t− ∂φT

∂ω

∣∣∣
ωc

)
(ω−ωc)

dω. (4.6)

Assuming a flat (or slowly varying) amplitude response (|t̃(ω)| ∼ constant)
over the spectral spread of A(ω), Eq.(1.19) reduces to the following

ET (z, t) = |t̃(ωc)|F
(
t− ∂φT

∂ω

∣∣∣∣∣
ωc

)
ei(βz−ωct+φT (ωc)). (4.7)

Thus the transmitted pulse arrives at the output end (i.e. z = L) at

τT =
∂φT
∂ω

∣∣∣∣∣
ωc

. (4.8)
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Similarly, the reflected pulse will be delayed/advanced by

τR =
∂φR
∂ω

∣∣∣∣∣
ωc

, (4.9)

where φR is the phase of the reflection coefficient.
A representative calculation for the gap plasmon guide of section 2.6 is

shown in Fig. 4.1. We have plotted the intensity reflection coefficient T and
the Wigner delay τ as functions of angle of incidence θ

4.1.2 Goos-Hänchen Shift

The derivation for the Goos-Hanchen shift is quite analogous, except that
the incident field is now assumed to be a monochromatic beam with a spread
of wave vector around (α0, β), where α and β are the x and z components of
the wave vector. The interface between the two dielectrics is assumed to be
the plane z = 0. Thus the incident field can be written as

EI(x, t) = ei(α0x+βz−ω0t)
∫
A(α)ei(α−α0)xdα. (4.10)

As mentioned above, the divergence of the Fourier components are so small
that A(α) is sharply peaked around α0 with the corresponding angle of inci-
dence θ0 > critical angle θc. Thus, the total internal reflection condition is
assumed to be valid for all Fourier components and the reflected pulse can
then be written as

ER(x, t) = ei(α0x−βz−ωt)
∫
A (α) ei(α−α0)x+iφR(α)dα, (4.11)

where φR(α) is the phase of the complex reflection coefficient. An expansion
of φR(α) around α0 just like in Eq.(4.5) reduces Eq.(4.11) to

ER(x, t) = ei(α0x−βz−ωt+φR(α0))
∫
A (α) e

i(α−α0)

(
x+

∂φR
∂α

∣∣∣
α0

)
dα. (4.12)

With a definition of the incident beam profile at z = 0 as

F (x) =
∫
A(α)ei(α−α0)xdα, (4.13)
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the reflected beam takes the final form given by

ER = F

(
x+

∂φR
∂α

∣∣∣∣∣
α0

)
ei(α0x−βz−ωt)+iφR(α0), (4.14)

which implies a longitudinal displacement of the beam by an amount

d = − ∂φR
∂α

∣∣∣∣∣
α0.

. (4.15)

4.1.3 Resonant Tunneling and Slow Light, Critical Cou-
pling and Coherent Perfect Absorption

Here we give a brief overview of some of the widely studied structures of
interest in the context of the surface/guided excitations.

Resonant tunneling and slow light
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Figure 4.1: (a) Intensity transmission coefficient T and the (b) Wigner delay
τ as functions of the angle of incidence θ for d0 = 3.0µm, d1 = 0.03µm,
εt = 6.145. The other parameters are as in Fig.2.5

A typical example of a resonant tunneling structure is the GP guide
(discussed in section 2.6) enclosed between two high index prisms, where
waves are evanescent in the metal layers. It can be evanescent or propagating
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in the central dielectric layer depending on which modes are excited. For
plane wave incidence at an arbitrary angle, very little will be transmitted.
There can be significant transmission only via the resonant states. This
is referred to as resonant tunneling. One such case is shown in the top
plot of Fig. 4.1 for a multimode GP guide. Different peaks correspond to
the different modes. In order to determine the delay characteristics of the
structure, we extract the phase of the transmission coefficient. The frequency
derivative of the phase of amplitude transmission (see Eq.(4.8)) then gives
the Wigner delay through the structure [25]. Fig. 4.1 clearly shows how light
is slowed down when these modes are excited.

Critical coupling

A system is said to be critically coupled (CC) to incident radiation, when
there is no scattering from it resulting in total absorption of the incident
energy. In the context of a stratified medium this would mean simultaneously
null transmission as well as null reflection. Such a situation can arise as a
delicate balance when all the reflected (transmitted) components from all
interfaces result in complete destructive interference. Such systems exploiting
the metal-dielectric nano composites have been proposed [27] and analogous
systems have been realized in experiment. In the context of CC leading to
complete absorption, one needs to consider the energy conservation condition
given by R+T +A = 1 ( A - absorption of the structure). Since most of the
incident energy goes in absorption, the total scattering (R+T ) of a critically
coupled system must be near zero.

Coherent Perfect Absorption (CPA)

Past couple of years have seen a great deal of interest in CPA or anti-lasing,
which is a generalisation of the CC concept to multiple incident beams [28,
29]. Again the underlying mechanism is the complete destructive interference
and a CPA device can be understood as a time reversed analogue of a laser
near threshold. [29]

4.1.4 Nonreciprocity

Optical theorem can have interesting consequences in the context of stratified
media and broken spatio-temporal symmetry [30, 31]. Nonidentical reflection
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under illumination from opposite sides was monitored in a system of two
lossless coupled cavities, when the spatio-temporal symmetry was broken by
introducing lossy resonant quantum wells in one of the cavities. Recently
such nonreciprocity was shown to lead to GH shifts with opposite signs,
which can lead to extra-sensitive displacement monitors with resolution of
few nano meters [32].
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Appendix

Matlab Code for the Solution of the Coupled

Plasmon Dispersion

Function to be minimized and the main code for the
symmetric branch

function f1=spfun(nd);

global d lam epst epsm;

nx=nd(1)+i*nd(2);

k0=2*pi/lam;

nxt=sqrt(epst-nx^2);

if imag(nxt)<0;

nxt=-nxt;

end

nxm=sqrt(epsm-nx^2);

if imag(nxm)<0;

nxm=-nxm;

end

b1=k0*d*nxm/(2*i);

bth=tanh(b1);

rd=nxm*epst+nxt*epsm*bth;

f1(1)=real(rd);

f1(2)=imag(rd);

******************

%symmetric plasmon.m
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clear all; clc;

global d lam epst epsm;

% system parameters

lam=1.55; epst=1;

epsm=-132+12.6*i;

di=0.001; df=0.1; nn=500; dt=(df-di)/nn;

nef0=[2 -0.1];dd=[]; ner=[]; nim=[];

for k=1:nn+1;

d=di+(k-1)*dt;

%options=optimset(’Display’,’notify’);

[effn,fval,exitflag]=fsolve(@spfun,nef0);

if exitflag<=1;exitflag

dd=[dd d];

ner=[ner effn(1)];

nim=[nim effn(2)];

nef0=effn;

end

end

plot(dd,ner,’.’);hold on;

%plot(dd, sqrt(epst),’-.’)

Function to be minimized and the main code for the
antisymmetric branch

function f1=spfun(nd);

global d lam epst epsm;

nx=nd(1)+i*nd(2);

k0=2*pi/lam;

nxt=sqrt(epst-nx^2);

if imag(nxt)<0;

nxt=-nxt;

end

nxm=sqrt(epsm-nx^2);

if imag(nxm)<0;
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nxm=-nxm;

end

b1=k0*d*nxm/(2*i);

bth=coth(b1);

rd=nxm*epst+nxt*epsm*bth;

f1(1)=real(rd);

f1(2)=imag(rd);

****************

%antisymmetric plasmon.m

clear all; clc;

global d lam epst epsm;

% system parameters

lam=1.55; epst=1;

epsm=-132+12.6*i;

di=0.1; df=0.001; nn=500; dt=(df-di)/nn;

nef0=[1 0.001];dd=[]; ner=[]; nim=[];

for k=1:nn+1;

d=di+(k-1)*dt;

%options=optimset(’Display’,’notify’);

[effn,fval,exitflag]=fsolve(@antispfun,nef0);

if exitflag<=1;exitflag

dd=[dd d];

ner=[ner effn(1)];

nim=[nim effn(2)];

nef0=effn;

end

end

plot(dd,ner,’.’);hold on;

%plot(dd, sqrt(epst),’-.’)
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