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Introduction

Procedure for each Lab Experiment

1. The student has to familiarize himself/herself with the necessary theoretical
background of the experiment and should be clear about what is to be done
and why and how it should be done.

2. He/she has to appear for a viva in order to be allowed to do the experiment.

3. He/she has to complete the steps and collect the data.

4. The data has to be analyzed and presented in a neat form (in a one/two
page report). Any major deviations from theoretically predicted results to
be explained by the student.

5. He/she has to appear for a viva to defend his/her results and close the
experiment.

NOTE: No end semester lab reports will be entertained. Performance will be
evaluated on weekly basis.
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Chapter 1

Transmission Lines

1.1 To study the characteristics of a transmis-

sion line, to measure the VSWR for a waveg-

uide section and to measure unknown load

impedance

1.2 Theoretical background

A typical example of a transmission line can be the two wire parallel conductors.
In any transverse plane the electric field lines pass from one to the other conductor
while the magnetic field lines are perpendicular to the electric ones. The electric
field lines define a voltage between the conductors while the magnetic field lines
characterize the current flowing in the opposite directions in the two wires. The
variation of the electric field induces a magnetic field and vice versa, resulting
in a wave propagating along the line. In what follows we present a description
for an idealized transmission line. Before that we list out the major issues to be
discussed:

1. Energy propagation

2. Reflection at discontinuities

3. Standing wave vs. traveling wave and resonance properties of standing waves.

4. Phase and group velocities.

5. Effects of losses on wave propagation

6. Impedance matching and the Smith chart

9
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1.2.1 Ideal transmission lines: spatio-temporal dependence
of signals

Consider the transmission line shown in figure along with its distributed equivalent
circuit. We ascribe an inductance and capacitance per unit length, denoted by L
and C, respectively. Thus the length dz of the line will have and inductance Ldz
and capacitance Cdz. The change in voltage across this elementary length can be
written as

∂V

∂z
dz = −(Ldz)

∂I

∂t
, (1.1)

and for the current change we have

∂I

∂z
dz = −(Cdz)

∂V

∂t
, (1.2)

Canceling out the elementary length, one has

∂V

∂z
= −L

∂I

∂t
, (1.3)

∂I

∂z
= −C

∂V

∂t
. (1.4)

Eqns. (1.3) and (1.4) are the basic partial differential equations describing the
evolution of voltage and current in the ideal (since there is no resistance Rdz)
transmission line. These two equations can be combined to lead to wave equations
for both current and voltage:

∂2V

∂z2
− 1

v2

∂2V

∂t2
= 0, (1.5)

∂2I

∂z2
− 1

v2

∂2I

∂t2
= 0. (1.6)

where v2 = 1/
√

LC. The general solution of Eq.(1.5), for example, can be written
as a superposition of forward and backward propagating waves with arbitrary
profiles (check)

V (z, t) = F1

(

t − z

v

)

+ F2

(

t +
z

v

)

(1.7)

and the corresponding solution for the current is given by

I(z, t) =
1

Lv

[

F1

(

t − z

v

)

− F2

(

t +
z

v

)]

. (1.8)

We introduce a constant Z0 = Lv =
√

(L/C) as the characteristic impedance of
the line. As is evident from Eq.(1.8) Z0 has the dimensions of resistance.
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Characteristic impedance and wave velocity for a coaxial line

Using the expressions of C and L for a coaxial segment the characteristic impedance
can be written as

Z0 =
ln b/a

2π

√

µ

ε
, (1.9)

where a and b are the radii of the inner and outer conductors. For a commercial
coaxial line, relative dielectric permittivity =2.26, radii are a = 0.406 mm, b =
1.48 mm and by setting µ = µ0, one has Z0 = 51.6 Ω. The wave velocity is given
by v = 1/

√
LC = 1/

√
εµ, which is the same as in the dielectric. It is usually

0.5 − 0.7 c.

1.2.2 Reflection and transmission at a resistive discontinu-
ity

One of the major problems in transmission lines involves junctions between a given
line and another one of different characteristics. Due to the discontinuity part of
the incident wave will always be reflected back. By Kirchhoff’s law the total
voltage and current must be continuous across the discontinuity. Thus the total
voltage can be written as

V+ + V− = VL (1.10)

where V+ (V−) is the voltage corresponding to the forward (backward) traveling
wave at the point of discontinuity. The sum of these two must be equal to the
voltage VL appearing across the junction. In an analogous fashion one has

I+ + I− = IL (1.11)

Consider now two cases. The first one corresponds to the simplest possible situ-
ation a load resistance RL is connected at the point of discontinuity. The second
corresponds to a ideal transmission line is connected to a second transmission line
of infinite length and characteristic impedance Z0L. For this case RL = Z0L Many

Figure 1.1: Resistive load and junction between two transmission lines.

other forms of load circuit can produce an effective resistance RL at junction. In
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all these cases
VL = RLIL (1.12)

Using the relation between the votage and current Eq.(1.11) can be transformed
into

V+

Z0

− V−

Z0

=
VL

RL

(1.13)

Eqns. (1.10) and (1.13) can be use to calculate the reflection and the transmission
coefficients as follows

ρ =
V−

V+
=

RL − Z0

RL + Z0
(1.14)

τ =
VL

V+
=

2RL

RL + Z0
(1.15)

It can be easily seen from Eq.(1.14) that for matched load, i.e., RL = Z0, there is
no reflection. All energy of the incident wave is then transferred to the load and
τ is then unity. The instantaneous incident power is given by

W+
T = I+V+ =

V 2
+

Z0
(1.16)

and the fractional power reflected is given by

W−

T

W+
T

= ρ2. (1.17)

The remaining power goes into the load resistance

WTL

W+
T

= 1 − ρ2. (1.18)

1.2.3 Sinusoidal waves on ideal transmission lines

Let a sine voltage be applied at z = 0. Thus

V (0, t) = V cos ωt (1.19)

The corresponding wave traveling in the positive direction is

V+(z, t) = |V+| cosω(t − z/vp) (1.20)

For the opposite direction we have

V−(z, t) = |V−| cosω[(t + z/vp) + θp] (1.21)
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Figure 1.2: Typical situation with a discontinuity at z = 0.

The total voltage and current at any section z are then given by

V (z, t) = |V+| cos ω(t− z/vp) + |V−| cosω[t + z/vp) + θp] (1.22)

I(z, t) =
|V+|
Z0

cos ω(t− z/vp) −
|V−|
Z0

cos ω[t + z/vp) + θp] (1.23)

For sinusoidal time variation write (1.22) and (1.23) in phasor form as

V (z, t) = V+e−jβz + V−ejβz, (1.24)

I(z, t) =
1

Z0

(

V+e−jβz − V−ejβz
)

, (1.25)

where the phase constant β = ω/v = ω
√

LC . We can take V+ to be real considering
it to be real with zero phase. In general V− will be complex given by

V− = |V−|ejθp. (1.26)

βz measures the instantaneous phase at z with respect to z = 0. It is clear that
both V and I are periodic in z with period 2π/β (called the wavelength λ).

Reflection and transmission coefficients for sinusoidal waves

Impedance for time-varying fields is defined as the ratio of total phasor voltage
to the total phasor current at any point. We set this impedance at z = 0, the
load impedance ZL. We get from Eqs. (1.24) and (1.25) the expressions of the
reflection and transmission coefficients

ρ =
V−

V+
=

ZL − Z0

ZL + Z0
(1.27)
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τ =
VL

V+

=
2ZL

ZL + Z0

, (1.28)

The load voltage is the total voltage at z = 0. The expressions for power reflected
and transmitted can be written as

W−

T

W+
T

= |ρ|2. (1.29)

WTL

W+
T

= 1 − |ρ|2. (1.30)

We can define input impedance and admittance at z = −l by dividing (1.24) by
(1.25).

Zi = Z0

[

ejβl + ρe−jβl

ejβl − ρe−jβl

]

(1.31)

= Z0

[

(ZL + Z0)e
jβl + (ZL − Z0)e

−jβl

(ZL + Z0)ejβl − (ZL − Z0)e−jβl

]

(1.32)

= Z0

[

ZL cos βl + jZ0 sin βl

Z0 cos βl + jZL sin βl

]

. (1.33)

One can define admittance as the inverse of impedance as Yi = 1/Zi, Y0 = 1/Z0,
and YL = 1/Z, so that

Yi = Y0

[

YL cos βl + jY0 sin βl

Y0 cos βl + jYL sin βl

]

(1.34)

Standing wave ratio

As mentioned earlier, one constant in Eq.(1.24), eg., V+ can be taken as real by
choice of origin in time, so that the other becomes V− = V+|ρ|ej(θp+βz). Writing
this as a real function at z = −l, we have

V (t,−l) = V+ cos(ωt + βl) + V+|ρ| cos(ωt − βl + θp) (1.35)

It is clear that starting from t = 0, the phase of the first term (incident wave)
increases with distance from z = 0, while that for the reflected wave decreases (see
figure 1.3). Noting that Vmax = |V+| + |V−| and Vmin = |V+| − |V−|, the standing
wave ratio is defined as

S =
Vmax

Vmin

=
|V+| + |V−|
|V+| − |V−|

=
1 + |ρ|
1 − |ρ| (1.36)
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Figure 1.3: (a) Phase of the incident and reflected light at t = 0. (b) Total voltage
V (z) as function of βz (in units of π) at times ωt1 = −θp/2, ωt2 = −θp/2 + π/2,
ωt3 = −θp/2 + π and ωt4 = −θp/2 + 3π/2.

ρ can be expressed in terms of S as

|ρ| =
S − 1

S + 1
. (1.37)

It is clear that maximum voltage corresponds to the minimum current

Imin =
|V+| − |V−|

Z0

(1.38)

At this point the impedance is resistive

Zmax = Z0
|V+| + |V−|
|V+| − |V−|

= Z0S (1.39)

At positions of voltage minimum current is maximum

Imax =
|V+| + |V−|

Z0
(1.40)

At this point the impedance is minimum and real

Zmin = Z0
|V+| − |V−|
|V+| + |V−|

= Z0/S (1.41)
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Figure 1.4: r and x circles of a Smith chart.

1.2.4 The Smith chart for a transmission line

Definition and description

The Smith chart represents a family of curves which are the loci of constant re-
sistance and reactance plotted on a polar diagram. In this diagram the radius
corresponds to the magnitude of the reflection coefficient while the angle corre-
sponds to the phase of the reflection coefficient. It is a beautiful example of the
application of conformal mapping of the theory of complex variables (go back and
check up what is conformal mapping). Some of the applications of the Smith chart,
for example, is to find how impedances are transformed along the line or to relate
the impedance to reflection coefficient or to standing wave ratio.

Define a normalized impedance

ζ(l) = (r + jx) =
Zi

Z0
(1.42)

We also define a complex variable w = reflection coefficient at the end of the line
shifted in phase to correspond to the input position −l

w = u + jv = ρ e−2jβl (1.43)

Zi = Z0
ejβl + ρe−jβl

ejβl − ρe−jβl
⇒ ζ (l) =

1 + ρ e−2jβl

1 − ρ e−2jβl
=

1 + w

1 − w
(1.44)

=
1 + (u + jv)

1 − (u + jv)
(1.45)
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Figure 1.5: Smith Chart.

r + jx =
1 + (u + jv)

1 − (u + jv)
, (1.46)

where resistance and reactance are given by

r =
1 − (u2 + v2)

(1 − u)2 + v2
(1.47)

x =
2v

(1 − u)2 + v2
, (1.48)

or
(

u − r

1 + r

)2

+ v2 =
1

(1 + r)2
(1.49)

(u − 1)2 +

(

v − 1

x

)2

=
1

x2
. (1.50)

Let us now plot the loci of constant resistance r on the w plane (u, v plane). These
represent circles with centers at [r/(1 + r), 0] and with radius 1/(1 + r).

centre : uc =
r

1 + r
, vc = 0 (1.51)

radius : =
1

1 + r
(1.52)
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r 0 1
2

1 2 ∞
uc 0 1

3
1
2

2
3

1
rad 1 2

3
1
2

1
3

0

For the loci of constant reactance x on the w plane, we have

centre : uc = 1, vc =
1

x
(1.53)

radius : =
1

|x| (1.54)

x 0 ±1
2

±1 ±2 ∞
vc ∞ ±2 ±1 ±1

2
0

rad ∞ ±2 ±1 ±1
2

0

Figure 1.6: block diagram.

1.2.5 Uses of Smith Chart

To find reflection coefficient for given load impedance or vice versa

Point A in Fig.1.6. is the intersection of circles x = 1 and r = 1 implying a
normalized impedance of 1 + 1j. By definition we have

w = ρe−2jβl

|w| = |ρ|
|w| = (u2 + v2)

1

2 .
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Note that
|w| = (u2 + v2)

1

2 = 1 (1.55)

on the r = 0 circle. Thus a measure of the radius to some point on the graph as
a fraction of radius to r = 0 circle yields |ρ| directly. If the point on the Smith
chart represents the normalized load impedance, i.e., l = 0, ∠w = ∠ρ, the phase
angle of the reflection coefficient can be read directly from the chart. The angle
may be determined by reading the outside wavelength markings appreciating that
a quarter wave corresponds to π radians.

Example:

Suppose a transmission line of characteristic impedance z0 = 70 Ω is terminated
with a load zL = 70+70j Ω, so that the normalized load impedance ζ(0) = 1+1j
(same point A) with |ρ| = 0.45 and ∠ρ = ∠w = 1.11 rad. It is understood that the
reverse calculation of the load impedance for a given complex reflection coefficient
can also be carried out.

Transformation of impedance along a line

Let l be the position along the line measured w.r.t. load. A change in l corresponds
to a change in the phase angle of w (−2βl). Regarding the direction we will
follow the following convention. Moving toward the generator (increasing l) will
correspond to an increase in the phase of w in the negative direction. This will
correspond to clockwise movement. On the contrary, moving towards the load will
correspond to anti clockwise rotation.

Figure 1.7: Change of impedance along a line.
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Example:

Let the normalized load impedance be 1 + 1j (point A in Fig.1.7). If the line is a
quarter wave long, then we move towards the generator by π at constant radius,
i.e., βl = 900 and 2βl = 1800. Thus the reading from chart for input impedance is
ζ(l) = 0.5 − 0.5j. If input impedance is given and load impedance is required to
be found out, the reverse procedure can be used.

Standing wave ratio and position of voltage maximum

Let a transmission line with a known load impedance is given (say, point A in
Fig.1.8) and we have to find out the standing wave ratio. Noting that the location
of maximum impedance is also the voltage maximum (and current minimum)
with both real, it can be easily deduced that the maximum impedance for an ideal
transmission line is real, i.e., it is a pure resistance point (lies on u-axis of the
w-plane). Thus the standing wave ratio S

S =
Vmax

Vmin
=

Vmax

Z0Imin
=

Zmax

Z0
(1.56)

is given by point C (x = 0, r = Zmax) on u-axis. The value of the normalized
resistance at C gives the standing wave ratio. For example, for a load impedance
1 + 1j one has to move clockwise to the generator by 0.088λ to reach point C,
where the normalized resistance is 2.6 which is the same as the SWR.

Figure 1.8: Standing wave ratio from known load resistance.

Example: Impedance transformation along cascaded lines

Work out the Example 5.10e of [2].
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Figure 1.9: Schematics of a lossy/general transmission line.

1.2.6 Transmission lines with general forms of distributed
impedance (Lossy lines)

Very often the transmission lines are lossy and their equivalent circuitry can be
complex. For lossy lines or for filter type lines, the series element can be represented
by a generalized distributed impedance Z per unit length, while the distributed
shunt element by an admittance Y per unit length. The corresponding equations
can be written as

dV

dz
= −ZI (1.57)

dI

dz
= −Y V (1.58)

and they can be reduced to second order ODE’s as

d2V

dz2
= γ2V, (1.59)

d2V

dz2
= γ2V. (1.60)

Here γ =
√

ZY . The solution for V and I can be written as

V = V+ e−γz + V− eγz , (1.61)

I =
1

Z0

(

V+ e−γz − V− eγz
)

. (1.62)

where Z0 is given by

Z0 =
Z

γ
=

√

Z

Y
. (1.63)

Note that in general the characteristic impedance Z0 is complex, implying that the
voltage and current are not in phase. The propagation constant γ is also complex
(in general), leading to a damping of the waves as they propagate. One has to
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exercise caution in using the proper sign for the propagation constant for forward
and backward waves. Separating the real and imaginary parts of the propagation
constant, i.e., by writing γ = α + jβ =

√
ZY , one can easily see the damped

propagation of the waves

V = V+ e−αze−jβz + V− eαzejβz (1.64)

It is clearly seen that α gives the rate of exponential decay or the attenuation
constant, while β characterizes the phase shift gives the phase constant. As before
the reflection coefficient is defined and calculated as

ρ =
V−

V+
(1.65)

=
ZL − Z0

Zl − Z0
(1.66)

One can also find the input impedance at Z = −l in terms of reflection coefficient
ρ at Z = 0 as

Zi =
V

I
= Z0

(

V+ eγl + V− e−γl

V+ eγl − V− e−γl

)

(1.67)

= Z0

[

1 + ρe−2γl

1 + ρe2γl

]

(1.68)

= Z0

[

ZL cosh γl + Z0 sinh γl

Z0 cosh γl + ZL sinh γl

]

(1.69)

1.2.7 Transmission line with series and shunt losses

Let the impedance and admittance be given by

Z = R + jωL (1.70)

Y = G + jωC (1.71)

One can use these equations to determine the propagation constants and the char-
acteristic impedance. For many problems the following inequalities hold

R

ωL
<< 1,

G

ωC
<< 1. (1.72)

Retaining up to the second-order terms in these small parameters, one can have
the expressions for all the relevant quantities α, β and Z0 as

α ≈ R

2
√

L
C

+
G0

√

L
C

2
(1.73)
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β ≈ ω
√

LC

[

1 − RG

4ω2LC
+

G2

8ω2C2
+

R2

8w2L2

]

(1.74)

Z0 ≈ L

C

[(

1 +
R2

8ω2L2
− 3G2

8ω2C2
+

RG

4ω2LC

)

+ j

(

G

2ωC
− R

2ωL

)]

. (1.75)

Derivation of α from physical principles for low loss lines

The approximate result given by (1.73) can be obtained from simple physical
arguments. Consider only the positive propagating wave

V = V+ e−αze−jβz (1.76)

I = I+ e−αze−jβz (1.77)

with average power transfer at any point given by

WT =
1

2
V+I+e−2αz =

1

2
Re(V I∗) (1.78)

Let the imaginary part of Z0 be negligible, leading to V+ in phase with I+. The
rate of decrease of average power with distance must be equal to the average power
loss WL in the line per unit length.

∂WT

∂z
= −WL = −2α

(

1

2
V+I+e−2αZ

)

= −2αWT (1.79)

α =
WL

2WT
(1.80)

Given the resistance R and the shunt conductance G, the average power loss per
unit length WL and WT at z = 0 are given by

WL =
I2
+R

2
+

V 2
+G

2
=

V 2
+

2

(

G +
R

Z2
0

)

(1.81)

WT =
1

2
V+I+ =

1

2

V 2
+

Z0

, (1.82)

leading to the expression of α

α =
1

2

(

GZ0 +
R

Z0

)

Np/m. (1.83)

One neper (Np) per meter indicates that the amplitude has decayed to 1/e of its
incoming value in 1 m.
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1.2.8 Resonant transmission lines

Pure standing waves on a transmission line

Let an ideal transmission line be shorted at one end z = 0. For such a line
S = ∞, |ρ| = 1, |V−| = |V+| and the following relations hold

V (0) = V+ + V− = 0, V+ = −V− (1.84)

V (z) = V+

(

e−jβz − ejβz
)

= −2jV+ sin βz (1.85)

I =
V+

Z0

(

e−jβz + ejβz
)

= 2
V+

Z0

cos βz (1.86)

Thus one can make the following observations:

1. Voltage is zero not only at z = 0 but also at all points where βz is a multiple
of π.

2. Voltage is maximum at odd multiples of π/2.

3. Current is maximum at short circuit and at all points where voltage is zero.

4. Ratio between maximum current and the maximum voltage is Z0

1.3 Experiment for VSWR measurement

Figure 1.10: VSWR measurement.

1.3.1 Experimental procedure:

One distinguishes between two cases, namely, the regime of low (< 10) and high
(> 10) VSWR. We discuss them separately.
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Small V SWR (< 10)

1. Arrange the equipment as shown in Fig1.10. with a load terminated at its
end.

2. Tune the detector by adjusting its length inside the waveguide for maximum
meter deflection.

3. Insert the element under test and measure the distance between two adjacent
minima to calculate λ and the frequency(distance between adjacent minima
is λg/2).

4. Move the probe along the slotted line to obtain maximum and minimum
current readings on the microammeter.

5. Calculate V SWR as

V SWR =
Imax

Imin
(1.87)

6. If SWR meter is used, adjust its gain to give full scale deflection to read 1.00
when the detector is at voltage maximum. Move the probe along the slotted
line and when the detector is at voltage minimum, SWR meter gives directly
the V SWR.

Large V SWR (> 10)

1. Move the probe to get the minimum current and record it.

2. Move the probe on both sides of this minimum to find the positions x1(towards
generator) and x2(towards load) where the meter readings are double of the
minimum reading.

3. Measure the V SWR in this case as

V SWR =
λ

π(x2 − x1)
(1.88)

4. If SWR meter is used, adjust its gain to give 3dB deflection when the detector
is at voltage minimum. Find the positions of x1 and x2 where the SWR meter
shows 0.00dB. Now use the above formula to find V SWR
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1.3.2 Measuring the unknown load impedance:

As discussed in chapter1, the waves incident on the load from the generator is
reflected. So the phase and the position of the minima are the characteristic
properties of the load. See Eq.(1.33)for the input impedance

Zi = Z0

[

ZL cos βl + jZ0 sin βl

Z0 cos βl + jZL sin βl

]

. (1.89)

Where ZL is the impedance at the receiving end. Zi is the characteristic impedance
and βl is the electrical distance is measured in wavelengths between position of
termination and standing wave minimum. Here

βl =
2π

λ
(x2 − x1) (1.90)

and Zi corresponding to Zmin hence from Eq.1.39,

S =
Z0

Zi
(1.91)

Re arranging Eq.1.89,we get

ZL(Z0 cos βl − jZi sin βl) = Z0(Zi cos βl − jZ0 sin βl)

ZL

Z0
=

Zi cos βl − jZ0 sin βl

Z0 cos βl − jZi sin βl

=
cos βl − jS sin βl

S cos βl − j sin βl
(1.92)

where S is VSWR reading

1.3.3 Procedure

1. Arrange the equipment and insert the unknown load. Repeat the above steps
to find V SWR.

2. Find the position of any standing wave minimum and record it as x1.(This
is the position of the reference minimum.

3. Replace the load by short-circuit termination and move the probe carriage
to new standing wave minimum x2.

4. Find the shift in the minimum l = (x2−x1). Hence calculate βl = 2π
λ

(x2−x1)

5. Use Eq.1.92 to estimate the impedance of the load.
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1.3.4 Estimation of normalized load using Smith chart

1. Obtain the V SWR and the shift in the minima (x2 − x1) for the unknown
load as explained in the above section.

2. Since V SWR = Zmax/Z
′

0, where Z ′

0 is the characteristic impedance of the
waveguide, find the circle r=VSWR (where r is the real part of ζ = r+jx) on
the normalized Smith chart. And find the point of intersection with u−axis.

3. Draw a circle with origin (u = 0, v = 0) as its center and passing through
this point.

4. Locate a point on the perimeter of the Smith chart at a distance equal to βl
(see Eq.1.90) from the point 0.00 moving in anti-clockwise direction (towards
load) if the shift is positive. Draw a line connecting this point and the origin
(u=0, v=0).

5. Note the point of intersection of this circle and this line. Obtain reactive and
resistive components of the load form the reactive and real circles, respec-
tively for this this point. That gives the normalized load impedance. The
actual load impedance is given by

ZL = Z ′

0(r + jx) (1.93)

Z ′

0, the characteristic impedance of the wave guide, is given by

Z ′

0 = Z0
λg

λ0
.
b

a
(1.94)

here Z0 is the impedance of the free space =
√

µ0/ǫ0 =377 Ω

6. Calculate using measured ZL from Eq.1.93, the reflection coefficient

|ρ| =

∣

∣

∣

∣

ZL − Z ′

0

ZL + Z ′

0

∣

∣

∣

∣

(1.95)

and hence VSWR. Compare this VSWR with the measured value
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Chapter 2

Wave guides

2.1 General formulation for guided waves

Consider a cylindrical system with axis along z (see figure) characterized by a
propagation factor ejωt−γz. Assume no net charge or current density inside the
cylindrical tube, i.e., ρ = 0, ~J = 0. Propagation constant γ determines the
properties of the waves. The phasor wave equations can be written as

∇2 ~E = −k2 ~E (2.1)

∇2 ~H = −k2 ~H (2.2)

∇2 ~E = ∇2
t
~E +

∂2 ~E

∂z2
(2.3)

The first term in the right hand side of Eq.(2.3) gives the transverse variation,
while the second term corresponds to the axial variation.

∂2 ~E/∂z2 = γ2 ~E (2.4)

∇2 ~E = −k2 ~E (2.5)

∇2
t
~E + γ2 ~E = −k2 ~E (2.6)

Figure 2.1: Schematics of a cylindrical wave guide.

29
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Transverse variation must satisfy these two equations.

∇2
t
~E = −(k2 + γ2) ~E (2.7)

∇2
t
~H = −(k2 + γ2 ~H (2.8)

Assuming the phase factor to be ejωt−γz the curl equation ∇× ~E = −jωµ ~H can
be written in the component form as

∂Ez

∂y
+ γEy = −jωµHx (2.9)

−γEx −
∂Ez

∂x
= −jωµHy (2.10)

∂Ey

∂x
+ γEx = −jωµHz (2.11)

Similarly the other curl equation ∇ × ~H = jωǫ ~E can be decomposed into the
components as

∂Hz

∂y
+ γHy = jωǫEx (2.12)

−γHx −
∂Hz

∂x
= jωǫEy (2.13)

∂Hy

∂x
+ γHx = −jωǫEz (2.14)

Eqs. (2.9)-(2.14) can be solved for Ex, Ey, Hx, Hy in terms of Ez and Hz. (Ex-
ample: Hx is found from (2.9) and (2.13).

Ex = − 1

k2 + γ2

(

γ
∂Ez

∂x
+ jωµ

∂Hz

∂y

)

(2.15)

Ey =
1

k2 + γ2

(

−γ
∂Ez

∂y
+ jωµ

∂Hz

∂x

)

(2.16)

Hx =
1

k2 + γ2

(

jωǫ
∂Ez

∂y
− γ

∂Hz

∂x

)

(2.17)

Hy = − 1

k2 + γ2

(

jωǫ
∂Ez

∂x
+ γ

∂Hz

∂y

)

(2.18)

For propagating waves it is useful to use γ = jβ with β real in absence of attenu-
ation and (2.15)-(2.18) reduce to

Ex = − j

k2
c

(

β
∂Ez

∂x
+ ωµ

∂Hz

∂y

)

, (2.19)
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Ey =
j

k2
c

(

−β
∂Ez

∂y
+ ωµ

∂Hz

∂x

)

, (2.20)

Hx =
j

k2
c

(

ωǫ
∂Ez

∂y
− β

∂Hz

∂x

)

, (2.21)

Hy = − j

k2
c

(

ωǫ
∂Ez

∂x
+ β

∂Hz

∂y

)

, (2.22)

where k2
c = k2 + γ2 = k2 − β2.

2.1.1 Classification of the waves

We can now classify the waves as

1. TEM waves: with Ez = 0, Hz = 0. Usually they exist in multi conductor
guides.

2. TM waves: Ez 6= 0, Hz = 0.

3. TE waves: Ez = 0, Hz 6= 0.

4. Hybrid waves: here the boundary conditions require all field components.

2.2 Cylindrical waveguiding with various cross

sections

Figure 2.2: Cross-section of a metal strip waveguide.

2.2.1 Metal parallel plate guide

TEM waves

Metal strip guides (see Fig.2.2) can be considered as the simplest example of a
guide supporting TEM waves. Usually they represent two-conductor transmission
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lines. Non-zero fields are possible only if γ2 + k2 = 0 implying γTEM = ±jk. Both
electric and magnetic fields satisfy Laplace’s equation (as in electrostatics) with
fields propagating at the speed of light.

∇2
t
~E = 0 (2.23)

∇2
t
~H = 0 (2.24)

These equations yield uniform electric field between two parallel plate conductors
with

Ex = E0. (2.25)

The corresponding magnetic field is given by

Hy =
γ

jωµ
Ex = ±jω

√
µǫ

jωµ
Ex = ±

√

ǫ

µ
Ex. (2.26)

where the ± corresponds to forward and backward propagating waves, respectively.

TM Waves

For transverse magnetic modes, Ez 6= 0, Hz = 0 and they can be supported in
the parallel plate conducting guide. Assuming the system to be infinite in the y
direction ( ∂

∂y
= 0), we have

∇2
t Ez = −k2

cEz =
(

k2 + γ2
)

Ez (2.27)

∂2Ez

∂x2
= −k2

cEz, (2.28)

where k2
c = k2 + γ2 = k2 − β2. For the solution we have

Ez (z) = A sin kcx + B cos kcx. (2.29)

For perfect conductors the tangential component of E, i.e., Ez must be equal to
zero at the metal surface. Applying the boundary conditions at faces at x = 0,
x = a, we obtain B = 0, kca = mπ, m = 1, 2, 3 leading to

Ez = A sin
mπx

a
(2.30)

Other components are found to be

Ex = − 1

k2 + γ2

(

γ
∂Ez

∂x

)

(2.31)

= − γ

k2
c

mπ

a
A cos

mπx

a
(2.32)

= − γa

mπ
A cos

mπx

a
(2.33)
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For the magnetic field components we have Hz = 0, Hx = 0 and Hy can easily be
calculated.

It is clear that there is an infinite number of solutions for various values of m,
each with a different field distributions. These are referred to as the modes (in
this case TM modes) of the structure. The propagation constant of a given mode
is given by

γ =
√

k2
c − k2 =

√

(mπ

a

)2

− ω2µǫ (2.34)

At sufficiently high frequencies

γ = jβ = jω
√

µǫ

√

√

√

√1 −
(

(

mπ
a

)2

ω2µǫ

)

(2.35)

and the phase constant approaches that of a plane wave as ω −→ ∞. Lowering
the frequency one can achieve γ = 0 at ωc, which is given by the expression

ωc =
mπ

a

1√
µǫ

=
mπv

a
(2.36)

ωc is the cut-off frequency, v is the velocity of light (= 1/
√

µǫ). Propagation takes
place only when β is real requiring ω > ωc

γ = jβ = jω
√

µǫ

√

1 −
(ωc

ω

)2

(2.37)

β = k

√

1 −
(ωc

ω

)2

(2.38)

For ω < ωc, one can define the attenuation constant α as

α = γ =
mπ

a

√

1 −
(

ω

ωc

)2

(2.39)

(

α

ωc
√

ǫµ

)2

=
ω2

c − ω2

ω2
(2.40)

Corresponding to the cut-off frequency, one can define a cut-off wave length as

λc =
2πv

ωc
=

2a

m
(2.41)

Thus cut-off for the m-th mode occurs when the spacing between the plates is m
times half wavelength.TM waves can propagate above a cut off frequency, equiva-
lently, at wavelengths shorter than the cut-off wave length.

At lower frequencies ω < ωc, γ is real and there is attenuation without any
phase shift. At frequencies above the cut-off (i.e., for propagating modes) one can
define the phase and group velocities of the modes:
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Phase velocity

vp =
ω

β
=

v
√

1 −
(

ωc

ω

)2
> v (2.42)

Group velocity

vg =
∂ω

∂β
= v

√

1 −
(ωc

ω

)2

< v (2.43)

Thus, the phase velocity is always greater than velocity of light in the medium,
while the group velocity is always less. At ω = ωc there is no group propagation.
Both the velocities approach the same value when ω >> ωc.

2.2.2 TM waves in a rectangular guide

The most often used guide in the microwave domain is the rectangular guide in
the form of a hollow pipe. There can be no TEM wave in a hollow pipe bounded
by a single conductor (why?). The solution for Ez for this case can be written as

Figure 2.3: Cross-section of a rectangular waveguide.

Ez = A sin kxx sin kyy, (2.44)

where due to boundary conditions, kx and ky must satisfy

kxa = mπ, kyb = nπ, m, n = 1, 2, 3 . . . (2.45)

Thus the cut-off frequency for the TMmn mode becomes

ωc mn =
kc mn√

εµ
=

1√
εµ

[

(mπ

a

)2

+
(nπ

b

)2
]1/2

, (2.46)
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where k2
c = k2

x + k2
y = k2 −β2. The attenuation and the propagation constants are

given by

α = kc mn

√

1 −
(

ω

ωc mn

)2

, ω < ωc mn (2.47)

β = k

√

1 −
(ωc mn

ω

)2

, ω > ωc mn (2.48)

The expressions for the phase and group velocities remain the same as in the
previous case.
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Chapter 3

Directional Coupler

3.1 Objectives

To measure the characteristics of the directional coupler such as coupling(C), di-
rectivity(D) and isolation(I).

3.2 Theoretical background

We first consider the general theory of the N-port waveguide junctions and develop
the expression for the scattering matrix S. We then apply the theory to directional
couplers and to E− plane, H− plane and magic tees in the next chapter.

3.2.1 N-port waveguide junctions

A typical N−port junction has N inputs {ai, i = 1 : N}, and N outputs {bi, i =
1 : N}. An example of a four port junction is shown in Fig.3.1. The output values
can be linked to the inputs through the N × N scattering matrix [S] as follows

[b] = [S][a], (3.1)

so that the transfer from one port to the other can easily be judged by the elements
of [S]. In the above equation [a] and [b] represent column vectors. For the network
to be reciprocal, one has to demand that the matrix [S] must be symmetric, i.e.,
Sij = Sji. For a loss free network the following conservation relation must hold

N
∑

m=1

bmb∗m =

N
∑

m=1

ama∗

m (3.2)

In matrix form we have
[b]t[b

∗] = [a]t[a
∗] (3.3)

37
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Figure 3.1: Block diagram of a directional coupler

Using Eq.(3.1), this can be written as

([S][a])t[S
∗][a∗] = [a]t[a

∗] (3.4)

Since the transpose of a product is the product of the transposed, we have

[at][St][S
∗][a∗] = [a]t[U ][a∗]. (3.5)

where [U ] is the unit matrix. Finally we arrive at the unitarity property of [S]

[St][S
∗] = [S∗][St] = [U ]. (3.6)

In terms of the elements the unitarity implies

N
∑

n=1

SinS
∗

in = 1, (3.7)

N
∑

n=1

SinS
∗

jn = 0, for i 6= j (3.8)

3.2.2 Directional coupler as an example of a four-port junc-

tion

A directional coupler is a four-port component (see Fig(3.2)) in which two trans-
mission lines are coupled in such a way that the output at a port of one transmission
line depends on the direction of propagation in the other. Fig(3.3) illustrates two
transmission lines coupled in the junction. As shown in the Fig(3.3) the waves
crossing the center layer and entering into port-3 are in phase. On the other hand
the waves towards port-4 are π out of phase as the distance between the successive
holes is λ

4
and the path difference is two times λ

4
. The line from port-1 to port-2 is
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Figure 3.2: Block diagram of a directional coupler

Figure 3.3: Coupling through the center wall of the guides.

coupled to the line from port-3 to port-4. In an ideal coupler, a signal entering port
one will travel to port-2, and a predetermined portion of this signal will appear at
one of the other two ports. There will be zero output at the fourth port. If the
main signal travels in the reverse direction, form port-2 to port-1, a small coupled
signal will appear at the port which was isolated in the first case. Frequently only
three of the four ports are used in a microwave circuit. In this case the unwanted
port is usually terminated by a matched load built into it. The component then
looks like a three-port network but it is still a four-port network even though the
fourth port is concealed.

The scattering matrix for the coupler can be written as

[S] =









0 S12 S13 0
S12 0 0 S24

S13 0 0 S34

0 S24 S34 0









(3.9)
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Eq.(3.7) reduces to

i = 1, |S12|2 + |S13|2 = 1 (3.10)

i = 2, |S12|2 + |S24|2 = 1 (3.11)

i = 3, |S13|2 + |S34|2 = 1 (3.12)

i = 4, |S24|2 + |S34|2 = 1 (3.13)

Using Eq.(3.8) we have

i = 1, j = 4 S12S
∗

24 + S13S
∗

34 = 0 (3.14)

i = 2, j = 3 S12S
∗

13 + S24S
∗

34 = 0. (3.15)

Note that by virtue of reciprocity (Sij = Sji) and unitarity (S∗

ij = Sji) all the
elements of [S] are real and using Eqs.(3.10)-(3.15) one can easily show that

S12 = S34 = ã (3.16)

S24 = −S13 = b̃ (3.17)

Here ã and b̃ carry the physical information about the transmission and the cou-
pling, respectively. One can also show that (ã)2 + (b̃)2 = 1 in absence of losses.
The scattering matrix now looks as

[S] =









0 ã −b̃ 0

ã 0 0 b̃

−b̃ 0 0 ã

0 b̃ ã 0









(3.18)

The followings give the important experimental characteristics of a directional
coupler

Coupling

Look at Fig(3.3), power is fed to port-1 and is measured at port-3 and the unused
ports are terminated. Now the coupling C between port-1 and port-3 is defined as

C = 10 log
P1

P3
(3.19)

in decibels.
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Figure 3.4: Measurement of incident power.

Directivity

Look at Fig(3.3), power is fed to port-1 and it has to be measured at port-4. If the
directional coupler has only three ports and the fourth one is already terminated
by a matched load then reverse the directional coupler so as to obtain port-4. Now
measure the power at this port-4 and the power at port-3 is already measured in
the above coupling section. Now the directivity D is defined as

D = 10 log
P3

P4
(3.20)

Isolation

Let P1 be the incident power and P4 be the power at the port-4 as measured in
the above section. Isolation I is defined as

I = 10 log
P1

P4
= C + D (3.21)

3.3 Experimental procedure

Apparatus

Klystron, attenuator, frequency Meter, directional coupler, detector and VSWR
meter.

Figure 3.5: Power at Port-3
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Figure 3.6: Power at Port-4.

Measurement of coupling, directivity and isolation

1. Measure the incident power using the schematics in Fig.3.4. The power after
FM is noted as P1 and it will be used as an input to the directional coupler
at port-1.

2. Measure the forward transmitted power P3 using the schematics of Fig.3.5.
Use Eq.(3.19) to calculate the coupling C.

3. Measure the forward transmitted power P3 using the schematics of Fig.3.5.
Also measure the backward transmitted power P4 using the schematics of
Fig.3.6. Calculate the directivity D using Eq.(3.20).

4. Use P1 and P4 measured as above and calculate the isolation I using Eq.(3.21).

5. Measure the power division by a dielectric load using block diagrams Fig.3.7
and Fig.3.8. Measure Pi like in Fig.3.7, without the device after the coupler.
Measure Pt and Pr at ports 2 (now it is after the device) and 4, respectively.
Estimate the power absorption using the conservation law given by

Pi = Pt + Pr + Pa, (3.22)

where Pt, Pr and Pa give the transmitted, reflected and absorbed power,
respectively in power units.

Figure 3.7: Measurement of transmitted power Pt.
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Figure 3.8: Measurement of reflected power Pr.

6. Repeat the above steps for another power level.

NOTE: Eq3.22 can be written in the following from

1 = T + R + A (3.23)

=
Pt

Pi
+

Pr

Pi
+

Pa

Pi
(3.24)

= 10−(P t−P i)/10 + 10−(P r−P i)/10 + A (3.25)

where quantities with over bars are power in dB. Substitute P i, P r and P t in the
above equation to estimate A.

3.4 Conclusions

List out your main observations and conclusions.
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Chapter 4

Magic Tee

4.1 Objectives

To measure the characteristics of the magic tee such as isolation and coupling

4.2 Theoretical background

In the previous section we discussed the theory of a general N-port junction. Here
we present few other examples of such junctions, e.g., E-plane H-plane and magic
tee.

4.2.1 E-plane tee

4.2.2 H-plane tee

4.2.3 Magic tee

Magic Tee is a four-port junction which is a combination of an E-plane tee and
an H-plane tee (see Fig(4.1)). As shown in fig the collinear arms (arm 1 and arm
2) are called the side arms. The arm which makes an H-plane tee with the side
arms is called the H-arm or shunt arm. The fourth arm makes an E-plane tee
with the side arms and is thus the E-arm or series arm The shunt and series arms
are cross-polarized ie., the voltage vectors in these two arms are perpendicular to
each other. Therefore, as long as there is nothing within the junction to rotate
the polarization, there can be no coupling between these two arms. The E-arm
sees only the side arms and in fact these three ports behave like an E-plane tee.
Similarly the H-arm and side arms together behave like an H-plane tee. The
”magic” associated with this hybrid junction is the way that power divides in the
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Figure 4.1: View of magic tee

various arms. If a signal is fed into the shunt or H-arm, power divides equally
and in phase in the two side arms, with no coupling to the E-arm. When a signal
enters the E-arm, it also divides equally in the two side arms, but this time the
two halves are 1800 out of phase, and there is no coupling to the H-arm. If power
is fed into a side arm, it divides equally in to the shunt and series arms and there
is no coupling to the collinear side arm.

Figure 4.2: Phase distribution.
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Figure 4.3: Isolation.

Figure 4.4: Coupling.

4.2.4 Isolation

Isolation can be calculated as

I1 = 10 log
PE

PH
, if the input is through E − arm (4.1)

I2 = 10 log
PH

PE
, if the input is through H − arm (4.2)

4.2.5 Coupling

C1 = 10 log
PE

P1
or 10 log

PE

P2
, if the input is through E − arm (4.3)

C2 = 10 log
PH

P1
or 10 log

PH

P2
, if the input is through H − arm (4.4)
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4.3 Experimental procedure

Figure 4.5: Direct power.

Apparatus

Klystron, Attenuator, Frequency Meter,Magic Tee, Detector and VSWR meter.

Measurement of Isolation and Coupling

1. Measure the incident(direct) power using the schematics in Fig.4.5. The
power after FM is noted as Pi and it will be used as an input to the magic
tee.

2. Give the direct power to the E-arm and measure the power at H-arm using
the schematics of Fig4.3. Use Eq.(4.1) to calculate the isolation I. Also
calculate the isolation for the other case see Eq4.2.

3. Give the direct power to the E-arm and measure the power at the paral-
lel arms(arm-1 or arm-2) see fig4.4. Use Eq4.3 to measure the couplingC.
Measure the coupling between the H-arm and parallel arms also see Eq4.4.

4. Repeat the above steps for another power level.



Chapter 5

Klystron

To study and characterize the modes of a reflex

klystron

5.1 Theoretical background

The two cavity or reflex klystrons are widely used in microwave technology for
amplification and generation of microwave signals. Their principle of operation
is similar except for the difference in the reflex klystron where the path of the
electrons is reversed and the same cavity is used. The schematics of the two cavity
klystron is shown in Fig.5.1. All electrons arriving from the cathode enter the
first cavity with uniform velocity. At zeroes of the cavity gap voltage the electron
velocity is not affected, while for the positive (negative) cycle the electrons get
accelerated (decelerated). This results in a bunching of the electrons in their path
(hence the first cavity is referred to as a buncher). The variation of the electron
velocity in the drift space (between the cavities) is called the velocity modulation.
The cavities used for Klystrons are referred to as the reentrant cavities (learn more
about their construction and the principle of operation).

The electron density variation in the second cavity gap varies cyclically in time.
The electron beam contains an AC component and is said to be current modulated.
The maximum bunching should occur approximately midway between the grids of
the second cavity during its retarding phase. The kinetic energy is then transferred
from the electrons to the field of the second cavity and the electrons emerge with
reduced velocity and get terminated at the collector.

In order to understand the velocity modulation and other processes, we need
to make certain approximations. Keep in mind that the actual processes taking
place in the cavities are too difficult to be treated by any quantitative theory.
Nevertheless, the approximate analysis gives a fairly good idea about the relevant
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Figure 5.1: Two-cavity klystron.

Figure 5.2: Reflex klystron.

processes.

1. Uniform density of the electron beam in any transverse plane. Transverse
variations are ignored.

2. Space charge effects are ignored.

3. The magnitude of the microwave input is assumed to be much smaller than
the dc accelerating voltage.
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5.1.1 Velocity modulation

We assume that the electrons start at the cathode with null velocity. After getting
accelerated, they achieve a uniform velocity v0 at the entrance of the buncher grid
given by

v0 =

√

2eV0

m
= 0.593 × 106

√

V0 m/s (5.1)

Let a small microwave signal Vs = V1 sin(ωt) be applied to the input terminal, so
that V1 << V0. The average transit time through the buncher gap d is

τ ∼ d

v0
= t1 − t0 (5.2)

The average gap transit angle is then given by

θg = ωτ = ω(t1 − t0) =
ωd

v0
. (5.3)

The average microwave voltage in the buncher gap can be expressed as

< Vs > =
1

τ

∫ t1

t0

V1 sin(ωt) dt

= − V1

ωτ
[cos(ωt1) − cos(ωt0)]

=
V1

ωτ
[cos(ωt0) − cos(ωt0 +

ωd

v0
)] (5.4)

The above equation can be written in the form

< Vs > = V1
sin[ωd/2v0]

ωd/2v0
sin(ωt0 +

ωd

2v0
)

= V1
sin[θg/2]

θg/2
sin(ωt0 +

θg

2
) (5.5)

We have introduced the beam coupling coefficient βi as

βi =
sin[ωd/2v0]

ωd/2v0
=

sin[θg/2]

θg/2
. (5.6)

As can be easily seen from this equation that the beam coupling decreases rapidly
with an increase in the gap transit angle. After velocity modulation the exit
velocity from the buncher gap is then given by

v(t1) =

√

2e

m

[

V0 + βiV1 sin(ωt0 +
θg

2
)

]

=

√

2e

m
V0

[

1 +
βiV1

V0
sin(ωt0 +

θg

2
)

]

(5.7)
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Figure 5.3: Bunching process and the origin of various modes.

Here the factor βiV1/V0 is called the depth of velocity modulation. Under the
approximation of small depth of modulation βiV1 << V0, this equation can be
approximated by

v(t1) = v0

[

1 +
βiV1

2V0
sin(ωt0 +

θg

2
)

]

= v0

[

1 +
βiV1

2V0
sin(ωt1 −

θg

2
)

]

(5.8)

Up to this point the theory of a two-cavity and reflex klystron is the same. Hence-
fort we will concentrate only on the reflex klystron (see figure). After the cavity
the velocity modulated electrons enter the repeller region. All electrons turned
around by the repeller then pass through the cavity gap in bunches. On their
journey the bunched electrons pass through the gap during the retarding phase of
the alternating field and give up their kinetic energy to the cavity field. Oscillator
output energy is then taken from the cavity. After their job is over, the electrons
are collected by the cavity walls or other grounded metal parts of the tube. The
velocity modulated electron is forced back to z = d of the cavity by the retarding
electric field E given by

E =
Vr + V0 + V1 sin(ωt)

L
(5.9)

Neglecting the small oscillatory component, one can write down the equation of
motion for the electron in the repeller region as

m
d2z

dt2
= −eE = −e

Vr + V0

L
(5.10)
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Integrating in the interval from t1 to t, we have

dz

dt
= −e

Vr + V0

L

∫ t

t1

dt =
−e(Vr + V0)

mL
(t − t1) + K1 (5.11)

At t = t1, dz/dt = v(t1) = K1. Hence

z = −e
Vr + V0

2mL
(t − t1)

2 + v(t1)(t − t1) + d (5.12)

Here we used the fact that at t = t1, z = d. Assuming that the electron leaves the
gap at z = d at t = t1 with a velocity of v(t1 and returns to the same location)
z = d at t = t2, we have

0 = −e
Vr + V0

2mL
(t2 − t1)

2 + v(t1)(t2 − t1) (5.13)

Thus the round trip transit time is given by

T ′ = t2 − t1 =
2mL

e(V0 + Vr)
v(t1) = T ′

0

[

1 +
βiV1

2V0

sin(ωt1 −
θg

2
)

]

, (5.14)

where the dc roundtrip transit time T ′

0 is given by

T ′

0 =
2mLv0

e(V0 + Vr)
(5.15)

The corresponding phase angle is given by

ω(t2 − t1) = θ′0 + X ′ sin(ωt1 − θg/2), θ′0 = ωT ′

0, X ′ =
βiV1

2V0
θ′0 (5.16)

where θ′0 is the round trip dc transit angle and X ′ is the bunching parameter.

5.1.2 Power output and efficiency

In order to generate maximum power, the returning electron beam must cross the
cavity gap when the gap field is maximum retarding. This is the way the electrons
can impart maximum kinetic enrgy to the field. It can be seen from the fig. that
for maximum energy transfer, the round trip transit angle, referring to the center
of the bunch, must be given by

ω(t2 − t1) = θ′0 = 2π

(

n − 1

4

)

= 2πN = 2πn − π

2
, (5.17)
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Figure 5.4: X ′J1(X
′) as a function of X ′.

where n is any positive integer and N = n − 1/4 is the number of the mode. The
beam current of a reflex klystron can be written as

i2t = −I0 −
∞
∑

n=1

2I0Jn(nX ′) cos[n(ωt2 − θ′0 − θg)] (5.18)

The fundamental component of the induced current is given by

i2 = −βii2f = 2βiI0J1(X
′) cos(ωt2 − θ′0), (5.19)

where the magnitude I2 = 2βiI0J1(X
′) and we neglected θg. The dc power supplied

by the voltage V0 is
Pdc = V0I0 (5.20)

and the ac power is given by

Pac =
V1I2

2
= βiI0J1(X

′) (5.21)

Using Eqs. (5.16) and (5.17) one has

V1

V0
=

2X ′

βi(2πn − π/2)
, (5.22)

which leads to the final expression for Pac as

Pac =
2V0I0X

′J1(X
′)

(2πn − π/2)
(5.23)
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One can define the efficiency of the klystron η as

η =
Pac

Pdc

=
2X ′J1(X

′)

(2πn − π/2)
(5.24)

The factorX ′J1(X
′) attains a maximum value 1.25 at X ′ = 2.408 with J1(2.408) =

0.52. Generally the mode with n = 2 has the maximum power. For that mode
one has

η =
2 × 2.408 × 0.52

(2π × 2 − π/2)
= 22.7% (5.25)

Substituting Eqs.(5.1) and (5.17) in Eq.(5.15), one can find the relation between
the repeller voltage and the cycle number n

V0

(V0 + Vr)2
=

e(2πn − π/2)2

8mω2L2
(5.26)

Pac can also be expressed in terms of the repeller voltage as

Pac =
V0I0X

′J1(X
′)(Vr + V0)

ωL

√

e

2mV0
(5.27)

Eq.(5.26) implies that for a given beam voltage V0 and cycle number n the center
repeller voltage can be determined in terms of the center frequency. Then the
power output at the center frequency can be calculated using Eq.(5.27). When
the frequency varies from the center frequency and the repeller voltage about the
center repeller voltage, the power output will vary accordingly assuming a bell
shape (see Fig.).

5.2 Apparatus and measurements

Klystron Power Supply, Klystron, Attenuator, Frequency Meter, Detector, VSWR
meter and Oscilloscope

5.2.1 Experimental setup with VSWR

Experimental steps

1. Set V0 at some constant voltage.

2. Vary VR and find the frequency from FM, amplitude from VSWR for different
values of VR

3. Plot VSWR and FM readings against VR readings
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Figure 5.5: Klystron frequency and power as functions of the repeller voltage Vr.

5.2.2 Experimental setup with Oscilloscope:

Experimental steps

1. Modulate the VR amplitude with a linear ramp voltage

2. Connect the modulated VR to the XX terminal of CRO and YY terminals
to the Detector

3. Observe the modes displayed by the CRO and record the amplitudes and
frequencies of the modes

Figure 5.6: block diagram.
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Figure 5.7: block diagram.

5.2.3 Data collection and analysis

Setup with VSWR

Sl.No VR VSWR FM
1
2
3

Setup with CRO

V1, V2, V3, V4, V5 Vr1
, Vr2

, Vr3
, Vr4

, Vr5
f1, f2, f3, f4, f5

Mode1
Mode2
Mode3

5.3 Conclusions

1.

2.

3.

NOTE: Items 5.2.3 and 5.3 are to be submitted as the Lab Experiment Report
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Figure 5.8: block diagram.



Chapter 6

Gunn Diode

6.1 Objectives

1. V-I Characteristics

2. Output Power and frequency as a function of Bias voltage

3. Mechanical Tuning of Output Power and frequency

4. Square wave modulation through PIN diode

6.2 Theoretical background

6.2.1 The Gunn Effect

In some materials (III-V compounds such as GaAs and InP), after an electric
field in the material reaches a threshold level, the mobility of electrons decrease
as the electric field is increased, thereby producing negative resistance. A two-
terminal device made from such a material can produce microwave oscillations, the
frequency of which is primarily determined by the characteristics of the specimen
of the material and not by any external circuit. The Gunn Effect was discovered
by J. B. Gunn of IBM in 1963.

6.2.2 The Gunn Diode

In certain semiconductors, notably GaAs, electrons can exist in a high-mass low
velocity state as well as their normal low-mass high-velocity state and they can be
forced into the high-mass state by a steady electric field of sufficient strength. In
this state they form clusters or domains which cross the field at a constant rate
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causing current to flow as a series of pulses. This is the Gunn effect and one form
of diode which makes use of it consists of an epitaxial layer of n-type GaAs grown
on a GaAs substrate. A potential of a few volts applied between ohmic contacts
to the n-layer and substrate produces the electric field which causes clusters. The
frequency of the current pulses so generated depends on the transit time through
the n-layer and hence on its thickness. If the diode is mounted in a suitably tuned
cavity resonator, the current pulses cause oscillation by shock excitation and r.f.
power up to 1 W at frequencies between 10 and 30 GHz is obtainable.

Gunn Oscillator:

In a Gunn Oscillator, the Gunn Diode is placed in a resonant cavity. In this
case the oscillation frequency is determined by cavity dimension than by the diode
itself. Although Gun Oscillator can be amplitude-modulated with the bias v

Usually the Gunn diode is mounted on a post structure between the waveguide
walls, either l g/2 from an iris or l g/2 from a short circuit (see Figure6.1). Some
alteration is necessary to set the exact frequency to allow for diode and package
parasitics and manufacturing tolerances. Tuning screws (either metal or dielectric)
are used to modify the cavity resonant frequency. Power output variations are
achieved by adjusting the coupling between diode and load using variations in
post size or tuning screws as shown in Figure6.1

Figure 6.1: Mechanical Tuning
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6.2.3 Theory

The Gunn diode is a so-called transferred electron device. Electrons are transferred
from one valley in the conduction band to another valley. In order to understand
the nature of the transferred electron effect exhibited by Gunn diodes, it is neces-
sary to consider the electron drift velocity versus electric field (or current versus
voltage) relationship for GaAs (see Figure6.2). Below the threshold field, Eth,
of approximately 0.32 V/mm, the device acts as a passive resistance. However,
above Eth the electron velocity (current) decreases as the field (voltage) increases
producing a region of negative differential mobility, NDM (resistance, NDR). This
is the essential feature that leads to current instabilities and Gunn oscillations in
an active device and is due to the special conductance band structure of direct
band gap semiconductors such as GaAs (see Figure6.3).

Figure 6.2: Negative Resistive Region

The energy-momentum relationship contains two conduction band energy lev-
els, Γ and L (also known as valleys) with the following properties:

1. In the lower G valley, electrons exhibit a small effective mass and very high
mobility, µ1.

2. In the satellite L valley, electrons exhibit a large effective mass and very low
mobility, µ2.

3. The two valleys are separated by a small energy gap,∆E,of approximately
0.31 eV.

In equilibrium at room temperature most electrons reside near the bottom of
the lower Γ valley. Because of their high mobility( 8000 cm2V −1s−1),they can
readily be accelerated in a strong electric field to energies in the order of the Γ
-L intervalley separation,∆E.Electrons are then able to scatter into the satellite L
valley, resulting in a decrease in the average electron mobility, µ1, as given below:

µ = (n1µ1 + n2µ2)/(n1 + n2) (6.1)
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Figure 6.3: Two Valley Model

where n1 = electron density in Γ valley, n2 = electron density in L valley

Above the high field, EH , most electrons reside in the L valley and the device
behaves as a passive resistance (of greater magnitude) once again.

In a practical Gunn diode, electrons are accelerated from the cathode by the
prevailing electric field. When they have acquired sufficient energy, they begin to
scatter into the low mobility satellite valley and slow down.

The question of exactly how the NDR phenomenon in GaAs results in Gunn-
oscillations can now be answered with the aid of Figur6.4. A sample of uniformly
doped n-type GaAs of length L is biased with a constant voltage source V0. The
electrical field is therefore constant and its magnitude given by E0 = V0/L. From
the bottom graph in Figure6.4 it is clear that the electrons flow from cathode to
anode with constant velocity v3.

It is now assumed that a small local perturbation in the net charge arises at
t = t0, indicated by the solid curve in Figure6.4. This non-uniformity can, for
example, be the result of local thermal drift of electrons. The resulting electrical
field distribution is also shown (solid curve). The electrons at point A, experiencing
an electric field EL1,

will now travel to the anode with velocity v4. The electrons at point B is
subjected to an electrical field EH1. They will therefore drift towards the anode
with velocity v2 which is smaller than v4. Consequently, a pile-up of electrons
will occur between A and B, increasing the net negative charge in that region.
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Figure 6.4:

The region immediately to the right of B will become progressively more depleted
of electrons, due to their higher drift velocity towards the anode than those at B.
The initial charge perturbation will therefore grow into a dipole domain, commonly
known as a Gunn-domain. Gunn domains will grow while propagating towards the
anode until a stable domain has been formed. A stable Gunn-domain is shown
at a time instance t > t0, indicated by the dashed curve. At this point in time,
the domain has grown sufficiently to ensure that electrons at both points C and D
move at the same velocity, v1, as is clear from the bottom graph in Figure6.4. It is
important to note that the sample had to be biased in the NDR region to produce
a Gunn-domain. Once a domain has formed, the electric field in the rest of the
sample falls below the NDR region and will therefore inhibit the formation of a
second Gunn-domain. As soon as the domain is absorbed by the anode contact
region, the average electric field in the sample rises and domain formation can
again take place. The successive formation and drift of Gunn-domains through
the sample leads to a.c. current oscillations observed at the contacts.
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Figure 6.5:

6.3 Experimental Setup

6.3.1 Apparatus Required

Gunn oscillator, Gunn power supply, PIN modulator, Isolator, Frequency meter,
Variable attenuator, Detector, VSWR meter, Cables and Accessories.

6.3.2 Experimental Procedure

1. Set the components and equipments as shown in the Fig6.5.

2. Initially set the variable attenuator for maximum attenuation

3. Swith off the control knob and keep low the all other knob of the Gunn Power

4. Set the micrometer of Gunn Oscillator for required frequency of operation.

5. Switch ON the Cooling fan before switching on the Gunn Power Supply.

6.3.3 Voltage-current characteristics

1. Turn the meter switch of Gunn power supply to voltage position.

2. Increse the Gunn diode bias voltage in steps and measure the Gunn diode
current in each step.Do not exceed the bias voltage above 10 volts.

3. Plot the voltage and current readings on the graph as shown in Fig6.6(left).

4. Measure the threshold voltage which corresponds to maximum current.
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6.3.4 Output power and frequency as function of Gunn
bias voltage

1. Turn the meter switch of Gunn power supply to voltage position.

2. Increase the Gunn bias voltage control knob.

3. Rotate PIN bias knob to around maximum position.

4. Measure the frequency by frequency meter and detune it before measuring
the power.

5. Measure the power from power meter which is connected through a thermis-
tor detector corresponding to the various bias voltage.

6. Use the reading to draw the power vs Voltage curve and frequency vs voltage
and plot the graph.

7. Measure the frequency sensitivity against variation in bias voltage.

6.3.5 Mechanical Tuning of Output Power and frequency

1. Set the Gunn bias voltage in NDR region(above Vth)

2. Turn the Tuning Screw of The Gunn Oscillator in step of mm

3. Measure the frequency by FM and detune it before measuring the power

4. Measure also the power from power meter corresponding to the various po-
sitions of the Tuning screw.

5. Plot a curve for Power and Frequency against Tuning screw readings

6. Observe the range and sensitivity of the mechanical tuning from the graphs.

6.3.6 Square wave modulation through PIN diode

1. Keep the meter switch of Gunn Power Supply to volt position and set Gunn
bias voltage slowly above Vth.

2. Tune the PIN modulator bias voltage and frequency knob for maximum
output on the oscilloscope.

3. Coincide the bottom of square wave in oscilloscope to some reference level
and note down the micrometer reading of variable attenuator.
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4. Now with the help of variable attenuator coincide the top of square wave to
same reference level and note down the micrometer reading.

5. Connect VSWR to detector mount and note down the db reading in VSWR
meter for both the micrometer reading of the variable attenuator.

6. The difference of both db reading of VSWR meter gives the modulation
depth of PIN modulator.

Figure 6.6:

Note

1. Isolator must be used between the Gunn Oscillator and the PIN Modulator

2. donot keep gunn bias knob position at threshold position for more than 10-15
seconds. reading should be obtained as fast as possible. otherwise, due to
excessive heating, gunn diode may burn.

Acknowledgement

In preparing the theoretical portion we used extensively the material available at
http://www.nhn.ou.edu/ johnson/Education/Juniorlab/Microwave/Gunn%20Effect.pdf
http://www.rfglobalnet.com/article.mvc/Introduction-To-Gunn-Diodes-0001



Chapter 7

Horn Antenna

7.1 Objectives

To estimate the Gain, radiation field pattern and 3-dB beam width for E-plane
and H-planes of the horn antenna.

7.2 Introduction

It is an open-ended waveguide, of increasing cross-sectional area, which radiates
directly in a desired direction or feeds a reflector that forms a desired beam.

Figure 7.1: Horn Antenna.

Linearly polarized waves are radiated by a waveguide horn antenna, the di-
rection of polarization being parallel to the narrow dimension of the waveguide
feeding the antenna. The reason is that the waveguide field has only one electric
field component parallel to the narrow wall of the guide. Because of this and by
virtue of the principle of reciprocity such a horn can only receive waves of the
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same polarization as that it radiates, and so if the incident field is arbitrarily po-
larized the horn selects the components of the field aligned with its direction of
polarization. If the only field component is perpendicular to the horn’s direction
of polarization, then the horn does not receive the incident field.

Basic horn antenna concept

The horn antenna may be considered as an RF transformer or impedance match
between the waveguide feeder and free space which has an impedance of 377 ohms.
By having a tapered or having a flared end to the waveguide the horn antenna is
formed and this enables the impedance to be matched. Although the waveguide
will radiate without a horn antenna, this provides a far more efficient match.

In addition to the improved match provided by the horn antenna, it also helps
suppress signals traveling via unwanted modes in the waveguide from being radi-
ated.

However the main advantage of the horn antenna is that it provides a significant
level of directivity and gain. For greater levels of gain the horn antenna should
have a large aperture. Also to achieve the maximum gain for a given aperture
size, the taper should be long so that the phase of the wave-front is as nearly
constant as possible across the aperture. However there comes a point where to
provide even small increases in gain, the increase in length becomes too large to
make it sensible. Thus gain levels are a balance between aperture size and length.
However gain levels for a horn antenna may be up to 20 dB in some instances.

7.3 Experimental setup

7.3.1 Apparatus required

Klystron, Isolator, Frequency meter, Attenuator, Waveguide stands, two horn an-
tennas, 900twister, rotatable stand calibrated in degrees(protractor), Detector and
VSWR meter.

7.4 Gain

7.4.1 Gain of the Horn antenna for E and H planes

1. Keep the transmitting and receiving Horn antennas in the same line such
that one faces the other as shown in fig7.2.

2. Keep the antennas with a distance(R) between them > 2D2/λ0
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Figure 7.2: Gain when H-field is parallel to ground.

Figure 7.3: Gain when E-field is parallel to ground

3. The two antennas must be aligned in similar polarization

4. Adjust the VSWR knobs and the attenuator(at the source) to get a VSWR
reading as large as posibble. Record it as Pr in dB.

5. Now remove the transmitting horn antenna and connect the detector to
measure the direct power which should be noted as Pt in db.

6. Get the ratio in mw and estimate gain G

10 log
Pr

Pt

= Pr in dB − Pt in dB

⇒ Pr

Pt

= 10(Pr in dB −Pt in dB)/10 (7.1)

G =
4πR

λ0

√

Pr

Pt
(7.2)

7. Use the above steps to estimate the gain for E-plane(E-field is parallel to the
gound)

8. Use a 900 twist (see fig7.3) to rotate the transmitter such that H-field comes
parallel to the ground. And measure the gain by keeping the receiver also in
H-plane.
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Figure 7.4: Field pattern when H-field is parallel to ground.

Figure 7.5: Field pattern when E-field is parallel to ground

7.5 Radiation field pattern for E and H planes

1. Keep the transmitting and receiving Horn antennas in the same line such that
transmitter positioned at 00 on the rotating platform as shown in fig7.4.

2. Both antennas must be aligned in similar polarization.

3. The minimum distance(R) between the antennas should be > 2D2/λ0 to
satisfy the far field pattern(Franhofer pattern)

4. Adjust the VSWR knobs and the attenuator(at the source) to get a VSWR
reading as large as posibble.

5. Record the VSWR readings at the receiving end corresponding to the dif-
ferent angular positions of the transmitter(Rotate the transmitted in steps
of 100 and cover the full range from −900 to 900).

6. Repeat the above steps for E-plane and for H-plane
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7. Plot these values to show the radiation field pattern sed fig7.6. for both the
planes

Figure 7.6: Radiation Field pattern

Figure 7.7: 3-db beam width

7.6 3-dB Beam width

1. Use the above observations and plot the VSWR readings corresponding to
the different angular positions of the horn antenna on a polar graph see
fig7.7.

2. 3-db beam width is the angle subtended by the points of half maximum
power on the main lobe, see fig

3. Measure it for both E and H planes.
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Chapter 8

Dielectric constant of solids

8.1 Objective

To measure the dielectric constant ǫ of solids using Von Hippel’s method

8.2 Theoretical background

The dielectric behavior of materials at microwave frequencies can give information
about the usage and application of the material at these frequencies. The principle
of the terminated waveguide method(Von Hippel’s Method) is shown schematically
in Fig.8.1. The sample of thickness d fills the end section of a waveguide termi-

Figure 8.1: PRINCIPLE OF THE TERMINATED WAVEGUIDE METHOD.

nated by a short circuit. A slotted section of the guide interposed between the

73
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sample and the generator makes it possible to determine the position of the first
minimum (yo) and the relative amplitude r = Emin

Emax
of the maxima and minima

by means of a traveling detector probe. Because there is a length of waveguide
intervening between the slotted section and the sample, and the scale on the probe
reads from an arbitrary origin, the position of the first minimum must be found
by taking a reference reading of the minimum in the absence of sample.

If the position of the minimum in the absence of sample is read on the scale of
the slotted section at N1

N1 = n
λg

2
(8.1)

where n is an integer.
If N2 is the position of the minimum in the presence of the sample then:

N2 = d + y0 (8.2)

from Eq.8.1 and Eq.8.2, we get

y0 = N2 − N1 + n
λg

2
− d (8.3)

Figure 8.2:

Consider an EM wave traveling through medium 1(air) strikes normally to the
medium 2(dielectric), a part of it is reflected and the rest gets transmitted see
Fig.8.2. A standing wave pattern is thus produced in medium 1. The transverse
electric field component in this partial reflection case is given by

E1 = A+ejk1x + A−e−jk1x in medium 1 (8.4)
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E2 = B+ejk2x + B−e−jk2x in medium 2 (8.5)

where k1 = 2π
λg

and k2 = 2π
λgd

are the wave vectors in medium 1 and medium2(λg is

guide wavelength in air and λgd is guide wavelength in dielectric)

Applying Boundary condition at the interface(at x=0), we have E1|x=0 =
E2|x=0 gives

A+ + A− = B+ + B− (8.6)

and dE1

dx
|x=0 = dE2

dx
|x=0 gives

k1(A+ − A−) = k2(B+ + B−) (8.7)

Since waveguide is shorted at x = d, E2|x=d = 0. It gives

B+ejk2d + B−e−jk2d = 0 (8.8)

As y0 is the position of a minima from the interface, electric field at this point
(x = −y0) must be zero. So we get

A+e−jk1y0 + A−ejk1y0 = 0 (8.9)

Eliminating A+, A− and B+, B− from the above equations 8.6, 8.7, 8.8 and 8.9, we
get Eq.8.8 and Eq.8.9 in the above equation, we get

e2jk1y0 =
(k1 + k2)e

−2jk2d − (k1 − k2)

−(k1 − k2)e−2jk2d + (k1 + k2)

=
k2(1 + e−2jk2d) − k1(1 − e−2jk2d)

k2(1 + e−2jk2d) + k1(1 − e−2jk2d)

(8.10)

rearranging, we get

or
1 − e2jk1y0

1 + e2jk1y0

=
k1(1 − e−2jk2d)

k2(1 + e−2jk2d)

(e−jk1y0 − ejk1y0)

k1(e−jk1y0 + ejk1y0)
=

(ejk2d − e−jk2d)

k2(ejk2d + e−jk2d)

−tan(k1y0)

k1

=
tan(k2d)

k2

or
tanx

x
= − λg

2πd
tan

(

2πy0

λg

)

, (8.11)

where x = k2d. This equation is transcendental. The Taylor series for tan(x)
contains infinite number of terms for correct representation. Such equations may
have no roots or finite or even infinite number of roots. There exist no analytical
means to solve such equations.
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8.2.1 Graphical and numerical solution of the transcenden-
tal Eq.(8.11)

The roots of Eq.(8.11) needs to be localized by graphical methods. Later the
accurate roots can be found out using the graphical root as the initial guess in a
nonlinear root-finder. Once the roots are found, the dielectric constant of the solid
can be evaluated as

ǫd =
k2

0d

k2
0

=
λ2

0

λ2
0d

(8.12)

where λ0 is the wave length in free space and λ0d is the wavelength in bulk dielectric

ǫd =

[

1

λ2
gd

+
1

λ2
c

]

λ2
0

=

[

( x

2πd

)2

+
1

λ2
c

]

λ2
0 (8.13)

since x = k2d = 2πd/λgd.

8.3 Experimental procedure

Figure 8.3: Experimental setup

1. Assemble the equipment as shown in the Fig.8.3.
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Figure 8.4: Graph

2. Energize the microwave and obtain the suitable power level in the power
meter.

3. With no sample in the shorted wave guide, measure the position of the
standing wave minima, starting from any reference plane. Compute the guide
wavelength, the distance between successive minima is λg

2
. The position of

the first minima is taken as N1.

4. Use FM to measure the frequency of the excited wave and compute the free
space wavelength(λ0 = c

f
). If frequency meter is not used compute it using

the relation
(

1

λ0

)2

=

(

1

λg

)2

+

(

1

λc

)2

(8.14)

where λc = 2a.

5. Insert the dielectric sample.

6. Measure the position of the standing wave voltage minima from the same
reference plane. The position of the first minima is taken as N2.

7. Use Eq.8.3 to find y0 by choosing the value n such that 0 < y0 < λg

2

8. Use Eq. 8.11 to find the value of tanx
x

. Now for this value find the first three
possible solutions x1, x2 and x3

9. Calculate ǫ′i for each xi. where ǫ′i = [
(

xi

2πd

)2
+ 1

λ2
c
]λ2

0

10. Plot ǫ′ vs xi/d. Plot it again for different sample length.

11. Find the correct ǫ′ from the graph by taking the intersection. See fig:8.4.
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Advantage of the method:

The method removes the possibility of the formation of air gaps in between the
sample-waveguide wall and the sample shorting plate because the samples are
compressed into pellets within the waveguide completely filling the waveguide cross
section.Also removed are the ambiguities present in the selection of the phase
factor (β).This method also removes the disadvantage encountered in the free space
techniques such as the requirement for large sample surface area. the presence of
unwanted reflections,diffraction effects and complicated experimental set-ups. This
method is sufficient even for magnetic materials.

Appendix: MATLAB code for solving Eq.(8.11)

Eq.(8.11) is solved using the following code which has three segments, namely,
rootfind.m, input tanx.m and tanxbyx.m, which are given below. The routines are
called sequentially just by running the main segment. It asks for an input where
the value of a given by

a = − λg

2πd
tan

(

2πy0

λg

)

(8.15)

rootfind.m

1 clear all
2 home
3 global a d lamg;
4 prompt= {'guide wavelength(lam g)' , 'position of minima(y 0)' , 'length of the dielectric
5 def= {'5' , '0.5' , '1' };
6 dlgTitle= 'Root Finder for tanx/x=a' ;
7 lineNo=1;
8

9 AddOpts.Resize= 'on' ;
10 AddOpts.WindowStyle= 'modal' ;
11 AddOpts.Interpreter= 'tex' ;
12

13 answer=inputdlg(prompt,dlgTitle,lineNo,def,AddOpts) ;
14 lamg=str2num(answer {1,: });
15 y0=str2num(answer {2,: });
16 d=str2num(answer {3,: });
17

18 a=(lamg/(2 * pi * d)) * tan(2 * pi * y0/lamg);
19 xx=[];
20 yy=[];
21 for theta=0:2 * 360
22 x=theta * pi/180;
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23 yy=[yy tand(theta)];
24 xx=[xx x];
25 end
26

27 plot(xx,yy) %ylim([ −10 10])
28 hold on
29 plot(xx,xx * a)
30 for n=1:5
31 [x,y,button] = ginput(1);
32 input tanx(x);
33 end

Figure 8.5: Input perameters

inputtanx.m

1 function input tanx(x);
2 global d lamg;
3 lamc=2 * 2.2;
4 lam0=1/sqrt(1/lamgˆ2+1/lamcˆ2);
5 options=optimset( 'Display' , 'off' );
6 [x,f,exitflag]=fsolve(@tanxbyx,x,options);
7 eps=((x/(2 * pi * d))ˆ2+(1/lamc)ˆ2) * lam0ˆ2;
8 figure(1)
9 title(sprintf( 'Root at the selected initial guess=%0.4f and its correspon ding eps=%0.4f

tanxbyx.m
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Figure 8.6: tanx/x

1 function f=tanxbyx(x);
2 global a;
3 f=tan(x) −a* x;



Chapter 9

Dielectric Constant of Liquids
using Liquid Plunger

9.1 Theoretical background

The method proposed here uses a plunger for obtaining the standing wave profile
in the sample, from which the attenuation constant (α) and phase factor (β) are
calculated.A plunger was designed with its shorting plate fixed to one end of a
brass rod, threaded with pitch.This rod passes through another cylindrical tube on
which a main scale is calibrated. The plunger is useful as a movable shorting plate
and for measuring the length of the sample in the waveguide up to an accuracy of
0.005 mm. It can also be used as a quarter waveguide.

Electromagnetic waves traveling through a lossy medium are characterized by
the two complex parameters dielectric constant and permeability:

ǫ = ǫ′ − jǫ′′ (9.1)

µ = µ′ − jµ′′ (9.2)

The amplitude varies exponentially as: ej(ωt−γx),where ω is the angular frequency
and γ = α + iβ is the complex propagation constant. As a is assumed always
positive (to ensure loss in propagation),the waves are attenuated as they proceed
forward:

e−αxej(ωt−βx) (9.3)

α is called the absorption coefficient and β = ω
v

is the phase constant. From
Maxwell’s equations, one obtains for the phase velocity v in the medium:

v = c(ǫµ)−
1

2 (9.4)

and for the propagation constant;

γ =
jω

c

√
ǫµ (9.5)

81



82CHAPTER 9. DIELECTRIC CONSTANT OF LIQUIDS USING LIQUID PLUNGER

For free space:

c =
ω

k0
, k0 =

(

2π

λ

)

. (9.6)

In dielectric(Unbound medium):

v =
ω

k0d

, k0d =

(

2π

λ0d

)

+ jα. (9.7)

c =
1√
µ0ǫ0

, v =
c√
µrǫr

=
1

µǫ
(9.8)

c2

v2
= ǫr =

k2
0d

k2
0

(9.9)

⇒ k0d

k0
=

√
ǫr (9.10)

Low loss case

αd = 0 → ǫ∗ = ǫ =
λ2

0

λ2
0d

=

[

1

λ2
c

+
1

λ2
gd

]

λ2
0 (9.11)

Lossy dielectric

αd 6= 0 → ǫr =
k2

0d

k2
0

(9.12)

ǫr =
λ2

0

4π2
.k2

0d =
λ2

0

4π2

(

2π

λ0d
+ jαd

)2

= ǫ′ + jǫ′′ (9.13)

9.2 Procedure

9.2.1 Lossless case

1. Assemble the equipment shown in the fig:9.1.

2. Energize the microwave and obtain the suitable power level in the power
meter.

3. With no liquid in the cell measure the position of the standing wave min-
ima, starting from any reference plane. Compute the guide wavelength, the
distance between successive minima is λg

2
.



9.2. PROCEDURE 83

Figure 9.1: Experimental setup

4. Use frequency meter to determine the frequency of the excited wave and
compute the free space wavelength(λ0 = c

f
). If frequency meter is not used

compute it using the relation
(

1

λ0

)2

=

(

1

λg

)2

+

(

1

λc

)2

(9.14)

where λc = 2a.

5. Carefully detach the cell and fill it with a known volume of the liquid sample.
And keep the short in its lowest position in the liquid column. Fix the
detector at any desired position on the SLC.

6. Now readings should be taken corresponding to the different positions of the
short in the liquid column(by increasing the height of the liquid column)

7. find λgd from the standing wave pattern Obtained from the above readings

8. find the dielectric constant(for lossless case) by using

ǫ =
λ2

0

λ2
0d

(9.15)

9.2.2 Lossy dielectric

1. Repeat the step discussed in the above section and plot the standing wave
pattern. See fig9.3.
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Figure 9.2: lossless liquid

2. Find λgd from the distance between the peaks.

3. Plot a graph for ln[ im
Ic

− 1] versos the position of maxima m. Slope of this
plot gives the value of λgdαd. Hence find αd

4. Use eq9.12 to estimate the dielectric constant
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Figure 9.3: lossy liquid

Figure 9.4: graph
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