

# Magneto optic Effects

Subhasish Dutta Gupta, TIFR, UOH

Hyderabad, 2021



## Magneto optic Effects

Ref: I.D. Vagner et. al. Electrodynamics of Magnetoactive Media

EM waves in anisotropic media

Anisotropic properties given by  $\epsilon_{ik}$  and  $\mu_{ik}$ 

$$D_i = \epsilon_{ik}(\omega)E_k$$
  $B_i = \mu_{ik}(\omega)H_k$ 

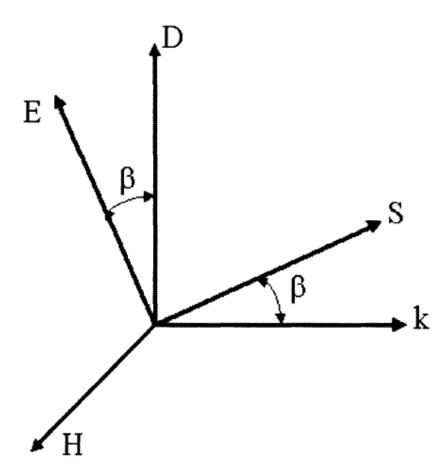
Dimensionless: 
$$\epsilon_{ik}^r = \frac{\epsilon_{ik}}{\epsilon_0}$$
  $\mu_{ik}^r = \frac{\mu_{ik}}{\mu_0}$ 

Initially considered nonmagnetic media with no loss

$$\downarrow \\
\mu_{ik} = \mu_0 \qquad \qquad \text{Im } \epsilon_{ik} = 0$$



Maxwell's eqns,



$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \Rightarrow \vec{k} \times \vec{E} = \omega \mu_0 \vec{H}$$

$$\vec{\nabla} \times \vec{H} = \frac{\partial \vec{D}}{\partial t} \Rightarrow -\vec{k} \times \vec{H} = \omega \vec{D}$$

 $\Rightarrow \vec{k}, \vec{D}, \vec{H} \rightarrow \text{mutually orthogonal}$ 

$$\vec{H} \perp \vec{E} \Rightarrow \vec{D}, \vec{E}, \vec{k} \text{ all } \perp \vec{H}$$

$$\Rightarrow \text{must be coplanar}$$

 $\vec{E}, \vec{D}, \vec{H}, \vec{k}, \vec{S}$  for a plane wave



In contrast to isotropic media,

 $\vec{D}$  and  $\vec{H}$  are  $\perp \vec{k}$ 

But  $\vec{E}$  is not perpendicular to k

 $\vec{S} = \vec{E} \times \vec{H}$  is not  $\perp \vec{k}$ 

 $ec{S}$  is not  $\parallel$  to  $ec{k}$ 

Clearly,  $\vec{S}$  is coplanar with  $\vec{E}$ ,  $\vec{D}$ ,  $\vec{k}$ 

Angle between  $\vec{S}$  and  $\vec{k}$  same as angle between  $\vec{D}$  and  $\vec{E}$ 

Define dimensionless vector  $\vec{n} \Rightarrow \vec{k} = \frac{\omega}{c}\vec{n}$ 

Magnitude of  $\vec{n}$  in anisotropic medium depends on direction,

while in isotropic medium,  $n = \sqrt{\epsilon_r}$  depends only on frequency.



$$\vec{k} \times \vec{E} = \omega \mu_0 \vec{H} \Rightarrow \frac{\omega}{c} \vec{n} \times \vec{E} = \omega \mu_0 \vec{H}$$

$$\Rightarrow \vec{n} \times \vec{E} = \sqrt{\frac{\mu_0}{\epsilon_0}} \vec{H}$$

$$-\vec{k} \times \vec{H} = \omega \vec{D} \Rightarrow -\vec{n} \times \vec{H} = \frac{1}{\sqrt{\epsilon_0 \mu_0}} \vec{D}$$

$$\vec{S} = \vec{E} \times \vec{H} = \vec{E} \times \sqrt{\frac{\epsilon_0}{\mu_0}} \left[ \vec{n} \times \vec{E} \right]$$

$$= \sqrt{\frac{\epsilon_0}{\mu_0}} \left[ \vec{n} E^2 - \vec{E} (\vec{n} \cdot \vec{E}) \right]$$

Unlike the isotropic case now  $\vec{n} \cdot \vec{E}$  does not vanish since in anisotropic medium  $\vec{n}$  no longer is perpendicular to  $\vec{E}$ .



$$-\vec{n} \times \vec{H} = \frac{1}{\sqrt{\epsilon_0 \mu_0}} \vec{D}, \qquad \vec{n} \times \vec{E} = \sqrt{\frac{\mu_0}{\epsilon_0}} \vec{H}$$

$$\Rightarrow -\vec{n} \times \sqrt{\frac{\epsilon_0}{\mu_0}} (\vec{n} \times \vec{E}) = \frac{1}{\sqrt{\epsilon_0 \mu_0}} \vec{D}$$
$$-\left[ \vec{n} (\vec{n} \cdot \vec{E}) - \vec{E} n^2 \right] = \frac{\vec{D}}{\epsilon_0}$$

$$i \text{ th eqn}, \qquad n^2 E_i - n_i n_k E_k = \epsilon_{ik}^r E_k$$

sum over repeated index

For  $E_i$  to be nontrivial, we have to demand

$$|n^2\delta_{ik} - n_i n_k - \epsilon_{ik}^r| = 0$$



Let x, y, z be the principal axes of the tensor  $\epsilon_{ik}^r$  with diagonal elements  $\epsilon_{xx}^r$ ,  $\epsilon_{yy}^r$ ,  $\epsilon_{zz}^r$ 



Henceforth drop subscipt 'r'

$$n^2 = n_x^2 + n_z^2 + n_z^2$$

Determinant,

$$n^{2}(\epsilon_{xx}n_{x}^{2}+\epsilon_{yy}n_{y}^{2}+\epsilon_{zz}n_{z}^{2})-\epsilon_{xx}n_{x}^{2}(\epsilon_{yy}+\epsilon_{zz})-\epsilon_{yy}n_{y}^{2}(\epsilon_{xx}+\epsilon_{zz})-\epsilon_{zz}n_{z}^{2}(\epsilon_{xx}+\epsilon_{yy})+\epsilon_{xx}\epsilon_{yy}\epsilon_{zz}=0$$
Referred to as Fresnel eqns

One of the fundamental eqns of crystal optics.

Gives the magnitude of the wave vector as a function of direction

 $\Rightarrow$  For a given direction  $\rightarrow$  a quadratic eqn of  $n^2$  with real coefficients

 $\Rightarrow$  two different magnitudes for each direction



#### Wave vector surface

direction of light rays- group velocity  $\frac{\partial \omega}{\partial \vec{k}}$ 

Isotropic media  $\vec{k}$  and  $\frac{\partial \omega}{\partial \vec{k}}$  same

anisotropic medium $\rightarrow$  not so

direction 
$$\frac{\partial \omega}{\partial \vec{k}} \to \vec{s}$$

magnitude  $\vec{n} \cdot \vec{s} = 1$ 

 $\vec{s}$  - ray vector



Direct calculation  $\vec{s} \cdot \vec{H} = 0$ 

$$\vec{s} \cdot \vec{H} = 0$$

$$\vec{s} \cdot \vec{E} = 0$$

Since  $\vec{s} \perp \vec{E}$ ,  $\vec{H}$ 

$$\vec{H} = \frac{1}{\sqrt{\epsilon_0 \mu_0}} \vec{s} \times \vec{D}$$

$$\vec{H} = \frac{1}{\sqrt{\epsilon_0 \mu_0}} \vec{s} \times \vec{D} \qquad -\vec{E} = \sqrt{\frac{\mu_0}{\epsilon_0}} \vec{s} \times \vec{H}$$

Replacing 
$$\sqrt{\epsilon_0}\vec{E} \leftrightarrow \frac{\vec{D}}{\sqrt{\epsilon_0}}, \quad \vec{n} \leftrightarrow \vec{s}, \quad \epsilon_{ik}^r \leftrightarrow (\epsilon_{ik}^r)^{-1}$$

$$\vec{n} \times \vec{E} = \sqrt{\frac{\mu_0}{\epsilon_0}} \vec{H}, \qquad -\vec{n} \times \vec{H} = \frac{1}{\sqrt{\epsilon_0 \mu_0}} \vec{D}$$
 (Same as  $\blacksquare$ )

$$\frac{D_i = \epsilon_{ik}(\omega)E_k}{\Box} \qquad B_i = \mu_{ik}(\omega)H_k$$

Remains valid under replacement



Ray surface

Apply to Fresnel eqn.,

$$n^{2}(\epsilon_{xx}n_{x}^{2} + \epsilon_{yy}n_{y}^{2} + \epsilon_{zz}n_{z}^{2}) - \epsilon_{xx}n_{x}^{2}(\epsilon_{yy} + \epsilon_{zz})$$
$$-\epsilon_{yy}n_{y}^{2}(\epsilon_{xx} + \epsilon_{zz}) - \epsilon_{zz}n_{z}^{2}(\epsilon_{xx} + \epsilon_{yy}) + \epsilon_{xx}\epsilon_{yy}\epsilon_{zz} = 0$$

$$s^{2} \left( \frac{1}{\epsilon_{xx}} s_{x}^{2} + \frac{1}{\epsilon_{yy}} s_{y}^{2} + \frac{1}{\epsilon_{zz}} s_{z}^{2} \right) - \frac{1}{\epsilon_{xx}} s_{x}^{2} \left( \frac{1}{\epsilon_{yy}} + \frac{1}{\epsilon_{zz}} \right)$$
$$- \frac{1}{\epsilon_{yy}} s_{y}^{2} \left( \frac{1}{\epsilon_{xx}} + \frac{1}{\epsilon_{zz}} \right) - \frac{1}{\epsilon_{zz}} s_{z}^{2} \left( \frac{1}{\epsilon_{xx}} + \frac{1}{\epsilon_{yy}} \right) + \frac{1}{\epsilon_{xx}\epsilon_{yy}\epsilon_{zz}} = 0$$

$$\Rightarrow s^{2}(\epsilon_{yy}\epsilon_{zz}s_{x}^{2} + \epsilon_{xx}\epsilon_{zz}s_{y}^{2} + \epsilon_{xx}\epsilon_{yy}s_{z}^{2}) - s_{x}^{2}(\epsilon_{yy} + \epsilon_{zz})$$

$$\longrightarrow -s_{y}^{2}(\epsilon_{zz} + \epsilon_{xx}) - s_{z}^{2}(\epsilon_{xx} + \epsilon_{yy}) + 1 = 0$$



### Uniaxial crystal

cubic 
$$\epsilon_{ik} = \epsilon \, \delta_{ik}$$
uniaxial  $\epsilon_{xx} = \epsilon_{yy} = \epsilon_{\perp}$ 

$$\epsilon_{zz} = \epsilon_{\parallel}$$

Put in Fresnal eqn

$$n^{2}(\epsilon_{\perp}(n_{x}^{2} + n_{y}^{2}) + \epsilon_{\parallel}n_{z}^{2}) - \epsilon_{\perp}n_{x}^{2}(\epsilon_{\parallel} + \epsilon_{\perp}) - \epsilon_{\perp}n_{y}^{2}(\epsilon_{\parallel} + \epsilon_{\perp}) - \epsilon_{\parallel}n_{z}^{2}(2\epsilon_{\perp}) + \epsilon_{\perp}^{2}\epsilon_{\parallel} = 0$$

$$n^{2}(\epsilon_{\perp}(n_{x}^{2} + n_{y}^{2}) + \epsilon_{\parallel}n_{z}^{2}) - \epsilon_{\perp}\epsilon_{\parallel}(n_{x}^{2} + n_{y}^{2} + n_{z}^{2}) - (\epsilon_{\perp}n_{x}^{2} + \epsilon_{\perp}n_{y}^{2} + \epsilon_{\parallel}n_{z}^{2} - \epsilon_{\perp}\epsilon_{\parallel})\epsilon_{\perp} = 0$$

$$\Rightarrow (\epsilon_{\perp}(n_{x}^{2} + n_{y}^{2}) + \epsilon_{\parallel}n_{z}^{2} - \epsilon_{\perp}\epsilon_{\parallel})n^{2} - (\epsilon_{\perp}(n_{x}^{2} + n_{y}^{2}) + \epsilon_{\parallel}n_{z}^{2} - \epsilon_{\perp}\epsilon_{\parallel})\epsilon_{\perp} = 0$$

$$\Rightarrow (n^2 - \epsilon_{\perp})(\epsilon_{\perp}(n_x^2 + n_y^2) + \epsilon_{\parallel}n_z^2 - \epsilon_{\perp}\epsilon_{\parallel}) = 0$$



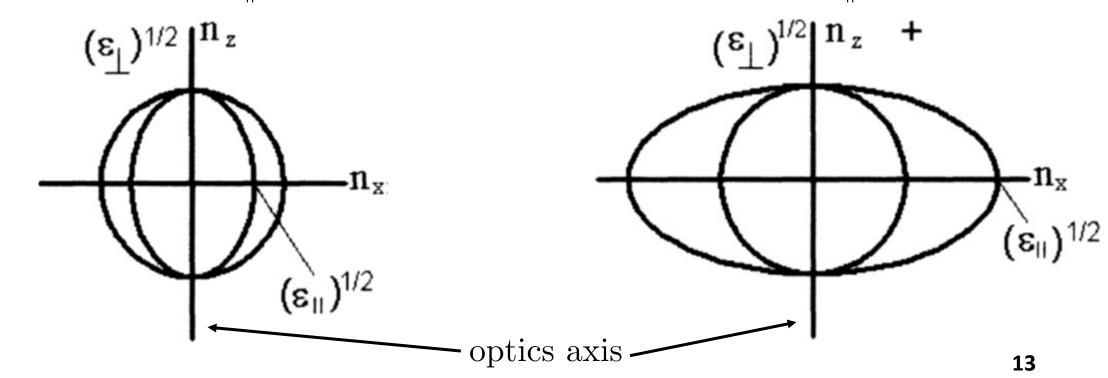
Quadratic eqn gives two roots

(i) 
$$n^2 = \epsilon_{\perp}$$
 (sphere)

(ii) 
$$\frac{n_z^2}{\epsilon_{\perp}} + \frac{n_x^2 + n_y^2}{\epsilon_{\parallel}} = 1$$
 (ellipsoid of rotation)

Two cases:  $\epsilon_{\perp} > \epsilon_{\parallel}$  -ve crystal

 $\epsilon_{\perp} < \epsilon_{\parallel} + \text{ve crystal}$ 





Magnitude of the wave vector

(a) 
$$n^2 = \epsilon_{\perp}$$
 ordinary wave

(b) 
$$\frac{1}{n^2} = \frac{\sin^2 \theta}{\epsilon_{\parallel}} + \frac{\cos^2 \theta}{\epsilon_{\perp}}$$
 Extraordinary waves

 $\theta$  – angle between optic axis and  $\vec{k}$ 

Direction of wave vector 
$$\vec{k} = \frac{\omega}{c} \vec{n}$$

Direction of ray vector not the same as direction of wave vector

But ray vector coplanar with wave vector and optic axis



Let  $\theta' \to \text{angle between } s$  and optic axis

$$\tan \theta' = \frac{\epsilon_{\perp}}{\epsilon_{\parallel}} \tan \theta$$

Same only when no anisotropic  $\frac{\epsilon_{\perp}}{\epsilon_{\parallel}}=1$ 



### Magneto optical effect

In presence of a constant magnetic field  $\vec{H}$  the tensor  $\epsilon_{ik}^r$  (we drop r) is no longer symmetric

$$\epsilon_{ik}(\vec{H}) = \epsilon_{ki}(-\vec{H})$$
 (from generalized principle of symmetry)

No absorption condition requires  $\epsilon_{ik}$  should be Hermitian, but not that it should be real.

$$\epsilon_{ik} = \epsilon_{ki}^*$$

Let 
$$\epsilon_{ik}(\vec{H}) = \epsilon'_{ik}(\vec{H}) + i\epsilon''_{ik}(\vec{H})$$

Real part must be sym  $\epsilon'_{ik} = \epsilon'_{ki}$ 

Im part must be antisym  $\epsilon_{ik}^{"} = -\epsilon_{ki}^{"}$ 



$$\epsilon'_{ik}(\vec{H}) = \epsilon'_{ki}(\vec{H}) = \epsilon'_{ik}(-\vec{H})$$
$$\epsilon''_{ik}(\vec{H}) = -\epsilon''_{ki}(\vec{H}) = -\epsilon''_{ik}(-\vec{H})$$

In a non absorbing medium  $\epsilon'_{ik}$  is an even function of  $\vec{H}$  and  $\epsilon''_{ik}$  is an odd function of H

Inverse  $\epsilon_{ik}^{-1}$  has the same symmetry properties

Let 
$$\epsilon_{ik}^{-1} = \eta_{ik} = \eta'_{ik} + i\eta''_{ik}$$

Any antisym tensor of rank 2 is axial vector

Let the vector corresponding to tensor  $\eta_{ik}^{"}$  be  $\vec{G}$ 

$$\eta_{ik}^{\prime\prime} = \epsilon_{ikl} G_l$$

In component form,  $\eta''_{xy} = G_z$   $\eta''_{zx} = G_y$   $\eta''_{yz} = G_x$ 



The relation between  $\vec{E}$  and  $\vec{D}$ 

$$E_i = \epsilon_{ik}^{-1} D_k = \frac{1}{\epsilon_0} (\eta'_{ik} + i\epsilon_{ikl} G_l) D_k$$

$$E_i = \frac{1}{\epsilon_0} (\eta'_{ik} D_k + i[\vec{D} \times \vec{G}]_i)$$

A medium with such relationship between  $\vec{E}$  and  $\vec{D}$  is called gyrotropic medium.

Consider now a propagation of a wave in gyrotropic media with no restriction on the magnitude of magnetic fields

Substitute 
$$\sqrt{\frac{\mu_0}{\epsilon_0}} \vec{H} = \vec{n} \times \vec{E} \text{ in } -\vec{n} \times \vec{H} = \frac{1}{\sqrt{\epsilon_0 \mu_0}} \vec{D}$$
  
$$\vec{D} = \epsilon_0 [n^2 \vec{E} - \vec{n} (\vec{n} \cdot \vec{E})]$$



Take propagation along  $\vec{k}(\vec{n})$ . Transverse component of  $\vec{D}$ ,

$$D_{\alpha} = \epsilon_{0} n^{2} E_{\alpha}$$

$$\Rightarrow E_{\alpha} = \frac{1}{\epsilon_{0}} (\epsilon_{\alpha\beta})^{-1} D_{\beta}$$

$$\Rightarrow D_{\alpha} - n^{2} (\epsilon_{\alpha\beta})^{-1} D_{\beta} = 0$$

$$\operatorname{or} \left( \frac{1}{n^{2}} \delta_{\alpha\beta} - (\epsilon_{\alpha\beta})^{-1} \right) D_{\beta} = 0 \qquad \eta_{\alpha\beta} \leftrightarrow \epsilon_{\alpha\beta}^{-1}$$

$$\left( \eta_{\alpha\beta} - \frac{1}{n^{2}} \delta_{\alpha\beta} \right) D_{\beta} = 0 \Rightarrow \left( \eta'_{\alpha\beta} + i \eta''_{\alpha\beta} - \frac{1}{n^{2}} \delta_{\alpha\beta} \right) D_{\beta} = 0$$

indices  $\alpha$ ,  $\beta$  are x and y. Propagation along z



x and y are chosen along principal axes of  $\eta'_{\alpha\beta}$ 

Corresponding principal values

$$\frac{1}{n_{01}^2} \text{ and } \frac{1}{n_{02}^2}$$
Then, 
$$\left(\eta'_{\alpha\beta} + i\eta''_{\alpha\beta} - \frac{1}{n^2}\delta_{\alpha\beta}\right)D_{\beta} = 0$$

$$\left(\frac{1}{n_{01}^2} - \frac{1}{n^2}\right)D_x + iG_zD_y = 0$$

$$-iG_zD_x + \left(\frac{1}{n_{02}^2} - \frac{1}{n^2}\right)D_y = 0$$



Vanishing determinant gives,

$$\left(\frac{1}{n_{01}^2} - \frac{1}{n^2}\right) \left(\frac{1}{n_{02}^2} - \frac{1}{n^2}\right) = G_z^2$$

Roots give two values of n for a given direction  $\vec{n}$ ,

$$\frac{1}{n^2} = \frac{1}{2} \left( \frac{1}{n_{01}^2} + \frac{1}{n_{02}^2} \right) \pm \sqrt{\frac{1}{4} \left( \frac{1}{n_{01}^2} - \frac{1}{n_{02}^2} \right)^2 + G_z^2}$$

$$\Rightarrow \frac{D_y}{D_x} = \frac{i}{G_z} \left\{ \frac{1}{2} \left( \frac{1}{n_{01}^2} - \frac{1}{n_{02}^2} \right) \mp \sqrt{\frac{1}{4} \left( \frac{1}{n_{01}^2} - \frac{1}{n_{02}^2} \right)^2 + G_z^2} \right\}$$

Purely imaginary value  $\rightarrow$  waves are elliptically polarized Principal axes are x and y axes



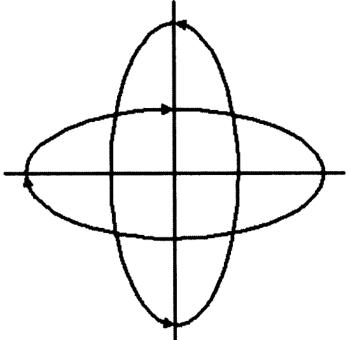
The product of the two values = 1 real

Thus in one wave is  $D_y = i\rho D_x$   $\rho$  real - ratio of axes of polarization ellipse

Then the other,  $D_y = -i\frac{D_x}{\rho}$ 

 $\Rightarrow$  Polarization ellipse of the two waves have the same axis ratio but are  $90^{\circ}$  apart

Direction of rotation opposite





## Gyrotropy and magnetic fields

 $G_i$  and  $\eta'_{ik}$  – functions of magnetic field

 $\vec{G}$  is zero in absence of magnetic field. Thus for weak field,

$$G_i = f_{ik}H_k$$
  $f_{ik}$ - tensor of rank 2

 $f_{ik} \to \text{In general not symmetrical}$ 

Components of antisymmetric tensor  $\eta_{ik}^{"}$  must be odd functions of  $\vec{H}$ 

For arbitrary direction of propagation- magnetic field has very little effect.

Effects are larger near optic axes

Two values of n are equal in absence of the field when wave vector is along one of these axes



Magneto optic effect in isotropic bodies and in cubic crystals- interesting

$$\eta'_{ik} = \epsilon_r^{-1} \delta_{ik}$$

 $\epsilon$ - dielectric constant of isotropic material in absence of  $\vec{H}$ 

$$\vec{E} \leftrightarrow \vec{D}$$
 relation  $\vec{E} = \frac{1}{\epsilon_0} \left( \frac{1}{\epsilon_r} \vec{D} + i \vec{D} \times \vec{G} \right)$  where  $\vec{G} = \frac{-\vec{g}}{(\epsilon_r)^2}$   $\vec{D} = \epsilon_0 (\epsilon_r \vec{E} + i \vec{E} \times \vec{g})$ 



$$\vec{g} = f\vec{H}$$
  $f$  - scalar constant

$$n_{01} = n_{02} = n_0 = \sqrt{\epsilon_r}$$

$$\left(\frac{1}{n_{01}^2} - \frac{1}{n^2}\right) \left(\frac{1}{n_{02}^2} - \frac{1}{n^2}\right) = G_z^2$$

Hence, 
$$\frac{1}{n^2} = - \pm G_z + \frac{1}{n_0^2}$$

To same accuracy  $n_{\mp}^2 = n_0^2 \pm n_0^4 G_z = n_0^2 \mp g_z$ 

$$n_{\mp}^2 = \frac{n_0^2}{1 \mp G_z n_0^2}$$



Since z axis is in  $\vec{n}$  direction,

$$\left(\vec{n} \pm \frac{1}{2n_0}\vec{g}\right)^2 = n_0^2$$

 $\Rightarrow$  Wave vector surface  $\rightarrow$  two spheres of radius  $n_0$ 

with separated centers by  $\pm \frac{g}{2n_0}$  from origin in the direction of  $\vec{g}$  or  $\vec{G}$ 

Different polarization correspond to each of the two waves,

$$D_x = \mp i D_y$$
 (RCP and LCP)

Two circularly polarized waves have different wave vector magnitudes

$$k_{\pm} = \frac{\omega}{c} n_{\pm}$$



Linear polarization  $\rightarrow$  sum of RCP + LCP

$$D_x = \frac{1}{2} [\exp(ik_+ z) + \exp(ik_- z)] \qquad D_y = \frac{1}{2} [i(-\exp(ik_+ z) + \exp(ik_- z))]$$

Introduce 
$$k = \frac{k_{+} + k_{-}}{2}$$
,  $\kappa = \frac{k_{+} - k_{-}}{2}$ 

$$D_x = \frac{1}{2}e^{ikz} \left[ e^{i\kappa z} + e^{-i\kappa z} \right] = e^{ikz} \cos \kappa z$$

$$D_y = \frac{1}{2}ie^{ikz} \left[ -e^{i\kappa z} + e^{-i\kappa z} \right] = e^{ikz} \sin \kappa z$$

After exiting from the slab,

$$\frac{D_y}{D_x} = \tan \kappa l = \tan \frac{l\omega g}{2cn_0} \longrightarrow \text{Real}$$



Since the ratio is real, wave remains linearly polarized.

Direction of polarization changes

 $\Rightarrow$  Faraday's effect

Angle through which plane of polarization is rotated  $\sim$  path traversed

Angle / unit length in the direction of the wave vector is  $\left(\frac{\omega g}{2cn_0}\right)\cos\theta$ 

 $\theta$  – angle between  $\vec{n}$  and  $\vec{g}$ 

 $\theta = \frac{\pi}{2}$   $\rightarrow$  one needs to include quadratic in  $\vec{H}$  terms

 $\Rightarrow$  Cotton-Mouton effect