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Ref: I.D. Vagner et. al. Electrodynamics of Magnetoactive Media

EM waves in anisotropic media

Anisotropic properties given by €;, and

Dimensionless: €, = Cik ur, = Hik
€0 Mo

Initially considered nonmagnetic media with no loss

| |

Wik = Ko Im €k — 0
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Maxwell’s eqns,

— mutually orthogonal

D.E.kall 1L H
}

J

must be coplanar

E, 5, ﬁ, /2, S for a plane wave 3
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In contrast to isotropic media,

D and H are | k But E is not perpendicular to k

S=ExHisnot Lk S is not || to k

—

Clearly, S is coplanar with E, 5, k

Angle between S and k same as angle between D and E

. . B - W
Define dimensionless vector 1 = k = —
C

n
Magnitude of n in anisotropic medium depends on direction,

while in isotropic medium, n = /€, depends only on frequency.
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Exﬁzwuoﬁigﬁxﬁzwuoﬁ
c
~ixE=, "H
€0
S S S 1 -
—kxH=wD=—nxH= D
v €00
— — — — 60 —
S=ExH = FEx, — |[nxE]
Ho
= [ |iE? - B B)
Ho

Unlike the isotropic case now 71 . I/ does not vanish since in anisotropic medium

n no longer is perpendicular to E.
5



(& tifr

— ]_ — — —
_Ax H = D, #AxE=,/BH
V€0 o €0 e
— 1 —
= —N X G—O(ﬁ x ) = D
1o v/ €010
L D
- [ﬁ(ﬁ o) Enﬂ - =
€0
1 th eqn, n’E; — nnpE) = €. sum over repeated index

For E; to be nontrivial, we have to demand

In?9i, — ning — €] =0



. [ J
( tifr
Let z,y,z be the principal axes of the tensor €], with diagonal elements €,
€ ., €

Yy’ “zz
>  Then, \n25ik —nng — €| =0
n®—n2 —e€" —Ng Ny — TNy,
—Ng Ny n? — nz — €yy —NyN, =0
2 2
T n?E; — nznkyEk = e?kEk c =F
°E npEy =€, F
N Ly — NNl — €L
n’E, — Ng(Ne By +ny By +n.E,) =€, E, + €, By + e F,

2 2 r _
= (n°—ng —e ) Er —ngn, B, —nyn.E, =0 7
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Henceforth drop subscipt 'r’ n® =n2+n>+n’

Determinant,

2 2 2 2 2 2 2 _

Referred to as Fresnel eqns

One of the fundamental eqns of crystal optics.

— (Gives the magnitude of the wave vector as a function of direction

= For a given direction— a quadratic eqn of n? with real coefficients

= two different magnitudes for each direction
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Wave vector surface , , _ . Ow
direction of light rays- group velocity —

Ok

Isotropic media k£ and % same

anisotropic medium— not so

Ow

direction — — §

Ok

S— ray vector
magnitude n.s =1
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Direct calculation § H = 0 g FE =0

Since s | E, H

T

E‘@l

ixE=,/"H, —fix H = D
€0 \/m
D; = €1 (w)Ey B; = pr(w)Hy,

Remains valid under replacement

(Same as ® )

10
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Apply to Fresnel eqn.,

n2(emn§ + eyyni + ezzni) — emni(eyy +€,,)

2 2 _
—eyyny(em + €22) — €225 (€xz + €y ) + €x2€yy€sz =0

1 1 1 1 1 1
5 (—si + —8?3 =+ —33) — —si (— + —>
Cxx Eyy €2z Cxx eyy €2z

1 ,/1 1 1 ,/1 1 1
—— s —+— - —sI—+— )+ =0
Cyy Crx €22 €2z Crx Cyy Crx€yy€zz

2 2 2 2 2
R 2 2 _
Ray surface =8y (€ar F €pz) — So(€za T €yy) 1 =10
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Uniaxial crystal

cubic € = €0,k
uniaxial €;, = €,y = €1

€Czz = €|
Put in Fresnal eqn

n(eL (n2 + ni) +en2) —ein.(e +eL)— ean(e” +e1)—ena(2el) + €€
n?(el (n + nz) +eni) — ere(ns + ni +n2) — (e1n? + ean +en: —ele)) el

= (e1(n? —I—ni) +en: —ere)n’ — (eL(ng + ni) +ens —ele)) el

= (n2 — eL)(eL(ni + ni) + ean —e1€) =0
12
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Quadratic eqn gives two roots

(i) n? = €, (sphere)

n2  n2+n?

(ii) —= + Y =1 (ellipsoid of rotation)
€ 6”
T'wo cases: e, > ¢ —ve crystal €1 < € +ve crystal

(Sn)“2

— optics axis ——

13
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Magnitude of the wave vector

(a) n® =€,  ordinary wave

1 sin?  cos? 0
(b) — = + Extraordinary waves
n 6” €

60— angle between optic axis and k

i ) - w
Direction of wave vector k = — ni
c

Direction of ray vector not the same as direction of wave vector

But ray vector coplanar with wave vector and optic axis

14
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Let 6/ — angle between s and optic axis

€
tan@ = -= tan 6
€]

: . €1
Same only when no anisotropic — =1
€
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In presence of a constant magnetic field H the tensor €., (we drop r) is no longer
symmetric

—

€ix(H) = €pi(— H ) (from generalized principle of symmetry)

No absorption condition requires €;; should be Hermitian, but not that it should
be real.

*
Cik = €y

— —

Let ¢;x(H) =€, .(H) + i€ (H)
Real part must be sym €, =€,
Im part must be antisym €, = —¢}.

16
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ele(H) = €;(H) = ¢, (—H)

— — —

ein(H) = —€;(H) = —€j(—H)

In a non absorbing medium €, is an even function of H and ¢ . is an odd
function of H

Inverse 67;; has the same symmetry properties

Let €, k = Nik = mk + mzk

Any antisym tensor of rank 2 is axial vector

Let the vector corresponding to tensor 7., be G

!/
N = €ik1Gl

In component form, 7, =G, N, = Gy My, = Ga

17
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The relation between E and D

_ 1 .
Ei = Eilek = G—(U;k + Zeilel)Dk
0
| o= =
ki = 6—(772'ka +i[D x G|;)
0

A medium with such relationship between E and D is called gyrotropic medium.

Consider now a propagation of a wave in gyrotropic media with no restriction
on the magnitude of magnetic fields

1
V€010

Substitutew/@ﬁ:ﬁxﬁin—ﬁxﬁ: D
€0

E)

Sl

D = ¢[n*E — ii( .
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Take propagation along lg(ﬁ . Transverse component of 5,

)
D, = e€un’E,

1
= F, = —(eag)_ng
€0

= D, — nz(éaﬁ)_lDﬁ =0

1 — —1
or (ﬁéaﬁ — (Eag) 1) D@ =0 Nap < Eaﬁ

1
(77&5 — p&)ﬁ) DB =0= (naﬁ + 277@5 — _5046) D@ =0

indices «, B are x and y. Propagation along z
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z and y are chosen along principal axes of n/, 8

Corresponding principal values

1 1
- and 5
101 No2
- 1! ]‘
Then, <77a5 —+ Znaﬁ o E(SCXﬁ) Dﬁ =0

20
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Vanishing determinant gives,

1 1 1 1
(T__2><T__2):Gz
Moy T oz T

Roots give two values of n for a given direction 1,

! 2 )
D, i Ji1/1 1 1/1 1
N R B e (2
a: G, | 2 (n?n n(2)2> i \/4 <”c2)1 ”(2)2> EN

Purely imaginary value — waves are elliptically polarized

Principal axes are r and y axes )
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The product of the two values = 1 real

Thus in one wave is D,, = ipD,  p real - ratio of axes of polarization ellipse

D,
Then the other, D, = —1—

0

= Polarization ellipse of the two waves have the same axis ratio but are 90°
apart

Direction of rotation opposite

22
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G; and 7., — functions of magnetic field

G is zero in absence of magnetic field. Thus for weak field,
G; = firHp fir- tensor of rank 2

fir. — In general not symmetrical

Components of antisymmetric tensor n;, must be odd functions of H

For arbitrary direction of propagation- magnetic field has very little effect.
Effects are larger near optic axes

Two values of n are equal in absence of the field when wave vector is along one

of these axes
23
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Magneto optic effect in isotropic bodies and in cubic crystals- interesting
i = € Ok

e- dielectric constant of isotropic material in absence of H

E < D relation I — i (iﬁ + iD x é)

€r

24
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= fH f - scalar constant

1 1
Hence, — = -+ G, + —

n ng

'To same accuracy n?F = ng L ngG =Ny + 9=
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Since z axis is in n direction,

2
== L ; né
n S —
( 2n0 g> ’

= Wave vector surface — two spheres of radius ng

with separated centers by i2i from origin in the direction of g or G
o

Different polarization correspond to each of the two waves,

D, = FiD, (RCP and LCP)

Two circularly polarized waves have different wave vector magnitudes

W
ki = —ny
c
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Linear polarization — sum of RCP + LCP

1 1
D, = §[exp(ik+z) + exp(ik_z)] D, = 5
k k_ ki —k_
Introduce k = — il , K= T
2 2
1 tkz [ _ikz —iKZ 1kz
Da::§€ [e + e }:e COS KZ

1. . . . . .
Dy _ §Zezkz [_ezmz +oe zmz} _ 6zl<:z Sin K2

After exiting from the slab,

—2 = tan k[ = tan » Real

i(— exp(iky 2) + exp(ik—z2))]
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Since the ratio is real, wave remains linearly polarized.
Direction of polarization changes

= Faraday’s effect

Angle through which plane of polarization is rotated ~ path traversed

W
Angle / unit length in the direction of the wave vector is (2 J ) cos 6
CT

60— angle between n and g

T —
0 = 5 — one needs to include quadratic in H terms

= Cotton-Mouton effect
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