





# Exploring the route from leaky Berreman modes to bound states in continuum

Subhasish Dutta Gupta

University of Hyderabad, TIFR Hyderabad, IISER, Kolkata

26-09-2021

With Ghanasyam Remesh, Pravin Vaity and V. G. Achanta

#### Bound states to BIC

Bound States: Usually frequency outside the continuum  $\Rightarrow$  no path to radiate away

Ex: Bound states of electron : -ve energy. Continuum : +ve energy.

BICs are exceptions to this! Bound even when energy inside the continuum .



Hsu et. al., Nature Rev. Mater 1 (2016) 16048

#### The first BIC proposed: via potential engineering

Choose  $\psi$  and E, find V

$$-\frac{1}{2}\nabla^2\psi + V\psi = E\psi \rightarrow V = E + \frac{\nabla^2\psi}{2\psi} \qquad E > 0, \ V \rightarrow 0 \text{ at } r \rightarrow \infty$$
$$V = ?$$

Example: Let 
$$\psi(\mathbf{r}) = f(r) \frac{\sin(kr)}{kr}$$
  $(\psi(\mathbf{r}) \to 0 \text{ ar } r \to \infty, \text{ hence} \text{ bound })$   
 $E = \frac{k^2}{2} > 0, \text{ hence in the continuum}$   
where  $f(r) = [A^2 + (2kr - \sin(2kr))^2]^{-1}$   
Soln:  $V(r) = -\frac{64k^2A^2\sin^4kr}{(A^2 + (2kr - \sin 2kr)^2)^2} + \frac{48k^2\sin^4kr - 8k^2(2kr - \sin 2kr)\sin 2kr}{A^2 + (2kr - \sin 2kr)^2}$ 

#### The first BIC proposed: via potential engineering



J. von Neuman et. al., Physikalische Zeitschrift 30 (1929) 467–470

#### Via symmetry mismatch

An 1D array of coupled optical waveguides: forms a continuum of modes.

Two waveguides placed above and below the array: Creates both a symmetric and an antisymmetric mode, embedded into the continuum.

The sym. mode can couple with the continuous energy band, hence leaks energy from waveguide pair to array.

The antisym. mode is decoupled from the continuous energy band, hence forming a bound state (energy cannot leak) embedded into a continuous spectrum of energy (formed by the array).



Fields bound inside the waveguide pair

#### Via separability

Consider  $H = H_x(x) + H_y(y)$ 

We can consider the problem as 2 separate 1D Hamiltonian:

$$H_{x,y}\psi_{x,y}^{n} = E_{x,y}^{n}\psi_{x,y}^{n}$$
  
$$\psi_{tot} = \psi_{x}(x)\psi_{y}(y), \quad E_{tot} = E_{x} + E_{y}$$

Let  $H_x$ : infinite well,  $H_y$ : finite well of depth  $V_0$ ; length a.

$$H_x \quad \begin{cases} E_x = \frac{h^2 n^2 \pi^2}{2mb^2}: \text{ all states bound} \\ \text{Ground state energy } E_g = \frac{h^2 \pi^2}{2mb^2} \end{cases} \quad H_y \quad \begin{cases} E_y < -V_0: \text{ No solutions} \\ E_y \in [-V_0, 0]: \text{ Bound states} \\ E_y > 0: \text{ Continuum of states} \end{cases}$$

 $\Rightarrow$  Continuum limit for tot. energy,  $E_c = E_g + 0 = E_g$ 

Hence, a bound state in  $H_y$  with  $E_y \in [-V_0, 0]$  and an excited state in  $H_x$  could have a total energy,  $E_{tot} = E_x + E_y > E_c \Rightarrow$  inside the continuum.

Yet both  $\psi_x(x)$  and  $\psi_y(y)$  remains bound!

Robnik, Journal of Physics A: Mathematical and General 19 (1986) 3845-3848

#### Fabry–Pérot BICs



#### Math behind Fabry–Pérot BICs



 $\psi = kd - propagation phase shift between two resonators transverse wavenumber$ 

$$\omega_{\pm} = \omega_0 \pm \kappa - i\gamma(1 \pm e^{i\psi})$$
Avoided crossing

When  $\psi = n\pi$ : No linewidth (BIC) and twice the linewidth

#### Friedrich–Wintgen BICs

When the two resonances are not separated, d = 0.

 $\Rightarrow$  Two resonances in the same structure can interfere to form a BIC!

For two general resonances, 
$$H = \begin{pmatrix} \omega_1 & \kappa \\ \kappa & \omega_2 \end{pmatrix} - i \begin{pmatrix} \gamma_1 & \sqrt{\gamma_1 \gamma_2} \\ \sqrt{\gamma_1 \gamma_2} & \gamma_2 \end{pmatrix}$$
  
 $\kappa(\gamma_1 - \gamma_2) = \sqrt{(\gamma_1 \gamma_2)}(\omega_1 - \omega_2)$   
BIC and leaky mode

Friedrich and Wintgen.

Continuous evolution of parameters causes destructive interference between two resonances: avoided crossing.

One of them turn into a BIC and the other into a leaky mode.

Friedrich et. al., Phys. Rev. A 32 (1985) 3231-3242

#### **BIC** in photonic crystals



Li et. al., Scientific Reports (2016) 26988

#### **BIC** in metallic bilayers

Use  $L_2$  dependence to control angle of BIC

a  $L_2/L_1 = 36$ 1.02 0.2 0.3 1.01  $\omega/\omega_p$ 0.4 0.5 1.00 Metal 0.6 1 2 0.7 0.99 -0.8 0.9 0.98 0.2 0.3 0.7 0.0 0.1 0.4 0.5 0.6 8 out  $\theta$ (rad)

Drude Model:  $\epsilon = 1 - \frac{\omega^2}{\omega_p^2} \Rightarrow \text{Perfect reflector at } \omega_p$ Li et. al., *Scientific Reports* (2016) 26988

BIC (Position controlled by  $L_2$ )

#### Berreman modes



FIG. 2. Computed reflectance of *s*-polarized and *p*-polarized radiation by a LiF film 0.35  $\mu$  thick deposited upon silver; radiation incident at 30 deg.

LiF film on Ag substrate

#### Berreman and ENZ modes



 $\Rightarrow$  Air:SiO<sub>2</sub>- surface phonon polariton modes

#### Dispersion relation for SiO<sub>2</sub> on gold substrate



#### Berreman modes: Field enhancement



#### Berreman modes: Nonlinear applications



Passler, ACS Photonics 6 (2019) m SHG~due~to~SiC~substrate7

#### Permittivity of SiO<sub>2</sub>



SDG, Optics Communications 498 (2021) 127223

### **Dispersion relations**

ſ

$$D_{sym}(k_x, \omega) = m_{21} + m_{22}p_{tz} = 0$$

$$D_{antisym}(k_x, \omega) = m_{11} + m_{12}p_{tz} = 0$$

$$p_{jz} = k_{jz}/k_0\epsilon_{rj} \quad k_{jz} = \pm \sqrt{\epsilon_{rj}k_0^2 - k_x^2} \qquad k_x = k_0 \sin \theta$$

$$m_{ij}: \text{ elements of } M_T = M_0(d_0/2)M_1(d_1)$$
Angle of incidence
$$M_j: \text{ characteristic matrix}$$
of the *j*th layer.
$$M_j = \begin{pmatrix} \cos(k_{jz}d_j) & -(i/p_{jz})\sin(k_{jz}d_j) \\ -ip_{jz}\sin(k_{jz}d_j) & \cos(k_{jz}d_j) \end{pmatrix}.$$

#### Coupled Berreman modes: evanescent coupling



## Coupled Berreman modes: evanescent coupling (cond.)



GR, PV, VGA, SDG, Optics Communications 498 (2021) 127223

#### Coupled Berreman modes: via propagation



#### Fields at and near the BIC



GR, PV, VGA, SDG, Optics Communications 498 (2021) 127223

#### **Realistic scenario**



Note: Crossing in real parts  $\Rightarrow$  Repulsion of imag. parts Highest Q factor  $\sim 17$ 

GR, PV, VGA, SDG, Optics Communications 498 (2021) 127223

#### 2<sup>nd</sup> order BICs

Double the length of air layer

 $\Rightarrow$  can fit two half-waves inside

 $\Rightarrow$  Two BICs



GR, PV, VGA, SDG, Optics Communications 498 (2021) 127223

#### Fields at and near 1<sup>st</sup> and 2<sup>nd</sup> order BICs



#### Mathematical origin of higher order BICs

$$H = \begin{pmatrix} \omega_0 & \kappa \\ \kappa & \omega_0 \end{pmatrix} - i\gamma \begin{pmatrix} 1 & e^{i\psi} \\ e^{i\psi} & 1 \end{pmatrix}$$
 radiation rate of individual resonances coupling constant

#### Analytical solution for the dispersion relation

At ENZ: 
$$\epsilon_{SiO_2} = 0$$
  
 $\omega = \omega_L$ 
  
Sym. mode: Dispersion relation
  
 $-i\frac{p_{0z}}{p_{1z}}\cos(k_{1z}d_1)\sin\left(\frac{k_zd_0}{2}\right) - i\sin(k_{1z}d_1)\cos\left(\frac{k_zd_0}{2}\right)$   
 $+\frac{p_{0z}}{p_{1z}}\cos(k_{1z}d_1)\cos\left(\frac{k_zd_0}{2}\right) - \frac{p_{0z}^2}{p_{1z}^2}\sin(k_{1z}d_1)\sin\left(\frac{k_zd_0}{2}\right) = 0$   
 $\lim \epsilon_{SiO_2} \to 0, \ \frac{1}{p_{1z}} = \frac{\epsilon_{SiO_2}}{i\sin\theta} \to 0$ 
  
 $\Rightarrow k_zd_0 = k_0d_0\cos\theta = \pi$ 

Similarly, for Antisym. mode:  $k_z d_0 = k_0 d_0 \cos \theta = 2\pi$ 

#### Conclusions

- We have presented a brief survey of BICs in various different physical situations.
- We have summarized some of the important results on Berreman modes and its applications.
- We looked at the properties of coupled Berreman modes, via both evanescent and propagating waves.
- We show how the BIC emerges in the system from these leaky modes.

G. Remesh, P. Vaity, V. G. Achanta and S. Dutta Gupta, "Exploring the route from leaky Berreman modes to bound states in continuum," vol. 498, p. 127223