
Advanced Magnetic Resonance HS 2025

Solution Problem Set 1: PCIV Recapitulation

Problem 1: General Repetition Questions

1. Going into an interaction (rotating) frame with ωrf = ω0 removes the Zeeman inter-
action, which is big but rather uninteresting since it is the same for all nuclei with the
same gyromagnetic ratio. The high-field approximation states that when the mag-
netic field is high enough1, we can neglect all terms which become time-dependent
when switching to the interaction frame, because they rotate fast enough such that
they get averaged out. This leads to the second advantage: performing the inter-
action frame transformation, one loses the time dependence of the radio-frequency
field, which significantly simplifies the theoretical treatment.

The Hamiltonian of a homonuclear J-coupled 2 spin system in the lab frame is given
by the Zeeman term ĤZ , the chemical shift Hamiltonian ĤCS and the J-coupling:

Ĥ = ĤZ + ĤCS + ĤJ

= ω0(Î1z + Î2z)− ω0(σ
(1)
iso · Î1z + σ

(2)
iso · Î2z) + 2πJ(

⃗̂
I1 · ⃗̂I2) (1)

To obtain the rotating frame operator, we perform the rotation: Ĥ ′ = R̂(t)ĤR̂(t)−1

with the rotation operator R̂(t) = eiĤ0t = ei
∑

l ωrfÎlzt. During this transformation,
the Îlz operators do not get rotated, since they point along the z axis, which corre-

sponds to the rotation axis. The scalar product (
⃗̂
I1 · ⃗̂I2) remains invariant under this

transformation, since scalars are independent of the coordinate system (see AMR
lecture notes chapter 3). We are therefore left with:

Ĥ ′ = Ω1Î1z + Ω2Î2z + 2πJ(
⃗̂
I1 · ⃗̂I2), (2)

where Ω1,Ω2 are the rotating frame frequencies (Ωi = (1− σ
(i)
iso)ω0 −ωrf), which can

be interpreted as the chemical shifts of the nuclei (in angular frequencies).
In the heteronuclear case, under the high-field approximation, we loose the ÎxŜx, ÎyŜy

terms, since the x and y components of both spins start rotating with different fre-
quencies and can be neglected under the secular approximation. We are therefore
left with:

Ĥ ′ = 2πJÎzŜz. (3)

2. The dipolar interaction can be rewritten in the laboratory frame using the dipolar
alphabet as:

ĤD =
µ0

4π

γ1γ2ℏ
r312

[Â+ B̂ + Ĉ + D̂ + Ê + F̂ ]. (4)

1Later in the lecture we will understand what ‘’high enough” means.



Transforming into the rotating frame Îiz terms, remain time-independent (secular).
Î+, Î− become time dependent because they are constructed from Îx, Îy operators.
Under the high-field approximation we can neglect such terms in the rotating frame.
Inspecting the definitions of Â, B̂, Ĉ, ... one finds that Â contains only Îiz operators,
hence it is secular and can’t be neglected. Ĉ, D̂, Ê, F̂ all contain either raising or
lowering operators. Under the transformation they rotate either with ωrf or 2ωrf and
can be ignored. The term B̂ is special since it consists of so-called flip-flop operators
(Î+i Î

−
j ). In the homonuclear case the raising and the lowering operator rotate with

opposite frequency, the time dependence therefore cancels out and B̂ stays secular
in the rotating frame. In the heteronuclear case, the rotation frequencies of the two
nuclei are different, hence B̂ keeps a time-dependence in the rotating frame and will
be omitted under the high-field approximation.

3. A realistic sample of magnetically equivalent spins-1/2 like protons in a tube of
water contains about ∼ 1022 spins. The protons can be in a |α⟩ or a |β⟩ state but
the majority is in a superposition state. When describing macroscopic quantities like
the magnetization it is possible to treat the wavefunction of each spin individually
and then add the results, but due to the high number of spins in the ensemble this is
rather impractical. The density operator describes the quantum state of the entire
ensemble, without the need of referring to the individual spin states.

4. The Liouville-von-Neumann equation describes the time evolution of the density
operator ρ̂(t) of the system:

dρ̂(t)

dt
= − i

ℏ
[Ĥ, ρ̂(t)]. (5)

An example for a time-dependent Hamiltonian is the rf Hamiltonian in the lab frame
(Ĥrf =

∑
i γiÎixB⃗1(t)), with B1(t) = B1(cos[(ωrft + φ(t))]), linear polarization in x

direction).

Problem 2: Dipolar Interaction in Water Moleclues

1. The spin part of the dipolar Hamiltonian in matrix representation is given by(
2Î1z Î2z −

1

2

(
Î+1 Î

−
2 + Î−1 Î

+
2

))
=

2 · 1
2

(
1 0
0 −1

)
⊗ 1

2

(
1 0
0 −1

)
− 1

2

((
0 1
0 0

)
⊗
(
0 0
1 0

)
+

(
0 0
1 0

)
⊗
(
0 1
0 0

))

=
1

2


1 0 0 0
0 −1 −1 0
0 −1 −1 0
0 0 0 1

 (6)

2. This last matrix is already block-diagonal and we can directly extract the eigenvalues
λ1 = 1/2, λ4 = 1/2. Now we only have to diagonalize the central block:∣∣∣∣−1

2
− λ −1

2

−1
2

−1
2
− λ

∣∣∣∣ !
= 0 (7)
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(
−1

2
− λ

)2

− 1

4
= 0 (8)

λ2 + λ+
1

4
− 1

4
= 0 (9)

λ(λ+ 1) = 0 (10)

λ = 0,−1 (11)

The four eigenvalues are therefore λ1 = 1/2, λ2 = −1, λ3 = 0, λ4 = 1/2.

As stated in hint 2 of the exercise sheet the eigenvectors corresponding to these
eigenvalues are: |αα⟩ , 1√

2
(|αβ⟩+ |βα⟩ , 1√

2
(|αβ⟩ − |βα⟩), |ββ⟩. The 0-quantum state

1
2
(|αβ⟩−|βα⟩) cannot take part in any transitions as mentioned by hint 1. Therefore,

only transitions between the eigenvalues 1/2 and -1 are allowed. We will observe
two lines with frequency:

ω12 = 1/2 + 1 = +3/2, ω24 = −1− 1/2 = −3/2

The absolute splitting of the two lines is then given by: |∆ω| = |ω24 − ω12| = 3.
At this point we have to remember that up to now, we have only treated and
diagonalized the spin part of the Hamiltonian. The spatial part of the Hamiltonian
comes in as an additional multiplicative factor (as can be seen from the formula for
the dipolar Hamiltonian given in the exercise sheet). We can see that the actual
splitting is proportional to the dipolar coupling constant, or even more precisely
|∆ω| = 3d1−3 cos2 θ

2
(note that the orientation dependence also influences the size of

the line splitting, this will be discussed in the next part).
The dipolar coupling parameter d is given (in Hz) by

d = − 1

2π

µ0γ
2
Hℏ

4πr3
(12)

with the given geometry and the proton-proton distance of 1.51 Å this gives a cou-
pling strength of 34.7 kHz.

Rmk: The eigenvectors can be calculated by solving the systems of equations:

1

2

(
−1 −1
−1 −1

)
= −1

(
u
v

)
(13)

−1

2
(u+ v) = −u (14)

1

2
u− 1

2
v = 0 ⇒ u = v (15)

EV2 =

(
1√
2
1√
2

)
=

1

2
(|αβ⟩+ |βα⟩). (16)

1

2

(
−1 −1
−1 −1

)
= 0

(
u
v

)
(17)

−u− v = 0 ⇒ u = −v (18)
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EV3 =

(
1√
2

− 1√
2

)
=

1√
2
|αβ⟩ − |βα⟩ (19)

3. Following the instructions on the exercise sheet, we gather the eigenvectors in a
transformation matrix Û :

Û =


1 0 0 0
0 1√

2
1√
2

0

0 1√
2

− 1√
2

0

0 0 0 1

 (20)

The inverse of this matrix is in this case simple: Û−1 = Û . The transformation
product Û F̂xÛ

−1 can be written out as:

F̂ ′
x =


1 0 0 0
0 1√

2
1√
2

0

0 1√
2

− 1√
2

0

0 0 0 1

 ·


0 1

2
1
2

0
1
2

0 0 1
2

1
2

0 0 1
2

0 1
2

1
2

0

 ·


1 0 0 0
0 1√

2
1√
2

0

0 1√
2

− 1√
2

0

0 0 0 1

 (21)

By stepwise matrix multiplication we obtain:

F̂ ′
x =


0 1

2
1
2

0
1√
2

0 0 1√
2

0 0 0 0
0 1

2
1
2

0

 ·


1 0 0 0
0 1√

2
1√
2

0

0 1√
2

− 1√
2

0

0 0 0 1

 =


0 1√

2
0 0

1√
2

0 0 1√
2

0 0 0 0
0 1√

2
0 0

 . (22)

Since the off-diagonal elements of the detection operator in the eigenbasis of the
Hamiltonian can be related to the spectral intensities (for more details see chapter
5.6 of the PCIV script), we see what we wanted to prove. The column, encoding
possible transitions from and to the zero quantum state 1

2
(|αβ⟩ − |βα⟩) has all el-

ements equal to 0, hence no transition is allowed. From this matrix representation
we also see that we have 2 spectral lines with equal intensities. More precisely the
intensities are given by 1/2 and are calculated by computing the product between
the detection and the σ̂0 (starting operator) in the eigenbasis of the Hamiltonian.

The allowed transitions could also have been extracted from a symmetry argument
in this case. Since we assume that both 1H spins have the same chemical shift,
the Hamiltonian has a permutation symmetry under permutation of the two spins.
This implies that the eigenfunctions can only be symmetric or anti-symmetric under
an exchange of the two spins2. Allowed transitions can only occur between states
with the same symmetry under permutation of the two spins (|α⟩ → |β⟩), which
corresponds indeed to the transitions between states 1 → 2, 2 → 4. Note that the
transition 1 → 4 is not allowed because the total magnetic quantum number M of
the state does not change by ±1.

2Being more formal: they can only transform according to the irreducible representation (symmetric
and anti-symmetric) of the permutation group.
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4. The dipolar Hamiltonian is given by

Ĥ =
µ0ℏγ1γ2
4πr31,2

1− 3 cos2Θ

2

(
2Î1z Î2z −

1

2

(
Î+1 Î

−
2 + Î−1 Î

+
2

))
(23)

The orientation dependence is described by the term (1− 3 cos2Θ) /2, which reaches
its extrema, -1 and 0.5, for Θ = 0+mπ and Θ = π/2+mπ (m ϵ Z), respectively. The
splittings are given by the differences between the Eigenvalues of Ĥ and therefore
only the absolute value of (1− 3 cos2Θ) /2 is relevant. The maximum splitting is
observed for Θ = 0+mπ, i.e. for the 1H-1H vector parallel to the external magnetic
field B⃗0 . The dipolar spectrum of H2O with r⃗HH||B⃗0 , i.e. with the maximal dipolar
splitting, contains two resonance lines separated by (in Hz)

∆ν = 2 · 3
2

∣∣∣∣−µ0γ
2
Hℏ

4πr3

∣∣∣∣ = 104 kHz (24)

5. The powder spectrum is the sum of the spectra of all different orientations scaled
with the respective probability to find that orientation. For a purely dipolar Hamil-
tonian between two spins, this results in a characteristic Pake pattern. The top of
Figure 1 shows such a Pake pattern in the homonuclear case. Note that the splitting
between the two extrema (feet) corresponds exactly to 3d, as we have just calcu-
lated. Indeed the parallel orientation with respect to the magnetic field is the most
unlikely, while the perpendicular orientation is the most likely. This is the reason
why we can identify the two maxima in the Pake pattern with the perpendicular
orientation. In a simple analogy, the likelihood of an orientation can be understood
by considering the earth with the z-axis going through the two poles. There are
only two poles (θ = 0 orientation), while most points on the sphere can be found
at an opening angle of θ = π/2 (on the equator). In summary the probability of an
orientation is proportional to sin θ (where θ denotes the opening angle with respect
to the external magnetic field).

6. In the heteronuclear case the Î+1 Î
−
2 + Î−1 Î

+
2 term can be neglected in the high-field

approximation (for more details see answer to Problem 1.2). The Hamiltionian of
the heteronuclear dipolar coupling is already diagonal and the allowed transitions
are between the Eigenvalues 1/2 and -1/2. The maximum separation between the
two resonance lines is (in Hz)

∆ν = 2 ·
∣∣∣∣−µ0γHγTℏ

4πr3

∣∣∣∣ = 74 kHz (25)

A comparison of the homonuclear and the heteronuclear powder spectrum can be
seen in Figure 1.
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Figure 1: Powder spectrum of a homonuclear (A) and heteronuclear (B) dipolar-coupled
spin pair (Pake doublet). The frequency scale is in units of the dipolar coupling constant
dI1I2 .

7. The molecular tumbling averages out the anisotropy (orientation dependence) of
the NMR interactions in the liquid state. Since the dipolar coupling is a purely
anisotropic interaction with no isotropic part, the pake pattern collapses to a single
line positioned at the water chemical shift (ignoring J-coupling effects).

Problem 3: In-Phase/Anti-Phase

Note: For this problem it is important to recall the calculations in product operator for-
malism. For example:

Îz
Îy(β)−−−→

{
cos (β)Îz = cos (β)Îz

i sin (β)
[
Îz, Îy

]
= sin (β)Îx

(26)

1. The evolution of the state during detection is controlled by the Hamiltonian Ĥ =
Ω1Î1z + Ω2Î2z + 2πJ12Î1z Î2z. To calculate the resulting spectrum we have to work
out the effect of the three terms in turn. (Which we can do if all terms of the
Hamiltonian commute!)

Î1x
Î2z(Ω2t)−−−−→ Î1x

Î1z(Ω1t)−−−−→


cos(Ω1t)Î1x

2Î1z Î2z(πJ12t)−−−−−−−−→

{
cos(πJ12t) cos(Ω1t)Î1x

sin(πJ12t) cos(Ω1t)2Î1y Î2z

sin(Ω1t)Î1y
2Î1z Î2z(πJ12t)−−−−−−−−→

{
cos(πJ12t) sin(Ω1t)Î1y

− sin(πJ12t) sin(Ω1t)2Î1xÎ2z
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First we rotate around z due to the offset Ω2 of spin 2, which does no affect our spin
1 term. Then we can rotate around z due to the offset Ω1 of spin 1 and finally we
consider the effect of the J-coupling 2πJ12Î1z Î2z. As mentioned in the problem set,
our detection operator is Î+ = Î1x + iÎ1y, hence only resulting terms containing Î1x
and Î1y are of interest. Since the signal in NMR is represented as complex number
where real and imaginary part correspond to magnetisation in x- and y-direction,
we can construct the signal as follows:

S(t) = cos(πJ12t) cos(Ω1t) + i cos(πJ12t) sin(Ω1t)

= cos(πJ12t)e
iΩ1t

=
1

2
[eiπJ12t + e−iπJ12t]eiΩ1t

=
1

2
[ei(Ω1+πJ12)t + ei(Ω1−πJ12)t] (27)

where first the identity cos(x) + i sin(x) = eix was employed, while in the next step
the definition cos(x) = 1

2
[eix + e−ix] was used.

Therefore, we obtain a signal containing two oscillations with frequencies Ω1 +
πJ12 and Ω1 − πJ12 respectively. Fourier transform of this signal yields a spectrum
consisting of two equally intense peaks at Ω1 + πJ12 and Ω1 − πJ12 is obtained.

2. To arrive at the signal for the anti-phase term 2Î1xÎ2z we first notice that any spin
1 operator does not change the Î2z part. Furthermore, the second rotation due to
the chemical shift of spin 2 is around z and thus does not change Î2z. Therefore, we
can move on to evolution under J-coupling as second step. This gives:

2Î1xÎ2z
Î2z(Ω2t)−−−−→ 2Î1xÎ2z

Î1z(Ω1t)−−−−→


cos(Ω1t)2Î1xÎ2z

2Î1z Î2z(πJ12t)−−−−−−−−→

{
cos(πJ12t) cos(Ω1t)2Î1xÎ2z

sin(πJ12t) cos(Ω1t)Î1y

sin(Ω1t)2Î1y Î2z
2Î1z Î2z(πJ12t)−−−−−−−−→

{
cos(πJ12t) sin(Ω1t)2Î1y Î2z

− sin(πJ12t) sin(Ω1t)Î1x

Applying the same detection operator as in the previous part and using similar
mathematical manipulations we arrive at the signal

S(t) = − sin(πJ12t) sin(Ω1t) + i sin(πJ12t) cos(Ω1t)

= i sin(πJ12t)e
iΩ1t

= i
1

2i
[eiπJ12t − e−iπJ12t]eiΩ1t

=
1

2
[ei(Ω1+πJ12)t − ei(Ω1−πJ12)t], (28)

which is the same as in the previous part with the second term being negative.

3. The resulting spectra from both terms show a doublet at the same frequencies but
in the Î1x case both peaks will be positive, while for the 2Î1xÎ2z case one will be
positive while the other is negative. This is precisely the reason we call them ’In-’
and ’Anti-Phase’.
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4. The limitation of the product operator formalism can be seen by considering a spin
system where not all terms of the Hamiltonian commute.

Ĥ = Ĥ1 + Ĥ2 ,
[
Ĥ1, Ĥ2

]
̸= 0

In this case we cannot split the propagator into a simple product

Û = e−iĤ t = e−i(Ĥ1+Ĥ2)t ̸= e−iĤ1te−iĤ2t = Û1 Û2 =⇒ Û ̸= Û1 Û2

Hence, we cannot evolve the density operator with the different terms of the Hamil-
tonian separately

e−iĤ tρ̂ eiĤ t = e−i(Ĥ1+Ĥ2)tρ̂ ei(Ĥ1+Ĥ2)t ̸= e−iĤ1t e−iĤ2tρ̂ eiĤ2teiĤ1t

=⇒ Û ρ̂ Û † ̸= Û1Û2 ρ̂ Û
†
2 Û

†
1

As a result we can only use the product operator if all terms of the Hamiltonian
commute with each other. A simple example where we cannot use the product
operator formalism is the heteronuclear two-spin system with irradiation on the
I-spin

Ĥ = ω1Îx + ωIS 2 ÎzŜz

since
[
Îx, Îz

]
= −i Îy ̸= 0.
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