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Solution Problem Set 2

Problem 1: Sample Spinning and AHT

1. The time-dependent coefficients ωIS(t), ωI(t) and ωS(t) are a consequence of the
sample rotation. Therefore, they have frequency components at integer multiples n
of the spinning frequency where the integer n can go from -2 to 2. For one of the
three coefficients we can write

ωΛ(t) =
2∑

n=−2

ω
(n)
Λ eωrt.

For the total Hamiltonian this leads to

Ĥ(t) = ωIS(t)2ÎzŜz + ωI(t)Îz + ωS(t)Ŝz (1)

=
2∑

n=−2

ω
(n)
IS eωrt2ÎzŜz +

2∑
n=−2

ω
(n)
I eωrtÎz +

2∑
n=−2

ω
(n)
S eωrtŜz. (2)

2. To calculate the dipolar-coupling Hamiltonian in spherical-tensor notation, we as-
sume the high-field approximation to be valid. This means that we do not need all
tensor elements but only the time-independent part in the rotating frame. There-
fore, the heteronuclear dipolar-coupling Hamiltonian is given by

Ĥ = A
(lab)
2,0 T̂2,0 = A

(lab)
2,0

2√
6
ÎzŜz.

Note that the high-field truncated form of the heteronuclear dipolar coupling con-
tains only the ÎzŜz term and not the zero-quantum terms that are time dependent
with the difference of the Larmor frequencies (secular approximation). Now we have

to calculate the A
(lab)
2,0 term in the laboratory frame by first rotating the spatial part

of the tensor from the PAS to the rotor-fixed frame to the laboratory frame. This
can be implemented by two successive Euler rotations with the angles (α, β, γ) and
(−ωrt,−θr, 0), respectively. The first rotation describes the orientation of the crys-
tallite in the rotor-fixed frame (powder average) while the second one describes the
orientation of the rotor axis and the rotation and introduces the time dependence.
The dipolar-coupling tensor is always axially symmetric, so we have only a single
element (ρ2,0) in the PAS. Therefore, the rotations can be written as

A
(lab)
2,0 =

2∑
n=−2

D2
n,0(−ωrt,−θr, 0)D

2
0,n(α, β, γ)ρ2,0.

The first rotation is basically the powder averaging and we do not gain any insight
by expanding the D2

m′,m(α, β, γ) term except for the fact that we are dealing with



an axially symmetric tensor. This means that we only need to consider one term of
the reduced Wigner elements with m′ = 0.

D2
m′,m(α, β, γ) =

2∑
m′=−2

e−im′αd2m′,m(β)e
−iγm = e−i0αd2m′,m(β)e

−iγm = D2
0,m(0, β, γ)

However, the second rotation is the one that leads to the time dependence and it
needs to be expanded

A
(lab)
2,0 =

2∑
n=−2

eωrtd2n,0(−θr)D
2
0,n(0, β, γ)ρ2,0.

This gives us now exactly the Fourier series that we had in Eq. (2) and combining
this with the spin part leads to

Ĥ(t) =
1√
6

( 2∑
n=−2

eωrtd2n,0(−θr)D
2
0,n(0, β, γ)ρ2,0

)
2ÎzŜz =

2∑
n=−2

ω
(n)
IS eωrt2ÎzŜz. (3)

Comparing the various terms leads directly to the definition of the ω
(n)
IS terms

ω
(n)
IS =

1√
6
d2n,0(−θr)D

2
0,n(0, β, γ)ρ2,0. (4)

3. We can start from Eq. (4) which we can simplify further by setting θr = θm =
arccos(1/

√
3)

d20,0(−θm) = (3 cos2(−θm)− 1)/2 = 0

d2±1,0(−θm) = ∓
√

3/8 sin(−2θm) = ±1/
√
3

d2±2,0(−θm) =
√

3/8 sin2(−θm) = 1/
√
6.

Taking into account ρ2,0 =
√

3/2δ, this allows us now to calculate the Fourier
coefficients

ω
(0)
IS =

1√
6
· 0 · d20,0(β)e−i0γ

√
3

2
δ = 0

ω
(±1)
IS =

1√
6
·
(
± 1√

3

)
·
(
∓
√

3

8
sin(2β)

)
e∓iγ

√
3

2
δ =

−1

4
√
2
sin(2β)e∓iγδ

ω
(±2)
IS =

1√
6
·
(

1√
6

)
·
(√

3

8
sin2(β)

)
e∓2iγ

√
3

2
δ =

1

8
sin(β)2e∓2iγδ.

4. To calculate the average Hamiltonian in first order, we have to integrate the Hamil-
tonian of Eq. (3) over one rotor period

ˆ̄H(1) =
1

τr

∫ τr

0

dtĤ(t) =
1

τr

∫ τr

0

dt
2∑

n=−2

ω
(n)
IS eωrt2ÎzŜz
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For the integral we have

1

τr

∫ τr

0

einωrtdt =
1− ein2π

in2π
=

1−
∑∞

m=0
(in2π)m

m!

in2π
=

∑∞
m=1

(in2π)m

m!

in2π
=

∞∑
m=0

(in2π)m

(m+ 1)!

Therefore it evaluates for n ̸= 0 to zero, and for n = 0 to one.

ˆ̄H(1) =
1

τr

∫ τr

0

dtω
(0)
IS 2ÎzŜz = ω

(0)
IS 2ÎzŜz =

1√
6
d20,0(−θr)D

2
0,0(0, β, γ)ρ2,02ÎzŜz

=
1√
6
d20,0(−θr)d

2
0,0(β)ρ2,02ÎzŜz =

1√
6

(
3 cos2 θr − 1

2

)(
3 cos2 β − 1)

2

)
ρ2,02ÎzŜz.

The scaling of the magnitude of the Hamiltonian depends, therefore, on the angle θr
of the rotation axis with the static magnetic field. Figure 1 shows the dependence
of the reduced-Wigner matrix elements on the angle. We can see that the rotation
about an angle θr scales the second-rank tensor by a factor d20,0(−θr) between +1
and -1/2 and for the magic angle the scaling becomes zero and the dipolar coupling
is, in first-order AHT, averaged out.

Figure 1: The angular dependence of the reduced Wigner rotation matrix elements dl0,0(θr)
shows the differences in scaling by rotation about a single at an angle θr with the direction
of the static magnetic field.
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Problem 2: Interaction-Frame Transformation

1. We have to do an interaction-frame transformation with the radio-frequency part
of the Hamiltonian. It is often convenient to first tilt the coordinate system by 90◦

about the -y axis such that the rf-field is along the z axis of the tilted coordinate
system. This is not really necessary but leads to average Hamiltonians that are
quantized along the z axis in this tilted frame. The propagator for this transforma-
tion is U1 = ei(π/2)Îy leading to a Hamiltonian that is tilted for the I spins and has
the form

Ĥ(t) = −
2∑

n=−2

ω
(n)
IS einωrt2ÎxŜz −

2∑
n=−2

ω
(n)
I einωrtÎx +

2∑
n=−2

ω
(n)
S einωrtŜz + ω1IÎz.

The transformation into the interaction frame is now characterized by U2(t) =

e−iω1ItÎz leading to an interaction-frame Hamiltonian of the form

Ĥ′′(t) = −
2∑

n=−2

ω
(n)
IS einωrt2(Îx cos(ω1It)− Îy sin(ω1It))Ŝz

−
2∑

n=−2

ω
(n)
I einωrt(Îx cos(ω1It)− Îy sin(ω1It))

+
2∑

n=−2

ω
(n)
S einωrtŜz.

Note that this is already the Hamiltonian that is without the transformation Hamil-
tonian. (Ĥ′′(t) = Ĥ′(t)−Ĥ1(t) which is the correction that comes from the Liuoville-
von-Neumann equation in the interaction frame).
This is the interaction-frame Hamiltonian in the tilted rotating frame and we can try
to clean it up a bit and write the trigonometric functions as exponential functions.
This leads then to a Hamiltonian where we can extract the Fourier coefficients of
the Hamiltonian
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Ĥ′′(t) = −
2∑

n=−2

ω
(n)
IS einωrt2

(
Îx
1

2
(eiω1It + e−iω1It)− Îy

1

2i
(eiω1It − e−iω1It)

)
Ŝz

−
2∑

n=−2

ω
(n)
I einωrt

(
Îx
1

2
(eiω1It + e−iω1It)− Îy

1

2i
(eiω1It − e−iω1It)

)
+

2∑
n=−2

ω
(n)
S einωrtŜz

= −
2∑

n=−2

ω
(n)
IS einωrt

(
Î+eiω1It + Î−e−iω1It

)
Ŝz −

2∑
n=−2

1

2
ω
(n)
I einωrt

(
Î+eiω1It + Î−e−iω1It

)
+

2∑
n=−2

ω
(n)
S einωrtŜz

= −
2∑

n=−2

einωrte1·iω1It
(
ω
(n)
IS Î+Ŝz +

1

2
ω
(n)
I Î+

)
−

2∑
n=−2

einωrte−1·iω1It
(
ω
(n)
IS Î−Ŝz +

1

2
ω
(n)
I Î−

)
+

2∑
n=−2

einωrte0·iω1Itω
(n)
S Ŝz

2. The time-dependent Hamiltonian can now be written as a Fourier series with two
basic frequencies as

Ĥ(t) =
2∑

n=−2

1∑
k=−1

Ĥ(n,k)einωrteikω1It

while the Fourier coefficients can be directly extracted out of the last equation in
the previous task and we obtain

Ĥ(n,0) = ω
(n)
S Ŝz

Ĥ(n,±1) = −ω
(n)
IS Î±Ŝz −

1

2
ω
(n)
I Î±

3. We can start with the Hamiltonian from Problem 1 and replace ω1I by ωr and obtain

Ĥ′′(t) = −
2∑

n=−2

einωrteiωrt
(
ω
(n)
IS Î+Ŝz +

1

2
ω
(n)
I Î+

)
−

2∑
n=−2

einωrte−iωrt
(
ω
(n)
IS Î−Ŝz +

1

2
ω
(n)
I Î−

)
+

2∑
n=−2

einωrtω
(n)
S Ŝz

= −
2∑

n=−2

ei(n+1)ωrt
(
ω
(n)
IS Î+Ŝz +

1

2
ω
(n)
I Î+

)
−

2∑
n=−2

ei(n−1)ωrt
(
ω
(n)
IS Î−Ŝz +

1

2
ω
(n)
I Î−

)
+

2∑
n=−2

einωrtω
(n)
S Ŝz
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The first-order average Hamiltonian is given by

ˆ̄H(1) =
1

τr

∫ τr

0

dtĤ′′(t)

which will only be non zero for terms that are time independent. For the first term,
this is given for n = −1, for the second term for n = +1 and for the third term for
n = 0.

ˆ̄H = −
(
ω
(−1)
IS Î+Ŝz +

1

2
ω
(−1)
I Î+

)
−
(
ω
(+1)
IS Î−Ŝz +

1

2
ω
(+1)
I Î−

)
+ ω

(0)
S Ŝz

This is the Hamiltonian at the so-called n = 1 rotary-resonance condition where the
CSA tensor and the heteronuclear dipolar coupling are recoupled.

4. For ω1I = 2ωr we can do exactly the same but replace ω1I by 2ωr which will give

ˆ̄H = −
(
ω
(−2)
IS Î+Ŝz +

1

2
ω
(−2)
I Î+

)
−
(
ω
(+2)
IS Î−Ŝz +

1

2
ω
(+2)
I Î−

)
+ ω

(0)
S Ŝz

This is the Hamiltonian at the so-called n = 2 rotary-resonance condition where the
CSA tensor and the heteronuclear dipolar coupling are recoupled.

5. For 2ω1I = ωr, we replace ωr by 2ω1I which will give only a time-independent
contribution from the third term, leading to:

ˆ̄H = ω
(0)
S Ŝz

This is the so-called HORROR condition where only the Homonuclear dipolar cou-
pling would be recoupled which we did not include in this exercise for simplicity.
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