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Time Line of Solid-State NMR

• NMR in solid paraffin, 1946 (Purcell, Torrey, Pound)

• Magic-angle spinning, 1959 (Andrew, Lowe)

• Lee-Goldburg sequence in spin space, 1965 (Lee, Goldburg)

• WAHUHA sequence (Waugh, Huber, Haeberlen)

• CP concept, 1962 (Hartmann, Hahn)

• Direct observation of dilute spins, 1972 (Pines, Gibby, Waugh)

• Return of the MAS: CPMAS, 1976 (Schaefer, Stejskal)

• High-resolution for Quadrupolar nuclei, 1988, 1995 (Virlet, Llor, 
Samoson, Frydman)

• Efficient heteronuclear dipolar decoupling, 1995 (TPPM, 
SPINAL,……)

• Efficient homonuclear dipolar decoupling, 1999 (PMLG, 
DUMBO,……)

• Biomolecular applications (Oschkinat, Baldus, McDermott, 
Reinstra….)





Matter: NMR Classification

Matter

Gas Liquid Solid

Anisotropic

Ordered Disordered

Crystals Fibrils Glasses Membranes

Isotropic

…..



Solution-State NMR: General Protocol

1.  Isotopically label protein (15N, 13C)

2.  Assign the chemical shifts

3.  Collect restraints

4.  Calculate structure

5.  Refine (repeat)

Kumar, A.; Ernst, R.R.; Wüthrich, K. Biochem. Biophys. Res. Comm. 1980, 95, 1–6.

Williamson, M.P.; Havel, T.F.; Wüthrich, K., J. Mol. Biol. 1985, 182, 295–315.

This has been done over 5,000 times in solution!
(http://www.pdb.org/pdb/statistics/holdings.do)



Many proteins cannot be studied by the traditional structural 

methods (X-ray crystallography or solution NMR)

50 nm

Membrane proteins
Nano/microcrystalline

globular proteins
Fibrils

Solid-State NMR in Structural Biology

Bob Griffin and coworkers, 2016

Aβ42 Fibrils



Solid-state NMR:

• no size limit on samples

• broader resonances

Solution NMR:

• size limitation

• very narrow resonances

Solution NMR 

sample tube Solid-state 

NMR probe

Solution- and Solid-State NMR



Targets for SSNMR: Biology

• Lipid bilayers

• Membranes reconstituted with different additives such as 

cholesterol, drugs or peptides

• Structure analysis of membrane-active peptides, ion 

channels, and receptors

• Amyloid fibrils

• Globular proteins, IDP’s

• ………………



Polymers, Zeolites, Glasses, ………...
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Targets for SSNMR



Reality

Figure courtesy: Matthias Ernst



Nuclear Spin Interactions

Spin Interactions

Chemical shift Spin-spin couplings

Isotropic

chemical shift

Chemical shift

anisotropy, CSA

Scalar, J-

couplings
Dipolar

Heteronuclear Homonuclear

Quadrupolar

Isotropic quad.

shift

1st, 2nd order quad. 

interaction, anisotropic

Electric Magnetic

Spin ½, 1H, 13C…..Spin>½, 23Na, 17O…..

Control these?!



Spin Interactions

External Internal

Zeeman,HZ RF, HRF(t)

CSA,HCS Dipole,HDD Scalar,HJ Quad,HQ

Only the  isotropic parts manifest in solution-state.

Nuclear Spin Interactions



Spin: Some History

• Uhlenbeck and Goudsmit: particles have “spin”, corresponding to rotation 

of a particle spinning around its own axis 

• Spin of the electron is ½: two states +½=“spin-up” and –½=“spin-down”

• This is not fully consistent from what people knew before. However, this is 

appropriate because spin is a quantum notion (we do not know why!)

• Stern-Gerlach experiment

✓ The beam of atoms is deflected by 

inhomogeneous field

✓ Reason: intrinsic magnetic moment 

(spin) of particles

✓ The distribution of the μ-vector is 

not continuous!

✓ Spin is quantised!!!



Spin

• Spin of a particle is its intrinsic angular momentum (as if the particle 

rotates). Honestly, nobody knows where spin comes from.

• Spin is a very fundamental concept, which also affects the symmetry of the 

w.f. of a system of identical particles. Example: Pauli principle.

• Spin is a quantum notion: it vanishes if we tend  ħ → 0!

• Spin operators are introduced in the same way as those for the angular 

momentum:

– Eigen-states are                          ; S2=S(S+1), Sz varies from –S to S.

– Commutation rules are

• An important difference from angular momentum: spin can be half-integer

• Spin operators are (2S+1)*(2S+1) matrices

• For S=1/2 such matrices are related to the Pauli matrices

zyxyxzxzy SiSSSiSSSiSS ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[ ===

zSS,



Spin-½ 

• Spin operator can be written as

• Useful relations of the Pauli matrices:

• Every 2*2 Hermitian matrix is a linear combination of the unity matrix and 
the Pauli matrices
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Spin-1/2 Angular Momentum Operators

• Spin-1/2 nuclei have two Zeeman eigenstates: 

• Angular momentum spin operators in the Zeeman eigenbasis:

• Action of spin operators on the Zeeman eigenstates:

=

=







Spin-1/2 Rotation Operators

• Rotation operators:

• Evaluation of rotation:

• Spin-1/2 rotation operators:



Spin ½: rotations

• Generally, the rotation operator is

• Explicitly, rotations about X,Y,Z

• Euler rotations

transition from any

reference frame to a new 

frame can be achieved 

by three elemental rotations

• We go from an old x,y,z to new x,y,z : zyz-rotation by α,β,γ

• The rotation operator is
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• D.m. of a spin ½ particle:

• The equilibrium density matrix becomes:

β

α

β

α

β

α

β

α

   =−  =+

• Physical meaning of the elements:

Diagonal elements are populations

Off-diagonal elements are coherences ρmn

The trace of the d.m. is equal to 1

• The d.m. is a Hermitian matrix: (N2 – 1) independent parameters

Density Matrix of a Spin-½ Particle



Two or More Spins ½

• The d.m. for two spins can be expressed in terms of product operators

• Each product operator is now a 4*4 matrix; likewise, the Hamiltonian is a 
4*4 matrix and it is expressed via the product operators

• What is the direct product (Kronecker product)?

• Example with 2 spins:

• Other operators can be constructed in the same way. More spins: use direct 
products of spin operators 
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Two Spins-½

• Relation between populations/coherences and d.m. elements

• SQCs are given by Sx, Sy, SxIz, SyIz, Ix, Iy, SzIx, SzIy

• DQCs and ZQCs are given by combinations of SxIx, SyIy, SxIy, SyIx

• We can directly measure only transverse magnetization Sx, Sy, Ix, Iy

• Other operators cannot be observed directly, but they affect the signal

• Coherence order for ρmn:

βα
αβ

ββ

αα

Energy level diagram Density matrix

αα αβ βα ββ

αα pαα SQC SQC DQC

αβ SQC pαβ ZQC SQC

βα SQC ZQC pβα SQC

ββ DQC SQC SQC pββ

)()( nMmMpmn −=



• The S.e. in the bra and ket representations is

• The equation for the d.m. is as follows: 

Liouville-von Neumann equation:

• U is the propagator, time dependent, and unitary

• The solution is simple for a time-independent Hamiltonian:

• For a time-dependent Hamiltonian we solve the equation numerically in 

small time steps or use some tricks
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• What happens to the d.m. (magnetization) when we apply a pulse?

• The w.f. and d.m. after the pulse

• The action of a strong pulse is equivalent to a rotation (we assume that only 

the B1-term is relevant)

• A π/2-pulse generates a coherence, a π-pulse inverts the populations 

RF-Pulses
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• Is there a simple way to calculate the effect of pulses?

• Three cyclically commuting operators:

• Example: 

• The following relation is then true:

• A, B, C are like the axis of our 3D-space; we “rotate” B “around” A by the 

angle θ. Cyclic permutations provide two more relations

• Of course, these rules apply to the spin operators

• RF-pulses give x and y-rotations. Free precession gives a z-rotation by a time-

dependent angle ωt

“Sandwich relationships”

      AiCBBiACCiBA ˆˆ,ˆ,ˆˆ,ˆ,ˆˆ,ˆ ===
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    CBAiBAi ˆsinˆcosˆexpˆˆexp  +=−

   
    BACiACi

ACBiCBi

ˆsinˆcosˆexpˆˆexp

ˆsinˆcosˆexpˆˆexp





+=−

+=−

See M. H. Levitt, “Spin Dynamics”, cyclic commutation



• Different phases

x-pulse, ϕp=0 y-pulse, ϕp=π/2

–x-pulse, ϕp=π –y-pulse, ϕp=2π/2

• Pulse of a general phase is a combination of three rotations

• Rotation about z turns the {x,y} axes; then a pulse is turning the spins around 

the new x; finally, we return to the original frame

• Free precession is just a z-rotation

Phase of the Pulse

y

z
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y

z

x

z
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Representation of x-Pulse

Iz -Iy

Pulse characteristics:

Frequency, wref

Phase, fp

Amplitude, wnut

pnut

Assume p=0

(2)(1)

Flip angle of the pulse: 

• Pulse and density matrix:

• Pulse equalises the populations of the two states

• Pulse converts the population difference into coherences



Some Hamiltonians and Their Representations



Chemical-Shift Anisotropy Hamiltonian

CSA interaction: Indirect magnetic interaction between

the external field and the nuclear spins through the

electron cloud at each nuclear spin site

Information about the local environment of the nuclear

spins



Chemical-Shift Anisotropy Hamiltonian

0

j j

local induced
B B B= +

j is the CSA tensor at the nuclear spin site j
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Induced field is not always

parallel to the Zeeman field



Chemical-Shift Anisotropy Hamiltonian

0
.

j j

induced
B B=

The CS Hamiltonian is, hence, orientation dependent

.
j j

CS j induced
H B= −

0 0 0
( ) ( ) ( )

j j j

j xz jx j yz jy j zz jz
B I B I B I     = −  −  − 

Orientation of the molecule with respect to B0 and 

the position of the nuclear spin within the molecule

Secular approximation:

0
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H B I = − 
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Chemical-Shift Anisotropy Hamiltonian

0
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j j

CS j zz jz
H B I = − 

In liquids, perform an orientational average:

In liquids crystals, the resonance position depends upon the orientation (or

phase transition which can shift the peak):
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Chemical-Shift Anisotropy Tensor



Chemical-Shift Anisotropy Tensor



Principal Axes

There are three special directions in which the induced field is parallel to the 

applied field. These are called the principal axes of the tensor (CSA here), 

denoted as X, Y, and Z. The principal axes are in general different for various 

chemical sites.



Principal Values

When the applied field is along a principal axis, the induced field is proportional 

and parallel to the applied field, multiplied by a number, which is called the 

principal value of the tensor, here, the CSA tensor.
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Principal values of the chemical shift 

tensor for site  j



Assignment of the Principal Axes

We use the following convention to assign the principal axes:

• The Z-axis is the one for which the principal 

value is the furthest from the isotropic shift

•The Y-axis is the one for which the principal value 

is the closest to the isotropic shift

•The X-axis is the other one

Ordering of the principal values:

| | | | | |
ZZ iso iso iso

j j j j j j

XX YY
     −  −  −

Herzfeld and Berger, J. Chem. Phys. 73, 6021, 1980



Chemical-Shift Anisotropy Tensor

aniso
ZZ iso

j j j  = −

1
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Anet, O’Leary, Conc. Magn. Reson. 3, 193, 1991



Chemical-Shift Anisotropy Tensor

0.. BIHCSA −=

Only term in solution-state,

trace of the CSA tensor and

invariant quantity

The orientation-dependent anisotropic

term leading to spectral broadening
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Isotropic chemical shift

Anet, O’Leary, Conc. Magn. Reson. 3, 193, 1991



XX= YY ZZ

XX

XX

ZZ
YY

YY

ZZ

Symmetric CSA tensor

Asymmetric 

CSA tensor

=0

=0.5

=1
2

3

2

Static 13C spectrum of glycine

CSA Powder Line Shapes

=1 kHz



0 0

j j j j

static CS jz
H H H I= + =

0 0
(1 ( ))jj j

zz
B  = − + The chemically-shifted Larmor frequency:

Chemical-Shift Anisotropy Hamiltonian

0
( )

j j

CS j zz jz
H B I = − CSA Hamiltonian upon secular averaging:

In liquids crystals, the resonance position 

depends upon the orientation (or

phase transition which can shift the peak):
( )
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Total Hamiltonian for a site j:

0 0
(1 )jj j

iso
B  = − +In isotropic liquids

the chemically-shifted Larmor frequency:



Tensors and PAS

All these tensors, CSA (later DD tensor), are best treated

in their principal axis system, PAS, where the tensor is

Diagonal.

The interaction tensor of each nuclear spin is treated in its

PAS.

The PAS Z-axis of the CSA tensor corresponds to the long axis of

the elliposid representing the CSA tensor.

The PAS Z-axis of the DD tensor between the nuclear spins i and j

is along the vector joining the nuclear spins i and j (here X and Y

are arbitrary).



A. S. Ulrich, Progress in Nuclear Magnetic Resonance Spectroscopy 6 46 (2005) 1–21

XX

YY

ZZ

Chemical-Shift Anisotropy: Response



CSA Shielding Convention

• We will use the deshielding convention for the chemical shift, 

(as opposed to another convention, shielding convention, ):

aniso
aniso

j j = −



0

lab

CSA zz zH B I = − In the lab frame

ZPAS
YPAS

XPAS



zLAB, B0

The orientation dependence of the CSA tensor

comes on account of a transformation from

PAS to LAB frame, through  and 

The CS frequency then becomes
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Chemical-Shift Anisotropy Tensor
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Chemical-Shift  Frequency: From PAS to Lab

CS contribution to the 

spectral frequency:
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Dipole-Dipole Interaction

DD coupling is the direct magnetic

interaction between two nuclear spins,

orientation dependent, both distance

and angles

PAS system

of a DD tensor



Dipole-Dipole Hamiltonian

0

3 5

. ( . )( . )
[ 3 ]

4 ij

j k j jk k jkjk

DD j k

jk

I I I e I e
H

r r


 


= − −DD Hamiltonian:

0

4 3
. .

DD

j kjk

j jk k

jk

H I D I
r





 
= −In dyadic form:

Dipole-dipole coupling

constant :

0

3
4

j k

jk

jk

b
r

 


= − (In rad/s)

The DD coupling in Hz:
2

jk
b



•Two protons at 3A separation, DD coupling = -4.5 kHz

•Two 13C at 1.5A separation, DD coupling     = -2.2 kHz

•Two 13C at 5A separation, DD coupling        = -61 Hz

•Two 13C at 8 A separation, DD coupling       = -15 Hz :



Dipole-Dipole Hamiltonian

1 3 3 3

3 1 3 3

3 3 1 3

xx xy xz

jk yx yy yz

zx zy zz

e e e

D e e e

e e e

 − − −
 

= − − − 
  − − − 

[ . 3( . )( . )]
jk

DD jk j k j jk k jk
H b I I I e I e= −

DD Hamiltonian:

[ .1. 3 . . ]
jk

DD jk j k j jk k
H b I I I e I= −

. .
DD

jk

jk j jk k
H b I D I=

D is a 3X3 matrix given by: | | 3
uv uv

u D v e = −

for example, , ,u v x y

In general, Djk is given by:



Dipole-Dipole Hamiltonian

1 3 3 3

3 1 3 3

3 3 1 3

xx xy xz

jk yx yy yz

zx zy zz

e e e

D e e e

e e e

 − − −
 

= − − − 
  − − − 

1 0 0

0 1 0

0 0 2

PAS

jk
D

 
 

=  
 − 

Trace = 0, no isotropic part, only the rank 2 anisotropic part present

Since, only the Z-axis needs to be defined for DD tensor

in the PAS, X and Y are arbitrary



Dipolar Alphabet

( )
jk

DD jk
H b A B C D E F= − + + + + +

2

2

2
2

2
2

(3cos 1)

1
( )(3cos 1)

4

3
( )sin cos

2

3
( )sin cos

2

3
( )sin

4

3
( )sin

4

jz jz jk

j k j k jk

i

jz k j kz jk jk

i

jz k j kz jk jk

i

j k jk

i

j k jk

A I S

B I S I S

C I S I S e

D I S I S e

E I S e

F I S e













 

 





+ − − +

−

+ +

− −

−

+ +

− −

= −

= − + −

= − +

= − +

= −

= −

A A

A

B

|>

|>|>

|>

C,D

C,DC,D

C,D

E,F

|>

| |>

|>



Heteronuclear Dipole-Dipole Hamiltonian

jk

Z DD
H H H= +

0 0
( )

I jz S jz jk
I S b A = − + +

The S spectrum coupled to I then will

have two transitions, one having (1-3cos2)

dependence, and the other - (1-3cos2) 

dependence, hence, mirror images. Both of

them have the same isotropic frequency

0S.

21
(3cos 1)

2
jk jk jk

d b = −

High-field, secular approximation:

2
jk jz jz

A d I S=

( ) 2
jk

DD jk jk jz jz
H d I S =

jk

j

k

ejk

B0



Heteronuclear Dipole-Dipole Powder Line Shapes: Pake Doublet

The S spectrum coupled to I then will

have two transitions, one having (1-3cos2)

dependence, and the other - (1-3cos2) 

dependence, hence, mirror images. Both of

them have the same isotropic frequency

0S.

Hz-8000-4000040008000

bjk

bjk=2000 Hz

( ) 2
jk

DD jk jk jz jz
H d I S =

jk

j

k

ejk

B0



Homonuclear Dipole-Dipole Hamiltonian

jk

Z DD
H H H= +

0 0
( ) ( )

I jz S jz jk
I S b A B = − + + +

The S spectrum coupled to I then will

have two transitions, one having (1-3cos2)

dependence, and the other - (1-3cos2) 

dependence, hence, mirror images. Both of

them have the same isotropic frequency

0S.

21
(3cos 1)

2
jk jk jk

d b = −

High-field, secular approximation:

( ) (3 . )
jk

DD jk jk jz kz j j
H d I S I S = −

jk

j

k

ejk

B0



Homonuclear Dipole-Dipole Powder Line Shapes: Pake Doublet

The S spectrum coupled to I then will

have two transitions, one having (1-3cos2)

dependence, and the other - (1-3cos2) 

dependence, hence, mirror images. Both of

them have the same isotropic frequency

0S.

1.5 bjk

bjk=2000 Hz

( ) 2
jk

DD jk jk jz jz
H d I S =

jk

j

k

ejk

B0

Hz-8000-4000040008000



Scalar Coupling Hamiltonian

2 .
jk

J

jk j k
H J I I=

Scalar coupling is a magnetic interaction between the

nuclear spins mediated via an electron cloud, through-bond

Interaction.

Too weak in solid-state NMR, still observable with the

advent of high-resolution schemes.



J-Coupling Hamiltonian: Homonuclear

2 .
jk

J

jk j k
H J I I=

High field

First-order secular term:

2 .
J jk j k

H J I I=



J-Coupling Hamiltonian: Heteronuclear

2 .
jk

J

jk j k
H J I I=

High field

First-order secular term:

2
J

jk jk jz kz
H J I I=



Secular Approximation

H(t) HZ +  
Hi(t)

Large H Small H

• Only those parts of Hi(t) that have the same eigenfunction

as HZ (having matrix elements in the eigen basis of HZ) will

contribute to energy level shifts in the first-order

• This means, to first-order energy correction, we need consider

only those parts of Hi(t)  such that [HZ,Hi]=0; Secular Approximation

• In solution-state, this is often disguised as weak-coupling (AX), but

not valid in strong-coupling cases (AB)

Act as perturbations

to HZ

Secular approximation simplifies our internal Hamiltonians



Secular Approximation

Strictly speaking, secular approximation is more than commutativity.

If A is the large Hamiltonian and B is the small Hamiltonian, a matrix

element of B may be dropped if its magnitude is small compared to the 

corresponding difference in the eigenvalues of A

Consider 
0 ;z x x z zA I B I I  = = +

Eigenvalues= 0 0

1 1
,

2 2
 −

B representation in the basis of A

1

2

z x

x z

B
 

 

 
=  

− 

Secular approximation:
01

02

z

z

B




 
=  

− 

Provided, the following condition holds good (besides commutativity)

0 x



Scalar Coupling Hamiltonian

The J-coupling tensor on account of the rapid molecular tumbling 

has only the isotropic part

The secular part of the J-coupling Hamiltonian depends on whether

the two coupled spins are homonuclear or heteronuclear

2 .

2 ( )

jk

J

jk j k

jk jx kx jy ky jz kz

H J I I

J I I I I I I





=

= + +

Homonuclear case:

2
jk

J

jk jz kzH J I I=Heteronuclear case:

Unlike chemical shifts, J-coupling is independent of the applied 

magnetic field



Scalar Coupling Hamiltonian: Secular Approximationa

01 1 02 2 12 1 2; 2 .z zA I I B J I I  = + =

Basis sets of A=|+1/2,+1/2>, =|+1/2,-1/2>, =|-1/2,+1/2>, =|-1/2,1/2>

01 02

01 02

01 02

01 02

0 0 0

0 0 01

2 0 0 0

0 0 0

A

 

 

 

 

 +
 

− =
 − +
  − − 

12

12 12

12 12

12

1
0 0 0

2

1
0 0

2

1
0 0

2

1
0 0 0

2

J

J J

B

J J

J



 

 



 
 
 
 −
 

=  
 −
 
 
 
 

Secular approximation is valid (and then B will be diagonal) when

This condition is satisfied for heteronuclear case (1 and 2 different, of when

the chemical-shift difference is sufficiently large for homonuclear case (weak

coupling)

|||| 120201 J −



Relative Magnitude of Interactions: After Motional Averaging

I > 1/2

DD

J

Q
Chemical

shift

RF
Static 

Field

J

Q
Chemical

shift

RF

Static 

Field

Solids

Isotropic Liquids

M. H. Levitt, Spin Dynamics



Experiments under Static Conditions



Spin Echoes: Spin-1/2 

90 180
Echo Spin-echo experiment

Refocuses chemical-shift interaction

and heteronuclear dipole-dipole interaction
 

Spin Echo (Hahn Echo) Sequence:

RF pulses

90-x 180x



Spin Echoes: Spin-1/2-Density Matrix Analysisx

90x 180y

Echo Spin-echo experiment

Refocuses chemical-shift interaction

and heteronuclear dipole-dipole interaction
 



Spin Echoes: Spin-1/2 but Homonuclear

90x 90y

Echo Echo experiment to refocus

homonuclar dipole-dipole coupling

 



Homonuclear Spin Echo: Analysis

90x 90y

Echo

 
Echo experiment to refocus

homonuclar dipole-dipole coupling



Homonuclear Spin Echo: Analysis

90x 90y

Echo

 
Echo experiment to refocus

homonuclar dipole-dipole coupling



Homonuclear Spin Echo: Analysis

90x 90y

Echo

 
Echo experiment to refocus

homonuclar dipole-dipole coupling

That is the echo!

Mueller and Geppi, Solid State NMR, Principles, Methods and Applications



Spin Echoes: Spin-1/2 but Homonuclear

Echo experiment to refocus

homonuclar dipole-dipole coupling

90x 90y

Echo

 

x y

 

z
y x

z

x

yyH
xxH

].3[ 2121 IIIIHH zzzz −=

zzzzxxyy HIIIIHHH −=−=+= ].3[)2( 2121



Heteronuclear Recoupling 

90 180
Echo Spin-echo experiment

Refocuses chemical shift interaction

and heteronuclear dipole-dipole interaction
 

Heteronuclear recoupling experiments may be considered as some sort of

echo experiments.

Echo experiments refocus the heteronuclear dipole-dipole interactions, hence,

how to measure them?

zz

hetero

DD

zCS

SIH

IH





Apply RF pulses on one of the coupled spins, this prevents the complete

refocusing.

The principle is to monitor to what extent the RF pulses perturb the refocusing

and this gives a measure of the IS heteronuclear dipole-dipole coupling.



Spin-Echo Double Resonance: SEDOR

90 180

 

n

I

90 180

 S

Slicther, Principles of NMR, 1980

Wang, Slichter, Sinfelt, PRL, 53, 82, 1984

Shore et al., Phy. Rev. Lett. 58, 953, 1987

Measurement of heteronuclear dipole-dipole

couplings in static samples

Experiment 1: Pulses applied only to the I spins

IS dipolar interaction refocused at 2,

4, 6,…..

Experiment 2: Pulses applied to both the spins at

, 3, 5,….., prevents refocusing at 2, 4, 6,....

The difference in the echo maxima intensity between the two experiments

reflects the IS dipolar coupling, and hence, the distance between I and S spins

Kaplan, Hahn, Bull. Am. Phys. Soc. 2, 384, 1957

Emshwiller, Hahn, Kaplan, Phys. Rev. 118, 414, 1960



1H Spectra: Necessity of RF+MAS

R = 5 kHz

R = 30 kHz

PMLG (R = 12 kHz)

Alanine

500 MHz



Rare and Abundant Spins

Homonuclear dipolar interactions among protons lead to severe line

broadening, 0 to tens of kHz

The interaction is homogeneous, the Hamiltonian does not commute

with itself at any time

To average out homogeneously broadened spectral line, the external 

perturbation (MAS) has to exceed the interaction strength, this is

often impossible



+H3N
C

H H

O

O-

12 ppm=6000 Hz @ 500 MHz spectrometer

Typical Proton Spectra

Sample of glycine

•Not possible to spin the interaction out-MAS fails

•Think of spinning out the spins-RF possibilities

MAS @ 15 kHz



Homonuclear Dipolar Decoupling Schemes

Solid-echo

Magic-echo sandwhich 

Lee-Goldburg 

Symmetry

WAHUHA

MREV-8

BR-24

CORY-24

DUMBO

TREV-8

MSHOT-3

LG

FSLG

PMLG

wPMLG

Rotor-synchronised WHH-4

R182
9

Useful at high MAS

Designed for static

cases, may be applied

under MAS with

precautions



Schematic of Pulse Sequences for 1H Spectroscopy









eff

x

z

m

2tan 1 =


=



m

Lee-Goldburg, LG

The first and, probably, the most popular homonuclear dipolar decoupling scheme

RF irradiation at  and phase +x1H effc=2, , =0

c



Lee-Goldburg, LG

LG condition:

22

1

1

2

7.54tan2












+=

=

==


eff

eff

LG

Homonuclear dipole-dipole couplings are scaled to zero to the first order







eff

x

z

m

2tan 1 =


=



m



FSLG SpectraSpectra

MAS about 3000 Hz

RF about 80 kHzAlanine

MREV8

BR24

FSLG

SSNMR, 2, 151, 1993



Interaction Liquids Solids Field (B0) 

dependence

Notes

Zeeman 

(chemical shift)

Line position Line 

position and 

structure

Linear For liquids this is just the position of each peak, but for 

solids each peak can have a range of chemical shifts 

depending on the orientation of its electronic 

environment with the magnetic field.  This is known as 

the chemical shift anisotropy and can have a larger 

range for nuclei in more asymmetric electronic 

environments.

Radiofrequency 

pulses

Amplitude Amplitude None Same for liquids and solids

J coupling Line structure Not 

normally 

observed 

(?!)

None* Basically the same for solids and liquids but not 

normally observed in solids due to much wider lines

Dipolar coupling Relaxation Line 

structure

None* Averages to zero in liquids due to isotropic motions (but 

does still result in relaxation effects).  In solids can 

completely dominate the spectra especially for large  

nuclei like protons

Quadrupolar 

interaction (spin 

> ½)

Relaxation Line 

structure

None* Averages to zero in liquids due to isotropic motions, but 

in solids can completely dominate the spectra especially 

for nuclei with large quadrupole moments (14N, 2H) in 

asymmetric electronic environments.

Summary of NMR Interactions

*To first order



Magic-Angle Spinning, MAS



Reality

Figure courtesy: Matthias Ernst



Reality

Simple 1D solution-state spectrum
1H spectrum of a protein

Simple 1D solid-state spectrum
13C spectrum of glycine



Remedies

• Mimick the inherent averaging processes in solution-state to 

obtain high-resolution, isotropic information

• Goal #1:(Resolution and Sensitivity): Remove  anisotropic parts 

and retain only isotropic parts: Decoupling

• Goal #2:(Let us have the cake and eat it as well) Get back

the anisotropic parts for elucidation of geometry parameters: 

Recoupling



Remedies

Anisotropic part

Spatial part

Spin part

Independent:

Can be individually

manipulated

Mechanical manipulation

RF manipulation



Hamiltonians and their Manipulation

  isotropiccanisotropi

SPINSPACETOTAL +=

•Rotating the crystallites in a   

given powder          

•Sample spinning: Mechanical 

manipulation

•Easier to visualise

•Difficult to implement

Spatial Part: Manipulation Spin Part: Manipulation

•Rotating the spins in a   

given powder          

•Spins rotation: 

Manipulation by RF pulses

•Easier to implement

•Difficult to visualise



Powder at Various Rotor Angles: Spinning



Average out the chemical shift 

anisotropy, to achieve good 

sensitivity and resolution

Magic-Angle Spinning (MAS)



Averages out the chemical shift 

anisotropy, to achieve good 

sensitivity and resolution

Magic-Angle Spinning (MAS)

=54.7

http://www.cup.uni-muenchen.de/ac/schmedtadg/seminars.html#NMR


13C spectra of [13C2]-glycine

no spinning

with MAS 

at 12 kHz

+H3N
C

H H

O

O-

Resolution and Sensitivity Enhancement by MAS



Magic-Angle-Spinning Spectra: Resolution Enhancement

Glycine

The powder pattern breaks up into a 

centreband and sidebands spaced at integer 

multiples of the rotor frequency

14 kHz

8 kHz

5 kHz

3 kHz

1181 Hz

 

Static

Chemical Shift δ/ (ppm)

50 0100150200250



MAS Rotor Types

7       4   3.2 2.5 1.3 mm



Angular Frequency to Linear Velocity

Magic Angle Spinning (MAS)

A 0.8 mm rotor spinning at 100 kHz …

… has a speed of 250m/s when rolling along the ground…

……. needs only 44 hours to roll around the earth….  

rf coil

air bearings

optical fibres

drive air

bearing air

VT air

turbine

1.8mm MAS probe (50kHz)
(A. Samoson et al. J. Magn. Reson. 149, 264 (2001))

Outer diameter of MAS rotor determines maximum rotation frequency: 6 mm - 8 kHz, 4 mm 

- 15 kHz, 2.5 mm - 30 kHz, 1.8 mm - 50 kHz, 1.3 mm - 70 kHz, 0.8 mm - 100 kHz.

Sample volume depends on (inner diameter).

Higher MAS frequencies allow the implementation of different types of experiments.

1.3 mm Samoson rotor

6 mm Chemagnetics rotor

Angular frequency ~ 120-130 kHz



Ultra Fast MAS in TIFR Hyderabad

0.7 mm MAS rotor

1H spectrum of adamantane

Splitting of 0.08 ppm= 7 Hz



Standard Bore MAS Probe

stator flip mechanism

bearing gas inlet

RF electronics

BN stator

proton trap

RF coil



Rotational Signatures of the Internal Spin Interactions

Interaction Space Rank

l

Spin Rank

l

Iso-CS 0 1

CSA 2 1

J 0 0

Hetero-DD 2 1

Homo-DD 2 2



Spherical Tensors: Examples



Spherical Tensors

A spherical tensor of rank l is a set of 2 l +1 objects such that 

when any of them is rotated in three dimensions, the result

is a superposition of the same set of objects

Rotation of spherical tensors

†

' '

'

( ) ( ) ( )
l

l

lm lm mm

m l

R T R T D
=−

  = 

Rotation operator Spherical tensor element
of rank l

Complex numbers



Rotational Signatures of the Internal Spin Interactions

Interaction Space Rank

l

Spin Rank

l

Iso-CS 0 1

CSA 2 1

J 0 0

Hetero-DD 2 1

Homo-DD 2 2

Rotation of

molecules
Rotation of

spins



Euler Angles



PAS-MF-RF-LF

Transformation via the relevant Euler angles necessary for visualisation and

simulations

Reference Frames in Solid-State NMR



Rotation of Spherical Tensors

†

' '

'

( ) ( ) ( )
l

l

lm lm mm

m l

R T R T D
=−

  = 

Rotation operator

for Euler angles 

Elements of Wigner matirx

for Euler angles 



Wigner Matrices

)exp()()'exp()( ''  imdimD l

mm

l

mm −−=

Wigner matrix element
Reduced Wigner matrix element



Reduced Wigner Matrix Elements (Rank 0 and 1)

1

00 ( )d 



Reduced Wigner Matrix Elements (Rank 2)

)(2

00 d



PAS-MF-RF-LF

Transformation via the relevant Euler angles necessary for 

visualsation and simulations

Reference Frames in Solid-State NMR



)()()( BC

l

AB

l

AC

l DDD =

)()()( '''''

''

' BC

l

mmAB

l

mm

l

lm

AC

l

mm DDD = 
−=

)()()()( CD

l

BC

l

AB

l

AD

l DDDD =

)()()()( '''''''''''

'''''

' CD

l

mmBC

l

mmAB

l

mm

l

lm

l

lm

AD

l

mm DDDD = 
−=−=

Wigner Matrix Chains



Frame Transformations of Spherical Tensors



Chain of Reference Frames in Solid-State NMR

Principal axis frame of a 

spin interaction

Molecular reference frame

Rotor reference frame
Laboratory reference frame



X

Y

Z

L

B0

Rotor reference frame Lab reference frame

}0,,{)( RLrRL tt −=

Spinning frequency Rotor (magic) angle

Rotor to Lab Frame Transformation



Molecular Frame

Molecular frame is more

arbitrary, although in 

certain cases, calculations

are simpler with a good

choice

MR Different Euler angles for different molecules



Chain of Transformations in Solid-State NMR

))(()()()( tDDDD
RLMRPMPL

llll  =

Orientation of an interaction, , with

respect to the molecular frame. Depends

only on the interaction, not on time or

crystallite

Orientation of molecular frame wrt to

rotor frame, depends only on crystallite,

not on interaction or time

Orientation of the rotor wrt 

To the static field, time dependent



Irreducible Tensor Representation of the Hamiltonians


−=

−=
l

lm

L

ml

L

lm TAH ][][

Space part Spin part

LL TAH ][][ 2020=

NMR case

High field, 

secular approximation


−=

−=
2

2

22 ][][
m

L

m

L

m TAH



DD Coupling Hamiltonian

LjkLjkjk

DD TAH ][][
2020

=

Spin tensor

Space tensor in the PAS



LjkLjkjk

DD TAH ][][
2020

=

Ljkjk

PLm

Pjk

m

TDA ])[(][
2020

2

0

2

2

= 
−=

Ljkjk

PL

Pjk TDA ])[(][
2020

2

00 =

Ljkjk

PL

Pjk TdA ])[(][
2020

2

00 =

)}(
2

1
2){1cos3(

2

1 2 +−−+ −−−= kjkjkyjx

jk

PLjk IIIIIIb 

DD Coupling Hamiltonian

Zero at the magic angle



Isotropic Chemical-Shift Hamiltonian

iso

j j

iso jzH I=

0iso iso

j j j  =

0 0

j j B = −

Spin rank 1

Space rank 0



CSA Hamiltonian

Spin rank 1

Space rank 2
20 20 200 0[ ] [ ] [ ]j j L j L j L

CSA jzH A T B A I B= =

Space tensor in the PAS

0aniso aniso

j j j  =



Average Hamiltonian Theory and MAS

=54.7

arbitrary

7.54

=

=

−=

RL

RL

rRL t







Isolated spin-1/2 experiencing CSA:

),()( tHItH MR

j

jz

jj

CSAiso
+= 

http://www.cup.uni-muenchen.de/ac/schmedtadg/seminars.html


CSA Hamiltonian under MAS

20 0[ ]j j L

CSA jzH A I B=
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Concept of Average Hamiltonian

If the Hamiltonian is such that:

• It is periodic, H(t),=H(t+NT) 

• It varies sufficiently fast with respect to time

Then the spin system behaves as if it is subjected to a time average of

H(t) over the period T (then the Hamiltonian also becomes time independent):

= dttH
T

HtH )(
1

)(
)1(

Average Hamiltonian



Average CSA Hamiltonian Under MAS

2 '

2 2
2 2

' 0 0

' 2 2

( ) [ ] ( ) ( )r

m

im tj j M

CSA MR m m MR m RL jz

m m

H A D e d I B
 

=− =−

 =  

2 '

2
2 2

'0 00 0

' 2

[ ] ( ) ( )
m

j M

m MR RL jz

m

A D d I B
=−

= 

Zero for RL=54.7

Exact MAS, hence, averages CSA to zero, provided the rotation 

is sufficiently fast.



CSA Powder Pattern and Rotation Angle

For angles other than 54.7, scaled 

versions of static powder pattern

appear, with scale factor ranging from

1 to –0.5

Isotropic spectrum results at the magic

angle, 54.7



DD Hamiltonian Under MAS
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Average DD Hamiltonian Under MAS

Ljk
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Zero for RL=54.7

Exact MAS, hence, averages DD to zero, provided the rotation 

is sufficiently fast.



Resolution and Sensitivity Enhancement by MAS

13C spectra of [13C2]-glycine

no spinning

with MAS 

at 12 kHz

+H3N
C

H H

O

O-



Tracking Spins in NMR

Floquet Wilhelm Magnus F. Fer

Many more: Wilcox, Salzman, Pechukas, Burum 

Floquet theory Magnus expansion

Average Hamiltonian theory

Fer expansion



Time Development of the Spin System

| ( ) ( ) | ( )
d

t iH t t
dt

 = − 

Hamiltonian State function

| ( )at  | ( )bt 

at bt
t

Time 

evolution



Heteronuclear Spin Decoupling 



Spin Decoupling

Spin manipulation

Heteronuclear dipolar decoupling
13C observation

Homonuclear dipolar decoupling
1H observation



Heteronuclear Couplings in NMR

Liquids

I I I I

S SS S

Static solids

Hz 10IIJ  Hz 10IIJ 

Hz  50000IID 

Hz 45000ISD 

Hz 150ISJ 

Hz 5000SSD 

Hz 50SSJ Hz 50
SS

J 

Hz 150ISJ 

•Spin-spin couplings in soilds are much larger than those in liquids, dipolar

vs. scalar

•Dipolar couplings are anisotropic and, hence, orientation dependent



I

S

JIS

I

S

JIS

RF irradiation, CW

•CW RF irradiation collapses the J-multiplet on the S spins

•Pulse sequences for decoupling:

•CW irradiation

•Multiple-pulse schemes (MLEV, WALTZ, FLOPSY,…..)

•Adiabatic inversion (WURST,…)

Heteronuclear Decoupling in Solution-State NMR



carbon-13 spectrum
12

3

Two pulse phase modulation 

Bennett 1995

Magic Angle Spinning

r

r

X n

(CS+CSA+DD) proton

(CS+CSA+DD) carbon

And other techniques: CM; SPINAL, A-,FMPM, C122
-1

’04,    ’00     , ’01-, ’97   ,   ‘99

13C Spectra in Solid-State NMR-The Problem



Heteronuclear Dipolar Decoupling

MAS RF

Decoupling

Homonuclear dipolar

coupling
Heteronuclear dipolar

coupling

Abundant spins
1H

Rare spins
13C, 15N

Typical 1H-13C coupling= 25 kHz



Dipolar Couplings: Homo and Hetero

13C

15N

13C

13C

1H

15N

1H

1H

1H

13C

0 3015 20 25105

|b12|/2 kHz]

1

2

Order of magnitude



Heteronuclear Dipolar Decoupling

Decoupling

(/2)y

S

I

1H

13C

MAS RF

Decoupling

S spin detection



Why Decoupling? Why Not Just MAS?

2-13C-Alanine

2-13C-Glycine

No decoupling

The best line widths with MAS only still about 10-15 times higher than with

RF decoupling and MAS



15202530354045505560 ppm

MAS + Heteronuclear Dipolar Decoupling

Static

Static+Decoupling

MAS

MAS+Decoupling

13C spectra of adamantane



Magic-Angle Spinning and Radiofrequency Irradiation: Caveats

• Interference effects between MAS and RF as both are time-

dependent processes

• Conditions such as nr=1 should be avoided

– These are the conditions that recouple heteronuclear dipolar 

coupling

– Rotary-resonance, RR, conditions, mainly at n=1,2

• Conditions such as ½ r=1 also should be avoided

– These are the conditions that recouple homonulcear dipolar 

interactions

– HORROR condition



Interference between MAS and RF

Some of the RF Fourier components match with the RF profile, and

may lead to interference, sometimes constructive, sometime destructive



Decoupling Schemes: Simplification of Spectra

2J

13C 1H

RF irradiation

x

I

nutzzzIzS ISJIISH  +++= 200 RF irradiation

zS SH 0 RF irradiation on one spin simplifies

the spectrum of a J coupled heteronuclear

spin

Similar approach is possible in solid-state, to remove heteronuclear dipolar

couplings between rare and abundant spins to get a simpler and resolved

spectrum of the rare spins



Decoupling

(/2)y

S

I

1H

13C

Continuous-Wave (CW) Decoupling

zz

hetero

DD SIH 2=

Consider the rotation of the Iz operator due to the 

application of the RF irradiation on I along the +x axis.

The Iz operator will experience a continuous precession

as the long CW irradiation for decoupling can be thought

of as being composed of a series of 2 pulses.

( ) )sincos(
2

)(2

0
tItI

n

td
SH yz

n

ztoggling

hetero

DD 




+ 

The average vanishes over integer precession periods and tends to zero for 

Long irradiation times

CW decoupling is perhaps robust and efficient, but not the ideal one



Predict CW Decoupling with AHT?

Non-modulated RF irradiation:
1
( cos sin );

RF x y RF
H I I t  =  +   = +

Rotating frame total H: 0

1
( cos sin );

z x y RF
H I I I      =  + +  = −

Effective z-rotation:
1

( ){ } ( )
z z x z

H R I I R   =  + −

x, 1

z, 



eff

( ) ( ){ } ( ) ( )
z y eff z y z

H R R I R R    = − −

2 2

1eff
  =  +

1tan





=




Predict CW Decoupling with AHT?

( ) ( ){ } ( ) ( )
z y eff z y z

H R R I R R    = − −

Associate :  ( arbitrary,can be zero); ;
eff

t     = = − = −

Transformation of  heteronuclear dipole-dipole Hamiltonian:

20 20
( ) [ ] [ ]

jk jk L jk L

DD
H t A T=

20 10

1
1

0

1

[ ] ( ) ( ){ [ ] ( , ,0)} ( ) ( )
jk jk L jk L

DD z y m z y

m

H A R R T D R R     
=−

= − −

H in lab frame:

H in interaction frame:

1 1

0 0
( , ,0) ( )

im

m m
D e d

  −=



Predict CW Decoupling with AHT?

20 10

1
1

0

1

[ ] ( ) ( ){ [ ] ( , ,0)} ( ) ( )
jk jk L jk L

DD z y m z y

m

H A R R T D R R     
=−

= − −

1 1

0 0
( , ,0) ( )

im

m m
D e d

  −=

Use AHT, only m=0 survives, hence, the first-order term of the int. frame H:

20 10

(1)
1

00
[ ] ( ) ( ){[ ] ( , ,0)} ( ) ( )

jk jk L jk L

DD z y z y
H A R R T d R R     = − −

2 2

1eff
  =  +

1tan





=


Zero for =90

CW irradiation, perpendicular to the magnetic field, under

on resonance removes heteronuclear dipole-dipole couplings 

to the first order, if applied strong enough.



Continuous-Wave Decoupling

• The most sensitive test for checking the efficiency of CW (or for that 
matter any decoupling scheme) is monitoring the CH2 spectral line 
intensity and line shape

• CH2 group normally has the strongest homonuclear dipolar couplings 
among protons and heteronuclear dipolar couplings among protons 
and carbons

• As a thumb rule, higher the RF power, better is the efficiency of CW 
decoupling

• Thumb rule may fail for certain spin systems, at high MAS rates and is 
often a brute-force approach

• Remember the longstanding thumb rule: spin system (as any thing 
else in the universe) always prefer modulations (amplitude/phase) at 
the appropriate rate



Continuous Wave Heteronuclear Dipolar Decoupling

Histidine

500 MHz for 1H

Homonuclear dipolar couplings:

A culprit

M. Ernst, J. Magn. Reson. 1-34, 162, 2003



• Efficient heteronuclear  spin decoupling requires presence of some 
homonuclear dipolar coupling

– Spin-diffusion and self-decoupling, helps in modulating DDhetero

and removing them more efficiently

• For a given RF amplitude, higher MAS leads to poor decoupling, as 
DDhomo interaction gets reduced, hence, increasing line widths

• For a given MAS, higher RF amplitudes normally improve decoupling

• Higher RF followed by a lower MAS (in systems of weak DDhomo) leads 
to truncation effects and introduction of cross-terms between CSA 
and DD which also become more drastic in high-fields

• Higher MAS followed by a lower RF can work more or less well 
everywhere unless the interactions are very strong

• Hence, the general recipe for normal solids, is high MAS and low RF or 
high RF and low MAS

Continuous-Wave Decoupling: When does it Work?



Two-Pulse Phase Modulation (TPPM)

A phase alternated strong RF pulse irradiation is applied on the 

proton spins to effect heteronuclear dipolar decoupling

Both TPPM and  need to be optimised

Bennett…Griffin, J. Chem. Phys. 103, 6951, 1995

(/2)y

S

I

1H

13C

 −

2 ranges from 10-70

TPPM close to 180 degrees 13C spectrum of Ca(Formate)2

Shortcomings of TPPM



Some  (Better) Decoupling Schemes

TPPM  

               

0.78 0.860.940.96 0.98  1.02 1.04 1.06 1.12 1.22





SWf
-TPPM

SPINAL64 RRRRRRRR 
+




+


+



+



+



+


Normally =2

SWf
-TPPMSC RRRR R=SWf-TPPM

R=

XiX

PISSARRO

x x

x x x y yx y y



5 5 5 5

=nr

=nr

1. Bennett et al. J. Chem . Phys. 103, 6951, 1995 4. Fung et al., J. Magn. Reson. 142, 97, 2000

2. Thakur et al., Chem. Phys. Letts., 426 (2006) 459 5. Detken et al., Chem. Phys. Lett. 356 (2002) 298 247

3. Augustine et al., Magn. Reson. Chem., 48 (2010) 798 6. Weingarth et al., Chem. Phys. Lett. 466 (2008)

2. 5.

 = −



Some More Decoupling Schemes

Vinther…..Nielsen, JCP, 137, 214202, 2013

rCWA-E



Continuous  Wave (CW)

TPPM 

FMPM, AMPM, SPARC, SPINAL, 
GT-n, CM, SWf-TPPM 

PISSARRO 

XiX

rCW

Hierarchy of Decoupling Schemes



Apparent 

Line-width 

Refocused

Line-width 



 

T2


T2
*

• Although, at high MAS frequencies, limiting line width seems to have been reached for

existing decoupling schemes, it is quite possible that the decoupling schemes have an

influence on the effective transverse relaxation times

• Effective Transverse relaxation times are governed by Homogeneous interactions

Decoupling Schemes: Effective Transverse Relaxation Time



Decoupling Schemes: Effective Transverse Relaxation Time

Mithu et al., J. Magn. Reson. 220 (2012)



• Longer T2 values play a crucial role in experiments involving long spin-echo

periods in their pulse sequences.

z-filtered refocused Incredible 

Natural Abundance Double 

Quantum Experiment

(zfr-INADEQUATE)

frequency-selective

Rotational Echo Double 

Resonance

(fs-REDOR)

1. Cadars et al., J. Magn. Reson., 188 (2007) 24. 2. Jaroneic et al., J. Am. Chem. Soc., 123 (2001) 3507.

1

2

Decoupling Schemes: Effective Transverse Relaxation Time



Effective Transverse Relaxation Time: fsREDOR



• Longer T2 values play a crucial role in experiments involving long spin-echo

periods in their pulse sequences.

B0=500 MHzMAS = 10 

kHz
SWfTPPM

C Peak

RF = 115 kHz

Effective Transverse Relaxation Time: INADEQUATE
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Best Condition: 

When ϴ = 180o

ф= 90o

Super cycled rCWBimodal Floquet Analysis of rCWABimodal Floquet Analysis of rCWARotor synchronized vs Non-rotor-synchronized rCWA
Experimental performance of  rCWA

(n.r.s) Resonances in rCWASupercycling rCW?

Equbal et al. Chem. Phys. Lett. 635 (2015) 339



rCWAiA Performance

700 MHz

RF 90 kHz 

MAS 25 kHz 

Efficient decoupling

rCWAiA does not require optimizationSuper cycled rCWSuper cycled rCWBimodal Floquet Analysis of rCWABimodal Floquet Analysis of rCWARotor synchronized vs Non-rotor-synchronized rCWA
Experimental performance of  rCWA

(n.r.s) Resonances in rCWArCWApA Performance

Equbal et al. Chem. Phys. Lett. 635 (2015) 339



rCWAiA PerformancerCWAiA does not require optimizationSuper cycled rCWSuper cycled rCWBimodal Floquet Analysis of rCWABimodal Floquet Analysis of rCWARotor synchronized vs Non-rotor-synchronized rCWA
Experimental performance of  rCWA

(n.r.s) Resonances in rCWArCWApA Performance

700 MHz RF 90 kHz MAS 15 kHz

GB1 protein sample 

Equbal et al. Chem. Phys. Lett. 635 (2015) 339



Decoupling profile of unified scheme  Mapping various sequences under unified schemeUnification of different decoupling schemeRobustness of Super cycled rCWSuper cycled rCW vs PISSARROrCWAiA PerformancerCWAiA does not require optimizationSuper cycled rCWSuper cycled rCWBimodal Floquet Analysis of rCWABimodal Floquet Analysis of rCWARotor synchronized vs Non-rotor-synchronized rCWA
Experimental performance of  rCWA

(n.r.s) Resonances in rCWArCWApA Conditions: Take Home Message

Low MAS, High RF: Set A /r =0.98

Y corresponds to 180 degree flip angle

High MAS, Low RF:

c

1

4c r

r

 

 
= 2

0.15Y

c




=



Cross Polarisation



Sensitivity Issues in Solid-State NMR

• Resolution for rare spins provided by MAS and heteronuclear dipolar 

decoupling

• Rare spins have low gyromagnetic ratios, and low natural     

abundance  and hence very poor signal sensitivity

• Coupled with poor signal sensitivity rare spins also have long T1

making experiment times longer



Sensitivity of Various Nuclei

Nucleu

s

Spin Natural

Abund. %

S/N Measuring

Time
1H ½ 100 1 1

19F ½ 100 0.858 1.36
19P ½ 100 0.104 92
39K 3/2 93.08 2.2e-5 2.1e5
13C ½ 1.108 3.5e-14 8.1e6

109Ag ½ 48.65 2.27e-4 2e7
43Ca 7/2 0.13 3.2e-5 9.7e8

15N ½ 0.365 1.2e-5 7e9
2H 1 0.0156 5.8e-6 3e10



Cross Polarisation, CP

I S

½

-½

-½

½

Laboratory frame

I
S

½

-½ -½

½

Doubly rotating frame

Energy levels of both nuclei are matched in the doubly rotating frame.

A spin-lock RF field is equivalent to producing a rotating-frame transformation.

Hence, we need a continuous spin-lock RF field on both the nuclei for CP.

A match of the energy levels is produced when the nutation 

frequencies of both the spins along the effective RF field 

direction are the same: B1I=B1S or in other words I1I=S1S

Hartman-Hahn condition



CP Pulse Sequence+Decoupling

Decoupling

S

I

1H

13C

90x y

CP

CP

CPMAS, basic pulse block in solid-state NMR for both 

sensitivity and resolution

MAS and heteronuclear decoupling lead to resolution

CP leads to sensitivity

CP contact time

RF fields adjusted

for Hartman-Hahn condition

Magnetisation transfer



CPMAS Spectrum

Law et al., Angen.Chem. Int.Ed., 41, 3096, 2002

*Enhanced signal,~I/S

*T1 of abundant high- nuclei

shorter than that of the 

rare low- nuclei

*Spatial proximity



Cross-Polarisation Profile

13C is polarised faster as it is directly bonded to H, unlike the carbonyl 13C

Typical contact times on the order of 100 s to 10 ms

Law et al., Angen.Chem. Int.Ed., 41, 3096, 2002



Cross-Polarisation: Spin Baths

M.Mehring, Basic Principles of High-Resolution NMR in Solids



Cross-Polarisation Dynamics



Cross-Polarisation Dynamics



• Contact time, practical considerations for 13C

• Short TIS (~500 us): directly attached protons (-CH3, -CH2-, >CH-)

• Long TIS (>1-2 ms): quaternary carbons (>C<, -COO-, substituted 

aromatic sysmtes,…), high mobility

• Short T1: paramagnetic systems/impurities (e.g. in coal), high 

mobility

Cross-Polarisation Dynamics



Cross-Polarisation: Matching Profiles

S

nut

I

nut  =

Hartman-Hahn condition

r

S

nut

I

nut n =

Hartman-Hahn condition

Width of the matching curve is proportional 

to the heteronuclear diolar coupling

Sidebands observable when the MAS rate is 

on the order of HDD
hetero and the I-spin resonance

line width



Cross-Polarisation Matching Profiles: Problems

CP is very inefficient at:

High MAS rates

In the presence of RF fluctuations

In the presence of RF 

inhomogeneity

84

(kHz)
70 56 42 28

14kHz 14kHz 14kHz 14kHz

MAS 14 kHz

MAS 4 kHz

Glycine



Remedy: Vary the RF amplitude on one of the spins to cover a sufficient 

range of frequencies: RAMP-CP

Decoupling

S

I

1H

13C

90x y

CP

CP
nut

S=2−3r

Peersen, Wu, Kustanovich, Smith, JMR, A104, 334, 1993

RAMP-CP

RAMP-CP gives stable performance at high-MAS rates



84

(kHz)
70 56 42 28

14kHz 14kHz 14kHz 14kHz

RAMP-CP

Glycine, MAS at 14 kHz

Peersen, Wu, Kustanovich, Smith, JMR, A104, 334, 1993
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B
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D

E

A

B

C

D

E

CPMAS and Decoupling

Static

MAS



Mueller, Anilkumar, Baumann, Ernst, PRL, 58, 2547, 1973

Transient oscillations in single crystal

Kolodziejski and Klinowski, Chem. Rev. 102, 613, 2002

Cross-Polarisation: Transient Oscillations



Ladizhansky and Vega, JCP, 112, 7158, 2000

Transient oscillations may lead to 

quanitative estimates of heteronuclear 

dipolar coupling and distances

Cross-Polarisation: Transient Oscillations

13CH of Alanine



Decoupling

S

I

1H

13C

90x y

CP

CP

nut
S=2−3r

=54.7

CPMAS

The routine way towards high-resolution and sensitivity

in solid-state NMR experiments

Stejskal, Schaefer, Waugh, JMR, 18,560,1975

Stejskal, Schaefer, Waugh, JMR, 28,105,1977


