Structure and Dynamics of Nucleic Acids T. F. Prisner

Institute of Physical & Theoretical Chemistry Center of Biological Magnetic Resonance Goethe University Frankfurt

FRANKFURT AM MAIN

NMR (& EPR) meets Biology 2018

Structure and Flexibility of Nucleic Acids

Pulsed Electron Electron Double Resonance

A. D. Milov, K. M. Salikov, M. D. Shirov. Fiz. Tverd. Tela, **23**, 975 (1981)

G. Jeschke, H.W. Spiess et al., JMR, **142**, 331 (2000)

$$\omega_{ee} = \frac{2\pi \cdot C}{r^3} (1 - 3\cos^2 \theta)$$
$$C = 52.04 \text{ MHz} \cdot \text{nm}^3$$

Analysis of PELDOR/DEER time traces

Distances and Distance Distributions

Spin labels for Nucleic Acids

- All nucleotides in DNA and RNA can be spin-labeled
- Different degrees of rotational flexibility of spin label
- Different orientation with respect to nucleotide
- Synthesis with modified nucleobase

A rigid spin-label analog of cytidine

Distance between two unpaired electron spins can be directly converted in structural information of nucleic acid molecule

Snorri Sigurdsson (University of Iceland)

Distance measurements of spin-labeled NA

Magnetic dipole-dipole interaction measured by pulsed EPR

distances of ~ 1-10 nm

Cytidine analog spin label **rigidly** incorporated into ds DNA or ds RNA

Collaboration with Snorri Sigurdsson (Uni. of Iceland)

Angewandte (2009)

Ο

0---H-N

N-H---N

N-H---C

Investigation of conformational flexibility of dsDNA

Determination of distance R and geometry of spin labels

Relates directly to structure of helical parts in RNA / DNA

X-band (9 GHz)

Selection of specific molecular orientations with respect to the magnetic field by frequency of MW pulses

B)
Q-band (35 GHz)

$$1.19$$
 1.195 1.2 1.205 1.21 1.215 1.22
 $\times 10^4$

G-band (180) GHz)

Randomly oriented powder sample

Multifrequency & Multifield PELDOR

X-band (0.3 T / 9 GHz)

Anisotropic 14N resolution

G-band (6.4 T / 180 GHz)

Anisotropic g tensor resolution

Multi-frequency / Multi-Field PELDOR Dataset

JMR (2015)

Unique pattern for a given distance / geometry

Unique solutions can be obtained for rigid molecules with a single conformation, if experiments performed at several magnetic field strengths.

PCCP 2013

Determination of internal dsDNA dynamics

Stretching

Twisting

Investigation of dynamics of dsDNA

Bending (∆a) Twisting ∆r

Stretching ∆h

Set of samples with variable distance between spinlabels

Marko JACS (2011)

2D-PELDOR datasets and best model fits at 0.3 T

Models for conformational dynamics of dsDNA

Mathew-Fenn et al. Science (2008)

Modeling Becker et al. Science (2009)

Comparison with MD simulations of dsDNA

Collaboration with G. Hummer (MPI Biophysics, Frankfurt)

Echo sequences with broadband shaped pulses

2D SIFTER experiment using broadband pulses

Doll, Jeschke PCCP 18, 23111 (2016)

Broadband SIFTER with FT of Echo signal

4 pulse PELDOR/DEER

with several probe

 ΔT

frequencies

 ϑ_{a}

 $\vartheta_{\rm b}$

 $\frac{\pi}{2}$

2D broadband SIFTER Experiment on dsDNA

- Faster
- Higher resolution
- Over full spectum

Intermolecular Interactions of dsRNA

RNA (2018)

RNA (2018)

RNA (2018)

In-cell investigations of NAs

Nitroxide Spin Labels have to be protected against reductions for applications in cells

3

In-cell applications of PELDOR spectroscopy

Second distance from ds-DNA stacking in-cells

Angewandte (2011)

0. NH ~~ 0. +BSA ÓCH₃ _{کر} Ó Background-corrected signal Distance probability distribution +Ficoll +Lysozyme In extract In cell In vitro 2 *t /* µs 0 3 4 1 3 6 2 5 4 7 r/nm

In-cell applications of PELDOR spectroscopy

Prolonged observation time window by CP Sequence

Investigation of DNA with A-buldge

NMR restraints + 3 Pairs of EPR restraints

Comparison with predictions from NMR structure

PELDOR time traces calculated from NMR structure (20 best structures) do **not agree** well with PELDOR !

Procedure to determine conformational ensemble

2. Step: Simulation of PELDOR datasets for each conformer

3. Step: Iterative fit of experimental PELDOR dataset by PELDOR library

Conformational ensemble in agreement with all NMR and PELDOR restraints

Simultaneous Fit of 3 PELDOR datasets

Conformational bundle describing bend DNA

Evaluation of solution by G-band PELDOR data

PCCP (2017)

Comparison with NMR alone and FRET

PCCP (2017)

Wozniak, A. K., et al. (2008). PNAS **105**: 18337-18342.

Non-covalent labels for nucleic acids

Combining MD simulations with PELDOR

A synergistic approach to conformational dynamics and flexibility of RNA in the 1-10 nm range

Mg ion binding sites in RNA motives

Important for tertiary structure in Ribozymes, riboswitches, ...

Replacement of diamagnetic Mg²⁺ by paramangnetic Mn²⁺

High spin Mn ion (S=5/2, I=5/2)

High magnetic fields (>> D) necessary to obtain spin system easy to analyze Narrowing of central Mn transition at high fields (D^2/B_0)

PELDOR on Mn²⁺ -Nitroxide Model-Compound

Mn-bis(terpy)-nitroxide with an estimated distance R $(Mn^{2+}-NO^{\bullet}) \approx 2.7 \text{ nm}$

Q-band frequencies (34 GHz)

G-band frequencies (180 GHz)

Q-band PELDOR on Model compound

Akhmetzyanov et al PCCP (2015)

T = 10 K

Akhmetzyanov et al PCCP (2015)

6.48

Simulation of orientation effects

Bis-Mn-DOTA complex

Ching et al, *PCCP*, **2015**, 17, 6760. Demay-Drouhard et al, *ChemPhysChem*, **2016**

Tetracyclin-binding Aptamer

Groher & Suess BBA 2014

Binds TC with $K_d = 5 nM$

Application to Tetracyclin Aptamer

Collaboration with Beatrice Suess (TU Darmstadt)

Stabilization of teriary structure by Mg²⁺

Tetracycline binding structure is already preformed

Hetzke et al RNA (2018)

ELDOR detected NMR on TC aptamer

Mn binds to TC and to Aptamer

Comparison EDNMR & ENDOR

EDNMR

Davies-ENDOR

Comparison EDNMR & ENDOR

2D-EDNMR applied to TC aptamer

2D-EDNMR

2D-EDNMR applied to TC aptamer

2D-EDNMR

Bg-corrected 2D-EDNMR 1mM RNA/Mn²⁺/¹³C-TC

PELDOR from Cm spin label to Mn²⁺

Thilo Hetzke, Claudia Grytz, Alberto Collauto, Markus Gränz, Nicole Erlenbach

Philipp Spindler, Philipp van Os, Alice Bowen

Burkhard Endeward, Vasyl Denysenkov

Snorry Sigurdsson (University of Iceland) Gerhard Hummer (MPI Biophysik Frankfurt) Peter Güntert (Biophysical Cchemistry Frankfurt) Steffen Glaser (TU Munich) Elena Bagryanskaya (Novosibirsk)

