

T. F. Prisner

UNIVERSITÄT FRANKFURT AM MAIN

Institute of Physical & Theoretical Chemistry Center of Biological Magnetic Resonance Goethe University Frankfurt

NMR meets Biology 2018

Biologisches Magnet-Resonanz Zentrum

6 Professor 4 Ass. Prof. 20 Postdocs 90 PhDs

Translation from NMR to EPR

NMR Language

Chemical Shift Chemical Shift Anisotropy

J-Coupling

Dipolar Coupling Homonuclear Dipolar Coupling Heteronuclear

Quadrupole Coupling

SEDOR

Solid Echo

MAS

Decoupling

EPR Language

g-value anisotropic g-Tensor

J-Coupling Isotropic Hyperfine Coupling

Dipolar Coupling Anisotropic Hyperfine Coupling

Zero Field Splitting

PELDOR/DEER

SIFTER

Magnetic field	EPR frequency	Band	Wavelength	NMR ¹ H frequency
1000 G	2.8 GHz	S-band	11 cm	4 MHz
3300 G	9.2 GHz	X-band	3 cm	14 MHz
1.2 T	34 GHz	Q-band	9 mm	50 MHz
3.4 T	95 GHz	W-band	3 mm	140 MHz
6.5 T	180 GHz	G-band	1.6 mm	275 MHz
9.2 T	260 GHz	J-band	1.2 mm	400 MHz

Lower magnetic fields but much higher excitation frequencies

MW Band Nomenclature

Figure 1. Atmospheric Absorption of Millimeter Waves

Pulse EPR Spectrometer Setups

X/Q-band EPP

Electromagnet

MW Semiconductor Technology Waveguide Transmission

W/G/J-band EPP

Superconducting Magnet

MW (Far-IR, THz) Free Electron Tube Devices or high-harmonic (low power) Quasioptical Transmission Gaussianoptical Circulator @ 180 GHz

Doubler

Farraday Rotator 45°

to Probe

TAV 100

Polarized E-field Grid

Excitation

Subharmonic Mixer Detector

Anisotropic G-Tensor resolution at High Fields

Different orientations can be distinguished at high fields

Higher Sensitivity for half-integer high spins

The $m_{\rm s}$ ±1/2 transition is affected by the ZFS only in second order, forbidden transitions are suppressed

Pulse lengths : 2-20 ns

Deadtime after pulse: 20-50 ns

Pulse delays: 50 ns-10 μ s

Repetition rates: 1-100 KHz

Linewidth in EPR Spectroscopy

Coupling strengths in EPR Spectroscopy

Hyperfine Coupling Nitrogen: 90 MHz

Hyperfine Coupling Protons: < 1 MHz

Dipolar Coupling S - S: 0.1-50 MHz

Comparison nuclear spin I versus electron spin S

Weight: 30 g

Biological Applications of EPR

Biological Applications of EPR

Intrinsic Paramagnetic Centers

Spin-labeling of biomolecules

Applications of pulse EPR in Biology

Dipolar Spectroscopy

nm Distance determination in Biomolecules

Hyperfine Spectroscopy

Local nuclear spin surrounding of natural paramagnetic cofactors in Biomolecules

Dipolar Experiments

PELDOR / DEER

Distance accuracy of PELDOR / DEER

Accuracy intrinsically very high

~ 1 Å

In Proteins with MTSSL

~ 3 Å

Translation from NMR to EPR

Dastvan et al. Biophys. J. 2016

Translation from NMR to EPR

Deviations from X-ray structure observed!

Dastvan et al. Biophys. J. 2016

Determination of the number of coupled spins

Hyperfine Spectroscopy 1: ESEEM

Modulation of Electron Spin Echo Intensity by Anisotropic hf Coupling to Nuclear Spins (R < 1 nm)

Mims Phys Rev. 1961

Stimulated Echo

Better Resolution

Mixing of Nuclear Eigenstates by Hyperfine Field

S

Interaction between electron and nuclear spins

Paramagnetic NMR (PRE)

Hyperfine Spectroscopy 1: ESEEM

Hyperfine Spectroscopy 2: HYSCORE

DONUT-HYSCORE

Frequency (MHz)

Grimaldi et al. Biochem. 2001

High field Condition with hf coupling

S

Large Hyperfine Couplings

Mims ENDOR

Small Hyperfine Couplings

Hyperfine Spectroscopy 3: ENDOR

³¹P ENDOR at W-band

Bennati et al. Biochem. 2006

Hyperfine Frequencies at different BO

ENDOR Resonator at high frequencies

MW Resonators at 260 GHz (J-band, corresponding to 9.2 T, 400 MHz proton)

Sample Capillary 0.1 mm diameter Sample Volume 10 nl Protein : 1 pMol

Prandolini et al. JACS 2009

Hyperfine Spectroscopy 4: ELDOR detected NMR

Q-band EDNMR (34 GHz/1.2 T) of $Mn(H_2O)_6^{2+}$ recorded at 5K

Hetzke et al. Appl. Magn. Reson. 2017

Arbitrary Waveform Generator

1 ns time resolution

- 14 bit resolution in amplitude and phase
- up to 100 μs long pulse shapes

Amplitude / Phase modulated Pulses

Broadband Excitation By Optimized Pulses Skinner, Reiss, Luy, Khaneja, Glaser, J. Magn. Reson. 163, 8 (2003)

Spindler et al JMR (2012)

FT-EPR with BEBOP pulse

Much better intensity profiles obtained with excitation pulses derived by OC-Theory (BEBOP)

Collaboration with S. Glaser (TU Munich)

Echo sequences with WURST pulses

With broadband pulses full nitroxide lineshape can be excited!

SIFTER with WURST pulses

(Single Frequency Technique for Refocusing Dipolar Couplings)

Jeschke, Pannier, Godt, Spiess Chem. Phys. Lett. 331, 243 (2000)

With broadband pulses SIFTER without distortions with 100% modulation depth

Car

Carr Purcell pulse sequence

Carr Purcell PELDOR on BetP

Carr Purcell SIFTER on BetP

