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Outline, part 1

• Zeeman interaction

• Chemical shift, chemical shift anisotropy;

• Spin-spin interactions: dipolar coupling and scalar coupling;

• Quadrupolar interaction.
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Spin Hamiltonian
• In quantum mechanics, we need to solve the Schrödinger equation for ψ or 

the Liouville-von Neumann equation for ρ
• Generally, we need to write down and solve the following equation:

Here ψ is the w.f. of the entire system of electrons and nuclei. This equation is 
virtually impossible to solve.
• Solution is provided by the spin Hamiltonian hypothesis:

• We limit ourselves to only nuclear spin degrees of freedom, which are 
decoupled from other degrees of freedom.

• Key question: how can we write down the spin Hamiltonian?
• In most cases, one can introduce s.H. by separating timescales of electronic 

and nuclear motions and by keeping in mind that nuclear spin energies are 
small 3
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Nuclear spin interactions
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Interactions

Electric Magnetic

Quadrupolar 
coupling, I>½

Zeeman 
interaction

Spin-spin 
interactions, J and D
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Angular momentum and magnetic moment
• In NMR we deal with spin magnetism. What is ‘spin’?
• Charged nucleus (or electron) is spinning: 

there is angular momentum (spin) and magnetic moment
attention: this is a simple view, which is not (entirely) correct

So, μ is proportional to a.m.; when a.m. is measured in ħ units

Is it entirely correct? The idea of a very small particle turning around is 
anyway a simplification…
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Angular momentum and magnetic moment

So, μ is proportional to a.m.; when a.m. is measured in ħ units

Quantum mechanics: this is not entirely correct

We are wrong by the g-factor! g=2 for an elementary spin-½ particle (Dirac)

How about nuclear spins?

Proton g-factor is significantly larger than 2, neutron has magnetic moment

Relation between µ and I: 
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Zeeman interaction
• Particles with I≠0 have magnetic moment and interact with external magnetic 

fields. The energy associated with this interaction is equal to

• The field can be static (along Z) or oscillating (along X/Y)
• Motion in the static field: precession of µ at the frequency ω=|γ|B
• Direction of precession depends on the sign of γ.
• Motion in the oscillating transverse field: spin nutation once the resonance 

condition is fulfilled
• The resonance frequency is determined by γ
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Nucleus Net Spin (MHz/T) NMR freq. @ 7 
Tesla (MHz)

Natl. abundance (%)

1H 1/2 42.58 300 99.98
2H 1 6.54 46 0.0115
13C 1/2 10.71 75 1.1
15N 1 -4.3 30 0.37
19F 1/2 40.08 282 100
31P 1/2 17.25 121 100



Chemical shift
• The simple expression                    is (completely) correct 

only for a nucleus in vacuum
• In molecules, electrons change the local field experienced 

by nuclei: Zeeman interaction is modified
• This is a two-stage process:
- the external B0 field induces currents in the electronic cloud
- when the electrons move, they change the magnetic field at 

the location of the nucleus: B0→Bloc=B0+Bind

• The Bind field is opposite in direction to B0: the field is 
“shielded” by the electrons

• There are two contributions to Bind (having similar 
magnitude but opposite signs)

- circulation of electrons in the ground state (diamagnetic)
- involvement of electrons in the excited state (paramagnetic)
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Chemical shift
• The induced field is always proportional to the B0 field, therefore

• The resonance frequency becomes
• The new parameter, δ (or σ), is called chemical shift: its precise value depends 

on the chemical environment of a nucleus (electron density, electronegativity of 
neighboring atoms, etc.).

• Thus, chemical shift is a very important source of information about molecular 
structure

• Chemical shift referencing:

• Chemical shift is usually small, so it is measured in ppm’s of ωref

• Protons have a spread of δ-values of several ppm; other nuclei have a much 
wide range of δ-values
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ωref is the NMR frequency of a standard 
reference compound (e.g., TMS)



Chemical shift tensor
• For a shape asymmetric molecule, the Bind and Bloc fields depend on the 

orientation

• The precise value of Bind depends on the orientation. Mathematically, this effect 
can be described by introducing the chemical shift tensor

• Hence, the induced field becomes:

• At high-fields, only the z-component is of importance
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Chemical shift tensor, continued
• The position of the NMR line is given by δzz, which is different for different 

orientations of the molecule
• In isotropic liquids, the result is simple: fast reorientation of the molecule gives 

rise to the symmetric CSA tensor. Hence, the isotropic chem. shift is

• In solids, for different orientations we obtain a different result.
• There are special directions, for which Bind is parallel to B0: principal axes of the 

δ-tensor. In the principal axes system (PAS) the tensor is diagonal:

• When the B0 field is parallel to X,Y,Z of the PAS, the line position is given by 
δxx, δyy, δzz. 11
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Spin-spin coupling
• Two nuclei are two magnetic moments, which interact

• There are two contributions:
- dipole-dipole interaction, goes through spaces, complete analogue of the 

classical DDI
- scalar coupling, bonding electrons are involved quantum effects

• Both contributions can be included in the spin Hamiltonian

• The DDI constant                       depends on the distance between the spins

• DDI depends on molecular orientation, given by the vector connecting the 
spins, J-coupling is isotropic
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Dipole-dipole coupling
• The DDI Hamiltonian can be written by using tensors:

• The D-tensor is a symmetric traceless tensor
• For this reason, on average DDI is zero: in isotropic liquids DDI does not 

change the position of NMR lines
• In solids, DDI gives rise to broad lines as it vanishes only at the magic angle.

• In high-field approximation (Zeeman term dominates)

• The coupling strength is

• Some numbers: proton-proton DDI at 1.5 Å is about 35 kHz
• DDI scales with γi×γk and decays as 1/r3 13
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Dipole-dipole coupling
• Spectral manifestation of DDI:
- In single crystals, DDI gives rise to splitting of the NMR lines. The splitting 
is given by dik at a specific Θik angle.
- In a powder, the splitting is different for different Θik angles (ranging from 0 
to π). To calculate the spectrum we need to calculate the splitting for each 
orientation and weight it with sinΘ.

• In some systems, e.g., liquid crystals, partial averaging of DDI takes place. 
Instead of DDI we deal with RDC (Residual Dipolar Coupling)
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Scalar coupling
• Indirect coupling, which goes through bonding electrons
• Physical origin:
- nuclear spins interact with the electrons (hyperfine coupling)
- electrons become partly ‘unpaired’ and
- start interacting with the other nucleus by creating a small magnetic field

• As a result, a nuclear spin-spin coupling emerges

• Typically, J-coupling is much smaller than DDI:
- For protons the largest coupling is usually the geminal coupling 2J (15-20 Hz, 

negative), vicinal coupling 3J is smaller (7 Hz, positive).
- For neighboring atoms in the molecule  J-couplings are bigger: about 135 Hz 

for 13C-H, about 50 Hz for 13C-13C
• J-couplings are not averaged out by motions. In liquid-state NMR they 

determine splitting of NMR multiplets 15
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• For simplicity, here we discuss only liquid-state NMR. We also ignore any 
details of the spin dynamics and use selection rules ΔIz=±1 for NMR 
transitions (single spin flips/flops)

• Hence, we try to construct “stick-spectra”. Interactions, which matter, are 
chemical shifts and J-couplings.

• Algorithm:
(1) Different nuclei give signals at very different frequencies because of the 
large differences in γ’s  in experiment we detect separately NMR signals from 
protons, or carbons, or nitrogens (etc.);
(2) Different nuclei of the same kind (e.g., protons) give NMR signals not 
exactly at the same frequency due to chemical shifts;
(3) Lines corresponding to certain nuclei are split due to the presence of other 
spins ½.

Having this strategy, we can draw NMR spectra

How can we read NMR spectra?

16



• (1) Spins will be considered weakly coupled: for each pair of non-equivalents 
spins difference in Zeeman interactions, ωi–ωj, is much larger than the 
corresponding coupling Jij;

• (2) Quantum mechanics (perturbation theory) tells us that we can leave only 
JijIizIjz terms (secular terms);

• (3) Equivalent spins do not interact with each other (in fact, they do, but 
these couplings cannot be detected).

• What do we call equivalent spins: 
- Same chemical shifts;
- Identical couplings to all other nuclei.

Simplifications
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NMR spectrum of two weakly coupled spins
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• Each spin ½ splits NMR line in two lines; their intensities are 2 times lower

• Coupling to a group of equivalent spins

What to do for a larget number of spins?
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Examples: CH3OH and CH3CH2OH
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1 1
3 3 NMR spectrum

of methanol
12 12

Intensity of all lines in the multiplet is proportional to the number of spins in the group
Splitting is the same for both spins (same J is operative)
Distribution of the intensities is given by Pascal’s triangle rules
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• Q.C. is an electric interaction, which is nonetheless included in the nuclear 
spin Hamiltonian

• Origin of Q.C.
- A nucleus has electric charges, which interact with external E-fields
- Positive electric charge can be distributed non-uniformly
- The charge distribution can be decomposed into multipole components 

(charge q, dipole moment d, quadrupolar moment Q, etc.); the same is true 
for the field: the potential is given by the potential V0 at the nucleus, its 
gradient V1, gradient of the gradient V2, etc.

- The energy of interaction is the sum of the following components:
E0, energy of q in potential V0

E1, energy of d in potential V1

E2, energy of Q in potential V2

continued...
• Important: nuclei have d=0! Shape of the nucleus, i.e. charge distribution, is 

related to the value of its spin I: Q=0 for I=0,½. Spin comes into play!

Quadrupolar coupling
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• Q.C. is of importance for nuclei with I>½ 
• It comes from interaction of Q with the electric field gradient at the nucleus
• E-field gradient is a tensor, V-tensor:

• As any other tensor, it has a PAS, in this frame, simply

• The interaction of the E-field gradient with Q can be expressed via I

• If HQ is much smaller than the Zeeman terms, we can use perturbation 
theory. First-order Q.C. is

• Second-order Q.C. is about 

Quadrupolar coupling
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• From the expression

we can see that
- Q.C. vanishes for I=0 and I=½ 
- Orientation dependence is given by Vzz, which is the zz-component of the V-

tensor.
- The result is different for a single crystal and for a powder sample
- The result is also different for half-integer and for integer I

• If we include the second-order terms into consideration the result becomes 
even more complex.

• In some cases, when Q is very large, we have to consider this contribution as 
well.

Quadrupolar coupling
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Single crystal:
Just two lines

• Each component is broadened, 
since the splitting is different for 
different orientations

• For axially-symmetric V-tensor 
Pake pattern is obtained

• Otherwise, the pattern is more 
complex

Quadrupolar coupling, integer spin

Powder spectra
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Single crystal:
Just two lines

• In a powder, the central line remain narrow
• Other lines get broadened, like in the previous example

Powder spectra

Quadrupolar coupling, half-integer spin



Summary, part 1

• Key NMR interactions are introduced;

• We may also need to mention spin-rotation interaction, which 
is usually (not always) not that important for NMR;

• Spectral manifestations of the interactions are discussed.
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Outline, part 2
• Notion of spin;

• Spin ensembles: density matrix;

• Density matrix description of NMR experiments;

• Some examples.
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Spin: some history
• Zeeman effect: lines split in the presence of magnetic field
• Normal Zeeman effect (theory by Lorentz): splitting into three 

components

• Atom is a harmonic oscillator, its frequency is 

• Problem: anomalous Zeeman effect also exists (met even more often)!

• A colleague who met me [Pauli] strolling rather aimlessly in the beautiful 
streets of Copenhagen said to me in a friendly manner, “You look very 
unhappy”; whereupon I answered fiercely, “How can one look happy 
when he is thinking about the anomalous Zeeman effect?”
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Spin: some history
• Pauli also tried to solve the problem concerning the number of electrons in 

each electron shell
• For a given n we have l from 0 to (n – 1), lz from – l to l               n2 states
• In reality there are 2n2 electrons in each shell. Why 2 electrons for n=1, 8 

electrons for n=2, 18 electrons for n=3?
• Pauli’s answer:

(1) there is one more quantum number, which 
can take only two possible values (Zweideutigkeit)
(2) there cannot be two electrons in the same state, i.e., with 
all q. numbers being the same – exclusion principle

• Problem: nice answer, which leads to even harder questions: Why is it so? 
What is the last quantum number? To what degree of freedom does it 
correspond?
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Spin: some history
• Uhlenbeck and Goudsmit: particles have “spin”, corresponding to rotation 

of a particle spinning around its own axis 
• Spin of the electron is ½: two states +½=“spin-up” and –½=“spin-down”
• This is not fully consistent from what people knew before. However, this is 

appropriate because spin is a quantum notion (we do not know why!)
• (S + L) can to explain the anomalous Zeeman effect (Pauli can be happy  )
• Stern-Gerlach experiment

30

 The beam of atoms is deflected by 
inhomogeneous field

 Reason: intrinsic magnetic moment 
(spin) of particles

 The distribution of the μ-vector is 
not continuous!

 Spin is quantized!!!



Spin
• Spin of a particle is its intrinsic angular momentum (as if the particle 

rotates). Honestly, nobody knows where spin comes from.
• Spin is a very fundamental concept, which also affects the symmetry of the 

w.f. of a system of identical particles. Example: Pauli principle.
• Spin is a quantum notion: it vanishes if we tend  ħ → 0!

• Spin operators are introduced in the same way as those for the angular 
momentum:
eigen-states are             ; S2=S(S+1), Sz varies from – S to S.
commutation rules are

• An important difference from angular momentum: spin can be half-integer
• Spin operators are (2S+1)*(2S+1) matrices
• For S=1/2 such matrices are related to the Pauli matrices

zyxyxzxzy SiSSSiSSSiSS ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[ ===

zSS ,
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Spin ½ 
• Spin operator can be written as

• Useful relations of the Pauli matrices:

• Every 2*2 hermitian matrix is a linear combination of the unity matrix and 
the Pauli matrices

• Rotations (same results as for L):
for an infinitely small rotation

for a rotation by an arbitrary angle (rotation by 2π changes the sign of ψ!)
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Spin ½: rotations
• Generally, the rotation operator is

• Explicitly, rotations about X,Y,Z

• Euler rotations
transition from any
reference frame to a new 
frame can be achieved 
by three elemental rotations

• We go from an old x,y,z to new x,y,z : zyz-rotation by α,β,γ
• The rotation operator is
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Spin evolution
• We can write the Schrödinger equation for the spin w.f.

• Here the Hamiltonian (operator, which stands for the energy) is a matrix, 
which acts on the spin w.f.; it includes magnetic interactions

• For instance, interaction with external field, spin-spin interactions, etc.

• To solve the time-dependent solution we first solve the eigen-problem

• Then the solution is

• Physical observables are:
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Spin Hamiltonian
• To calculate what happens to the spin system we need to know the 

Hamiltonian
• Spins are little magnets, μ is proportional to S

• Spin interactions coming from μ
 Zeeman interaction

in molecules this interaction is modified due to shielding of the external 
field (chemical shift). Generally, C.S. is a tensor

 Interaction with time-dependent RF-fields can be treated in the same way
 Spin-spin interaction

scalar dipolar

 Quadrupolar interaction
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Simple example: spin ½ particle in an external field
• The Hamiltonian

• Let us calculate the “spin polarization” vector:

• General expression for the w.f.:

• Calculation result:

• What happens to the P-vector? Example:

• The time-dependent S.e. gives the following result (Larmor precession):
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Ensemble of spins
• This is not the end of the story: the w.f. description is often not sufficient

• Example: N1 spins in the α-state and N2 spins in the β-state

• What is the P-vector in this case? 

• When spin ½ has a w.f. |P|=1: the spin ensemble does not have a w.f.!

• Similar problems arise when a system contains two subsystems: there 
might be a total w.f. existing, but (sometimes) no w.f. of a subsystem

• What should we do if the w.f. does not exist? Can we still evaluate 
expectation values of interest and describe experiments?
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Density matrix
• If we have two sub-ensembles, we calculate expectation values for each 

realization and then perform averaging

• From the mathematical point of view:

• The new operator is called “density operator” or “density matrix”
• The problem is solved: we can calculate expectation values!

• Questions:
Properties of the d.m.? Time-dependence of d.m.? 
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• Physical meaning of the elements:
Diagonal elements are populations
Off-diagonal elements are coherences ρmn (explained later)

• The trace of d.m. is equal to 1
• The d.m. is a hermitian matrix: (N 2 – 1) independent parameters

• When can we still use the w.f. description?
• When the w.f. is existing (pure state), we obtain

• When this relation does not hold (mixed state), we must not (!) use the w.f. 
description. Example: ensemble of spins-1/2 at equilibrium

In this case ρ2=ρ does not hold

2
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• D.m. of a spin ½ particle

• The polarization vector components are

• Rewriting the d.m.:

• The d.m. is expressed via the P-vector and the Pauli matrices

• Longitudinal M = Δ(population); transverse M = coherence
• Phase of the coherence: direction in the {x,y}-plane
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• D.m. of a spin ½ particle

• The polarization vector components are

• Rewriting the d.m.:

• We can use the operator basis (each matrix is like a basis ket)

• The d.m. is a vector in this basis:

• It is easy to obtain the equation of motion (comes later)
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Density matrix of a spin-½ particle
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Two or more spins ½
• The d.m. for two spins can be expressed in terms of product operators

• Each product operator is now a 4*4 matrix; likewise, the Hamiltonian is a 
4*4 matrix and it is expressed via the product operators

• What is the direct product (Kronecker product)?

• Example with 2 spins:

• Other operators can be constructed in the same way. More spins: use direct 
products of spin operators 
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Two spins ½
• Relation between populations/coherences and d.m. elements

• SQCs are given by Sx, Sy, SxIz, SyIz, Ix, Iy, SzIx, SzIy

• DQCs and ZQCs are given by combinations of SxIx, SyIy, SxIy, SyIx

• We can directly measure only transverse magnetization Sx, Sy, Ix, Iy

• Other operators cannot be observed directly, but they affect the signal
• Coherence order for ρmn:

βα
αβ

ββ

αα

Energy level diagram Density matrix

αα αβ βα ββ

αα pαα SQC SQC DQC

αβ SQC pαβ ZQC SQC

βα SQC ZQC pβα SQC

ββ DQC SQC SQC pββ
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• The S.e. in the bra and ket representations is

• The equation for the d.m. is as follows: 

Liouville-von Neumann equation
• The solution is simple for a time-independent Hamiltonian:

• For a time-dependent Hamiltonian we solve the equation numerically in 
small time steps or use some tricks

• The LvN equation is similar to that for the time-derivative of an operator in 
the Heisenberg representation. However, the sign is “–” and the meaning is 
different: in the Heisenberg representation the d.m. and w.f are constant
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How does the d.m. evolve?
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• The LvN equation is simple in the eigen-basis of the Hamiltonian

• The solution is also simple:

• Eigen-state populations do not evolve (a quantum system stays forever in an 
eigen-state); off-diagonal elements oscillate at the ωmn frequency 
(coherence).

• Oscillatory evolution comes about when the initial state is a coherent 
superposition of eigen-states.

• Expectation value of an operator evolves as follows:

coherences result in “quantum beats”

Time-dependence of the d.m.
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• The d.m. is

• Likewise, the Hamiltonian is:

• So, we can define the P-vector and the field-vector
• Substitution to the LvN equation:

• The commutator term is:

• Finally we obtain precession of the P-vector:

• Furthermore, all 2-level systems behave this way: precession of the effective 
spin in an external field in 3D. The prec. frequency is ωpr=|H|/ħ

Precession of spins ½

( ){ } ( ) ( )[ ]sssr ˆ,ˆ
2

ˆˆ2 


 ××-=×
¶
¶

=
¶
¶ PHiP

tt

[ ]PH
dt
Pd 




´= 1

( )[ ]sr ˆˆ
2
1

ˆ  ×+= PE

{ } ( )[ ]ŝˆTrˆ
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• Let us consider also the B1-field (circular polarization)

• The Hamiltonian is

• The LvN equation reads

• We can define the d.m. in the rotating frame (interaction representation)

• Equation for the new d.m.

• The result is (still) precession in an effective field

Magnetic resonance
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• We (usually) start with thermally polarized spins:

• The same is true in the rotating frame because the d.m. commutes with the 
rotation operator; the unity operator can be dropped off.

• The d.m. evolves under the action of a time-dependent Hamiltonian (pulses, 
free evolution, MAS)

• Solution methods: split the time-axis into small intervals δt, where H≈const

• Looks complex, but the idea is simple: each evolution period leads to two 
multiplications (at the left and at the right)

• In many cases the solution can only be done numerically
• When the Hamiltonian is changed in a periodic way, there are some tricks 

available (AHT, Floquet theory)

QM description of NMR experiments
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• What happens to the d.m. (magnetization) when we apply a pulse?

• The w.f. and d.m. after the pulse

• The action of a strong pulse is equivalent to a rotation (we assume that only 
the B1-term is relevant)

• A π/2-pulse generates a coherence, a π-pulse inverts the populations 

RF-pulses
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• Is there a simple way to calculate the effect of pulses?
• Three cyclically commuting operators:

• Example: 

• The following relation is then true:

• A, B, C are like the axis of our 3D-space; we “rotate” B “around” A by the 
angle θ. Cyclic permutations provide two more relations

• Of course, these rules apply to the spin operators
• RF-pulses give x and y-rotations. Free precession gives a z-rotation by a 

time-dependent angle ωt

“Sandwich relationships”
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• Different phases

x-pulse, p=0 y-pulse, p=π/2

–x-pulse, p=π  –y-pulse, p=2π/2

• Pulse of a general phase is a combination of three rotations

• Rotation about z turns the {x,y} axes; then a pulse is turning the spins around 
the new x; finally, we return to the original frame.

• Free precession is just a z-rotation

Phase of the pulse
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• Initial spin order is Sz

• A pulse generates transverse magnetization

• Free precession changes the d.m.

• We can detect the FID and obtain the spectrum by doing the Fourier 
transform

• Generally, the FID is

• If the receiver phase is 0 we obtain a positive Lorentzian (after adding T2)

when rec=π we obtain a negative line
when rec=±π/2 we obtain a dispersive line

Single-pulse NMR experiment
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• The Sx, Sy, Sz are not the only operators, which satisfy the cyclic commutation 
relation

• Other operators of this kind:

• The operator SzIz is often present in the Hamiltonian (secular interaction)
• We can immediately obtain what different interactions do

More complex NMR experiments

{ }zzzyx ISISS ˆˆ,ˆˆ,ˆ { }zzzxy ISISS ˆˆ,ˆˆ,ˆ

Effect of the chemical shift:
Sx  Sxcos(ωat)+Sysin(ωat)

Effect of J-coupling with spin I:
Sx  Sxcos(Jabt)+SyIzsin(Jabt)

y

x

β α

y

x

β α

x-component changes in the usual way; y-component is given by 
the population difference of the α- and β-states of spin I, which is Iz 53



Key to simple experiments (from Shimon Vega)
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Example: COSY experiment

COSY: J-coupling (through 
bond connectivities of neigh-
boring atoms, max. ~3 bonds)

t1 t2

How does it work?

Sz  –Sx  Sx   Sx  – Sy

x-magnetization stays on spin a
The efficiency of this pathway is
sin(ωat1)cos(Jabt1)sin(ωat2)cos(Jabt2)

A diagonal peak will appear in the COSY-
spectrum

π/2x        t1      π/2x      t2

Gain is two-fold:
(1) Spectral resolution is increased because peaks become resolved in 2D;
(2) Knowledge on additional coherence pathways can be obtained.

π/2                     π/2
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Example: COSY experiment

COSY: J-coupling (through 
bond connectivities of neigh-
boring atoms, max. ~3 bonds)

t1 t2

How does it work?

Sz  –Sy  2SyIz   2SzIx  –Iy

x-magnetization has gone from spin a to 
spin b
The efficiency of transfer is
sin(ωat1)sin(Jabt1) sin(ωbt2)sin(Jabt2)

A cross-peak will appear in the COSY-
spectrum
The cross-peak is the direct evidence for 
J-coupling

π/2x       Jab         π/2x           Jab

Gain is two-fold:
(1) Spectral resolution is increased because peaks become resolved in 2D;
(2) Knowledge on additional coherence pathways can be obtained.

π/2                     π/2
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Example: COSY experiment

COSY: J-coupling (through 
bond connectivities of neigh-
boring atoms, max. ~3 bonds)

Result for more than 2 spins

When the spins are scalar coupled cross-peak will appear
In 2D peaks, which overlap in 1D-spectrum, become resolved

ω1→
ω 2→

Ω1             Ω2            Ω3  Ω4
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Summary, part 2

 Density matrix description of spin ensembles

 QM description of NMR experiments

 QM in action: some NMR examples
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Example: INEPT experiment

NMR signal is proportional to the γ-ratio

4 times higher signals for protons than for 
13C; even 10 higher than for 15N

Possible improvement is polarization 
transfer 1H→X-spin

NOE is not (always) the best solution: 
coherent mechanism and proper pulsing 
work better

INEPT=Insensitive Nuclei Enhanced by 
Polarization Transfer

Populations at equilibrium 
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ββ

βα

αβ

1H13C

1H

13C

αα

ββ

βα

αβ

1H13C

13C
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INEPT experiment: explanation

All spins are along x

τ

t2

τ

π/2         π         π/2

π/2         π         π/2

1H

X

INEPT: transferring polarization 
from proton to X-nucleus

y

x

β α



INEPT experiment: explanation

τ

t2

τ

π/2         π         π/2

π/2         π         π/2

1H

X

INEPT: transferring polarization 
from proton to X-nucleus

For τ =1/4J the angle between 
spins is 90 degrees

y

x

β α



INEPT experiment: explanation

τ

t2

τ

π/2         π         π/2

π/2         π         π/2

1H

X

INEPT: transferring polarization 
from proton to X-nucleus

Components are flip by 
protons pulse
Their colors are exchanged by 
X-nucleus pulse

y

x

βα



INEPT experiment: explanation

τ

t2

τ

π/2         π         π/2

π/2         π         π/2

1H

X

INEPT: transferring polarization 
from proton to X-nucleus

Spins are along y for τ =1/4J

The last proton pulse results in one 
component positive and one 
negative
Reminder: first both were positive

y

x

βα



INEPT experiment: explanation

τ

t2

τ

π/2         π         π/2

π/2         π         π/2

1H

X

INEPT: transferring polarization 
from proton to X-nucleus

Pulses really make possible many 
nice tricks with spins 

Resulting populations

Now the final pulse for X-nucleus 
does the detection
The gain is given by the ratio of 
gammas
The gain can be further increased 
when NMR of X is detected via 
protons
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