4th NMR Meets Biology Meeting

NMR introduction:

Quantum mechanics meets NMR

Konstantin Ivanov (Novosibirsk, Russia)

Part 1: NMR interactions

Part 2: Basics of spin dynamics

Khajuraho, India, 16-21 December 2018

Outline, part 1

- Zeeman interaction
- Chemical shift, chemical shift anisotropy;
- Spin-spin interactions: dipolar coupling and scalar coupling;
- Quadrupolar interaction.

Spin Hamiltonian

- In quantum mechanics, we need to solve the Schrödinger equation for ψ or the Liouville-von Neumann equation for ρ
- Generally, we need to write down and solve the following equation:

$$
\frac{\partial}{\partial t}|\psi\rangle=-i \hat{H}|\psi\rangle
$$

Here ψ is the w.f. of the entire system of electrons and nuclei. This equation is virtually impossible to solve.

- Solution is provided by the spin Hamiltonian hypothesis:

$$
\frac{\partial}{\partial t}\left|\psi_{\text {spin }}\right\rangle=-i \hat{H}_{\text {spin }}\left|\psi_{\text {spin }}\right\rangle
$$

- We limit ourselves to only nuclear spin degrees of freedom, which are decoupled from other degrees of freedom.
- Key question: how can we write down the spin Hamiltonian?
- In most cases, one can introduce s.H. by separating timescales of electronic and nuclear motions and by keeping in mind that nuclear spin energies are small

Nuclear spin interactions

Angular momentum and magnetic moment

- In NMR we deal with spin magnetism. What is 'spin'?
- Charged nucleus (or electron) is spinning: there is angular momentum (spin) and magnetic moment attention: this is a simple view, which is not (entirely) correct

$\begin{aligned} & \text { The electric current for a charged } \\ & \text { particle moving around }\end{aligned} \quad I=\frac{q v}{2 \pi r}$ particle moving around

$$
\vec{\mu}=\frac{I S}{c} \vec{n}=\frac{q v r}{2 c} \vec{n}=\frac{q}{2 m c} \vec{J}
$$

So, μ is proportional to $a . m$.; when $a . m$. is measured in \hbar units $\quad \vec{\mu}=\frac{q \hbar}{2 m c} \vec{S}$
Is it entirely correct? The idea of a very small particle turning around is anyway a simplification...

Angular momentum and magnetic moment

So, μ is proportional to $a . m$.; when a.m. is measured in \hbar units
Quantum mechanics: this is not entirely correct
We are wrong by the g -factor! $\mathrm{g}=2$ for an elementary spin- $1 / 2$ particle (Dirac)

$$
\begin{aligned}
& \vec{\mu}_{e}=g_{e} \mu_{B} \vec{S}, \quad \mu_{B}=-\frac{e \hbar}{2 m_{e} c}, \quad g_{e}=2\left(1+\frac{\alpha}{2 \pi}+\ldots\right) \approx 2.0023 \quad \text { (QED result) } \\
& \text { How about nuclear spins? }
\end{aligned}
$$

$\vec{\mu}_{N}=g_{N} \mu_{N} \vec{I}, \quad \mu_{N}=\frac{e \hbar}{2 M c}, \quad g_{N} \neq 1 \quad\left(g_{p} \approx 5.58, g_{n}=-\frac{2}{3} g_{p} \approx 3.83\right.$, QCD result $)$
Proton g-factor is significantly larger than 2 , neutron has magnetic moment
Relation between μ and $I: 乙 \vec{\mu}_{e}=\gamma_{e} \vec{S}, \quad \gamma_{e}=g_{e} \mu_{B}$

γ-ratio,
gyromagnetic
ratio

Zeeman interaction

- Particles with $I \neq 0$ have magnetic moment and interact with external magnetic fields. The energy associated with this interaction is equal to

$$
E=-(\vec{\mu} \cdot \vec{B}) \rightleftarrows \hat{H}=-(\hat{\vec{\mu}} \cdot \vec{B})=-\gamma(\hat{\vec{I}} \cdot \vec{B})
$$

- The field can be static (along Z) or oscillating (along X/Y)
- Motion in the static field: precession of μ at the frequency $\omega=|\gamma| B$
- Direction of precession depends on the sign of γ.
- Motion in the oscillating transverse field: spin nutation once the resonance condition is fulfilled
- The resonance frequency is determined by γ

Nucleus	Net Spin	$\mathbf{(M H z / T)}$	NMR freq. @ 7 Tesla (MHz)	Natl. abundance (\%)
${ }^{1} \mathrm{H}$	$1 / 2$	42.58	300	99.98
${ }^{2} \mathrm{H}$	1	6.54	46	0.0115
${ }^{13} \mathrm{C}$	$1 / 2$	10.71	75	1.1
${ }^{15} \mathrm{~N}$	1	-4.3	30	0.37
${ }^{19} \mathrm{~F}$	$1 / 2$	40.08	282	100
${ }^{31} \mathrm{P}$	$1 / 2$	17.25	121	100

Chemical shift

- The simple expression $\vec{\mu}_{N}=\gamma_{N} \hat{\vec{I}}$ is (completely) correct only for a nucleus in vacuum
- In molecules, electrons change the local field experienced by nuclei: Zeeman interaction is modified
- This is a two-stage process:
- the external B_{0} field induces currents in the electronic cloud
- when the electrons move, they change the magnetic field at the location of the nucleus: $\mathrm{B}_{0} \rightarrow \mathrm{~B}_{\text {loc }}=\mathrm{B}_{0}+\mathrm{B}_{\text {ind }}$
- The $\mathrm{B}_{\text {ind }}$ field is opposite in direction to B_{0} : the field is "shielded" by the electrons
- There are two contributions to $\mathrm{B}_{\text {ind }}$ (having similar magnitude but opposite signs)
- circulation of electrons in the ground state (diamagnetic)
- involvement of electrons in the excited state (paramagnetic)

Chemical shift

- The induced field is always proportional to the B_{0} field, therefore

$$
\vec{B}_{\text {loc }}=\vec{B}_{0}+\vec{B}_{i n d}=\vec{B}_{0}+\delta \vec{B}_{0}=\vec{B}_{0}(1+\delta)
$$

- The resonance frequency becomes $\omega=\gamma_{N} B_{0}(1+\delta)=\gamma_{N} B_{0}(1-\sigma)$
- The new parameter, δ (or σ), is called chemical shift: its precise value depends on the chemical environment of a nucleus (electron density, electronegativity of neighboring atoms, etc.).
- Thus, chemical shift is a very important source of information about molecular structure
- Chemical shift referencing:

$$
\delta=\frac{\omega-\omega_{\text {ref }}}{\omega_{\text {ref }}} \quad \begin{aligned}
& \omega_{\text {ref }} \text { is the NMR frequency of a standard } \\
& \text { reference compound (e.g., TMS) }
\end{aligned}
$$

- Chemical shift is usually small, so it is measured in ppm's of $\omega_{\text {ref }}$
- Protons have a spread of δ-values of several ppm; other nuclei have a much wide range of δ-values

Chemical shift tensor

- For a shape asymmetric molecule, the $B_{\text {ind }}$ and $B_{l o c}$ fields depend on the orientation

The $B_{\text {ind }}$ value is different in these two cases

- The precise value of $B_{\text {ind }}$ depends on the orientation. Mathematically, this effect can be described by introducing the chemical shift tensor

$$
\vec{B}_{i n d}=\hat{\delta} \vec{B}_{0} \quad \hat{\delta}=\left(\begin{array}{ccc}
\delta_{x x} & \delta_{x y} & \delta_{x z} \\
\delta_{y x} & \delta_{y y} & \delta_{y z} \\
\delta_{z x} & \delta_{z y} & \delta_{z z}
\end{array}\right)
$$

- Hence, the induced field becomes:

$$
\vec{B}_{i n d}=B_{0}\left(\begin{array}{l}
\delta_{x z} \\
\delta_{y z} \\
\delta_{z z}
\end{array}\right)
$$

- At high-fields, only the z-component is of importance

Chemical shift tensor, continued

- The position of the NMR line is given by $\delta_{z z}$, which is different for different orientations of the molecule
- In isotropic liquids, the result is simple: fast reorientation of the molecule gives rise to the symmetric CSA tensor. Hence, the isotropic chem. shift is

$$
\delta_{i s o}=\frac{1}{3}\left(\delta_{x x}+\delta_{y y}+\delta_{z z}\right)=\frac{1}{3} \operatorname{Tr}\{\hat{\delta}\}
$$

- In solids, for different orientations we obtain a different result.
- There are special directions, for which $B_{\text {ind }}$ is parallel to B_{0} : principal axes of the δ-tensor. In the principal axes system (PAS) the tensor is diagonal:

$$
\hat{\delta}=\left(\begin{array}{ccc}
\delta_{x x} & 0 & 0 \\
0 & \delta_{y y} & 0 \\
0 & 0 & \delta_{z z}
\end{array}\right)
$$

- When the B_{0} field is parallel to $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ of the PAS, the line position is given by $\delta_{x x}, \delta_{y y}, \delta_{z z}$.

Spin-spin coupling

- Two nuclei are two magnetic moments, which interact
- There are two contributions:

- dipole-dipole interaction, goes through spaces, complete analogue of the classical DDI
- scalar coupling, bonding electrons are involved quantum effects
- Both contributions can be included in the spin Hamiltonian

$$
\hat{H}_{D}=b_{i k}\left\{3\left(\hat{\bar{I}}_{i} \cdot \vec{e}_{i k}\right)\left(\hat{\bar{I}}_{k} \cdot \vec{e}_{i k}\right)-\hat{\bar{I}}_{i} \cdot \hat{\vec{I}}_{k}\right\}
$$

$$
\hat{H}_{D}=J_{i k}\left(\hat{\vec{I}}_{i} \cdot \hat{\vec{I}}_{k}\right)
$$

- The DDI constant $b_{i k}=-\frac{\hbar \gamma_{i} \gamma_{k}}{r_{i k}^{3}}$ depends on the distance between the spins
- DDI depends on molecular orientation, given by the vector connecting the spins, J-coupling is isotropic

Dipole-dipole coupling

- The DDI Hamiltonian can be written by using tensors:

$$
\hat{H}_{D}=b_{i k}\left\{3\left(\hat{\vec{I}}_{i} \cdot \vec{e}_{i k}\right)\left(\hat{\vec{I}}_{k} \cdot \vec{e}_{i k}\right)-\hat{\vec{I}}_{i} \cdot \hat{\bar{I}}_{k}\right\}=\hat{\bar{I}}_{i} \hat{\mathbf{D}}_{i k} \hat{\vec{I}}_{k}
$$

- The D-tensor is a symmetric traceless tensor
- For this reason, on average DDI is zero: in isotropic liquids DDI does not change the position of NMR lines
- In solids, DDI gives rise to broad lines as it vanishes only at the magic angle.
- In high-field approximation (Zeeman term dominates)

$$
\begin{array}{cc}
\hat{H}_{D}=d_{i k}\left\{\hat{I}_{i z} \hat{I}_{k z}-\hat{\vec{I}}_{i} \cdot \hat{\vec{I}}_{k}\right\} & \text { Homonuclear case } \\
\hat{H}_{J}=d_{i k} 2 \hat{I}_{i z} \hat{I}_{k z} & \text { Heteronuclear case }
\end{array}
$$

- The coupling strength is $d_{i k}=\frac{1}{3} b_{i k}\left[3 \cos \Theta_{i k}-1\right]$

- Some numbers: proton-proton DDI at $1.5 \AA$ is about 35 kHz
- DDI scales with $\gamma_{i} \times \gamma_{k}$ and decays as $1 / r^{3}$

Dipole-dipole coupling

- Spectral manifestation of DDI:
- In single crystals, DDI gives rise to splitting of the NMR lines. The splitting is given by $d_{i k}$ at a specific $\Theta_{i k}$ angle.
- In a powder, the splitting is different for different $\Theta_{i k}$ angles (ranging from 0 to π). To calculate the spectrum we need to calculate the splitting for each orientation and weight it with $\sin \Theta$.

Splitting $\propto\left(3 \cos ^{2} \Theta-1\right)$

$$
\Theta \in[0, \pi]
$$

Such a pattern is termed Pake doublet

- In some systems, e.g., liquid crystals, partial averaging of DDI takes place. Instead of DDI we deal with RDC (Residual Dipolar Coupling)

$$
\mathrm{RDC}_{i k}=\frac{1}{3} b_{i k}\left\langle 3 \cos \Theta_{i k}-1\right\rangle
$$

Scalar coupling

- Indirect coupling, which goes through bonding electrons
- Physical origin:
- nuclear spins interact with the electrons (hyperfine coupling)
- electrons become partly 'unpaired' and
- start interacting with the other nucleus by creating a small magnetic field
- As a result, a nuclear spin-spin coupling emerges $\hat{H}_{J}=J_{i k}\left(\hat{\bar{I}}_{i} \cdot \hat{\bar{I}}_{k}\right)$
- Typically, J-coupling is much smaller than DDI:

- For protons the largest coupling is usually the geminal coupling ${ }^{2 J}(15-20 \mathrm{~Hz}$, negative), vicinal coupling ${ }^{3} \mathrm{~J}$ is smaller (7 Hz , positive).
- For neighboring atoms in the molecule J-couplings are bigger: about 135 Hz for ${ }^{13} \mathrm{C}-\mathrm{H}$, about 50 Hz for ${ }^{13} \mathrm{C}-{ }^{13} \mathrm{C}$
- J-couplings are not averaged out by motions. In liquid-state NMR they determine splitting of NMR multiplets

How can we read NMR spectra?

- For simplicity, here we discuss only liquid-state NMR. We also ignore any details of the spin dynamics and use selection rules $\Delta I_{z}= \pm 1$ for NMR transitions (single spin flips/flops)
- Hence, we try to construct "stick-spectra". Interactions, which matter, are chemical shifts and J-couplings.
- Algorithm:
(1) Different nuclei give signals at very different frequencies because of the large differences in γ 's \Rightarrow in experiment we detect separately NMR signals from protons, or carbons, or nitrogens (etc.);
(2) Different nuclei of the same kind (e.g., protons) give NMR signals not exactly at the same frequency due to chemical shifts;
(3) Lines corresponding to certain nuclei are split due to the presence of other spins $1 / 2$.

Having this strategy, we can draw NMR spectra

Simplifications

- (1) Spins will be considered weakly coupled: for each pair of non-equivalents spins difference in Zeeman interactions, $\omega_{i}-\omega_{j}$, is much larger than the corresponding coupling $J_{i j}$;
- (2) Quantum mechanics (perturbation theory) tells us that we can leave only $J_{i j} I_{i z} I_{j z}$ terms (secular terms);
- (3) Equivalent spins do not interact with each other (in fact, they do, but these couplings cannot be detected).
- What do we call equivalent spins:
- Same chemical shifts;
- Identical couplings to all other nuclei.

NMR spectrum of two weakly coupled spins

Without interaction

4 transitions from rules $\Delta I_{z}= \pm 1 ; 2$ lines because transitions overlap

With interaction

4 transitions from rules $\Delta I_{z}= \pm 1 ; 4$ lines because transitions do not overlap

What to do for a larget number of spins?

- Each spin $1 / 2$ splits NMR line in two lines; their intensities are 2 times lower

No other spins

- Coupling to a group of equivalent spins

Relative line intensities
in the multiplet

\left.| 1 | | | |
| :---: | :---: | :---: | :---: |
| | 1 | 1 | |
| | 1 | 2 | 1 |$\right]$

Examples: $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$

NMR spectrum of methanol

Intensity of all lines in the multiplet is proportional to the number of spins in the group Splitting is the same for both spins (same J is operative)
Distribution of the intensities is given by Pascal's triangle rules

Quadrupolar coupling

- Q.C. is an electric interaction, which is nonetheless included in the nuclear spin Hamiltonian
- Origin of Q.C.
- A nucleus has electric charges, which interact with external E-fields
- Positive electric charge can be distributed non-uniformly
- The charge distribution can be decomposed into multipole components (charge q, dipole moment d, quadrupolar moment Q, etc.); the same is true for the field: the potential is given by the potential V_{0} at the nucleus, its gradient V_{1}, gradient of the gradient V_{2}, etc.
- The energy of interaction is the sum of the following components:

$$
\begin{aligned}
& E_{0} \text {, energy of } q \text { in potential } V_{0} \\
& E_{1} \text {, energy of } d \text { in potential } V_{1} \\
& E_{2} \text {, energy of } Q \text { in potential } V_{2} \\
& \text { continued... }
\end{aligned}
$$

- Important: nuclei have $d=0$! Shape of the nucleus, i.e. charge distribution, is related to the value of its spin I : $Q=0$ for $I=0,1 / 2$. Spin comes into play!

Quadrupolar coupling

- Q.C. is of importance for nuclei with $I>1 / 2$
- It comes from interaction of Q with the electric field gradient at the nucleus
- E-field gradient is a tensor, V-tensor: $V_{i j}=\frac{\partial^{2} V}{\partial r_{i} \partial r_{j}}$
- As any other tensor, it has a PAS, in this frame, simply

$$
\hat{V}=\left(\begin{array}{ccc}
V_{x x} & 0 & 0 \\
0 & V_{y y} & 0 \\
0 & 0 & V_{z z}
\end{array}\right)
$$

- The interaction of the E-field gradient with Q can be expressed via I

$$
\hat{H}_{Q}=\frac{e Q}{2 I(2 I-1) \hbar} \hat{\vec{I}} \hat{\mathbf{V}} \hat{\vec{I}}
$$

- If H_{Q} is much smaller than the Zeeman terms, we can use perturbation theory. First-order Q.C. is $_{Q}^{(1)}=\frac{1}{6} \omega_{Q}^{(1)}\left(3 \hat{I}_{z}^{2}-I(I+1)\right), \omega_{Q}^{(1)}=\frac{3 e Q V_{z z}}{2 I(2 I-1) \hbar}$
- Second-order Q.C. is about $\quad \omega_{Q}^{(2)} \sim\left(\omega_{Q}^{(1)}\right)^{2} / \omega_{0}$

Quadrupolar coupling

- From the expression
we can see that

$$
\hat{H}_{Q}^{(1)}=\frac{1}{6} \omega_{Q}^{(1)}\left(3 \hat{I}_{z}^{2}-I(I+1)\right), \omega_{Q}^{(1)}=\frac{3 e Q V_{z z}}{2 I(2 I-1) \hbar}
$$

- Q.C. vanishes for $I=0$ and $I=1 / 2$
- Orientation dependence is given by $V_{z z}$, which is the zz-component of the Vtensor.
- The result is different for a single crystal and for a powder sample
- The result is also different for half-integer and for integer I
- If we include the second-order terms into consideration the result becomes even more complex.
- In some cases, when Q is very large, we have to consider this contribution as well.

Quadrupolar coupling, integer spin
 Spin I = 1

Single crystal: Just two lines

Quadrupolar

- Each component is broadened, since the splitting is different for different orientations
- For axially-symmetric V-tensor Pake pattern is obtained
- Otherwise, the pattern is more
complex

Quadrupolar coupling, half-integer spin

Single crystal: Just two lines

- In a powder, the central line remain narrow
- Other lines get broadened, like in the previous example

Summary, part 1

- Key NMR interactions are introduced;
- We may also need to mention spin-rotation interaction, which is usually (not always) not that important for NMR;
- Spectral manifestations of the interactions are discussed.

Outline, part 2

- Notion of spin;
- Spin ensembles: density matrix;
- Density matrix description of NMR experiments;
- Some examples.

Spin: some history

- Zeeman effect: lines split in the presence of magnetic field
- Normal Zeeman effect (theory by Lorentz): splitting into three

$$
\text { of } \boldsymbol{B}_{0} \| Z
$$

- Atom is a harmonic oscillator, its frequency is

$$
\omega_{0} ; \omega_{0} \pm \Omega \quad \Omega=\frac{e B_{0}}{2 m_{e}}
$$

- Problem: anomalous Zeeman effect also exists (met even more often)!
- A colleague who met me [Pauli] strolling rather aimlessly in the beautiful streets of Copenhagen said to me in a friendly manner, "You look very unhappy"; whereupon I answered fiercely, "How can one look happy when he is thinking about the anomalous Zeeman effect?"

Spin: some history

- Pauli also tried to solve the problem concerning the number of electrons in each electron shell
- For a given n we have l from 0 to $(n-1), l_{z}$ from $-l$ to $l \longmapsto n^{2}$ states
- In reality there are $2 n^{2}$ electrons in each shell. Why 2 electrons for $n=1,8$ electrons for $n=2,18$ electrons for $n=3$?
- Pauli's answer:
(1) there is one more quantum number, which can take only two possible values (Zweideutigkeit)
(2) there cannot be two electrons in the same state, i.e., with all q . numbers being the same - exclusion principle

- Problem: nice answer, which leads to even harder questions: Why is it so? What is the last quantum number? To what degree of freedom does it correspond?

Spin: some history

- Uhlenbeck and Goudsmit: particles have "spin", corresponding to rotation of a particle spinning around its own axis
- Spin of the electron is $1 / 2$: two states $+1 / 2=$ "spin-up" and $-1 / 2=$ "spin-down"
- This is not fully consistent from what people knew before. However, this is appropriate because spin is a quantum notion (we do not know why!)
- $(\mathrm{S}+\mathrm{L})$ can to explain the anomalous Zeeman effect (Pauli can be happy ())
- Stern-Gerlach experiment
\checkmark The beam of atoms is deflected by inhomogeneous field
\checkmark Reason: intrinsic magnetic moment (spin) of particles
\checkmark The distribution of the μ-vector is not continuous!
\checkmark Spin is quantized!!!

Spin

- Spin of a particle is its intrinsic angular momentum (as if the particle rotates). Honestly, nobody knows where spin comes from.
- Spin is a very fundamental concept, which also affects the symmetry of the w.f. of a system of identical particles. Example: Pauli principle.
- Spin is a quantum notion: it vanishes if we tend $\hbar \rightarrow 0$!
- Spin operators are introduced in the same way as those for the angular momentum:
eigen-states are $\left|S, S_{z}\right\rangle ; S^{2}=S(S+1), S_{z}$ varies from $-S$ to S.
commutation rules are

$$
\left[\hat{S}_{y}, \hat{S}_{z}\right]=i \hat{S}_{x},\left[\hat{S}_{z}, \hat{S}_{x}\right]=i \hat{S}_{y},\left[\hat{S}_{x}, \hat{S}_{y}\right]=i \hat{S}_{z}
$$

- An important difference from angular momentum: spin can be half-integer
- Spin operators are $(2 S+1) *(2 S+1)$ matrices
- For $S=1 / 2$ such matrices are related to the Pauli matrices

Spin $1 / 2$

- Spin operator can be written as

$$
\hat{S}=\frac{1}{2} \hat{\sigma}, \quad \hat{\sigma}_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \hat{\sigma}_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \hat{\sigma}_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \begin{aligned}
& \alpha\rangle=|\uparrow\rangle \\
& |\beta\rangle=|\downarrow\rangle
\end{aligned}
$$

- Useful relations of the Pauli matrices:

$$
\begin{aligned}
\hat{\sigma}_{x}^{2}=\hat{\sigma}_{y}^{2}=\hat{\sigma}_{z}^{2} & =\hat{e}, \quad \hat{\sigma}_{y} \hat{\sigma}_{z}=i \hat{\sigma}_{x}, \quad \hat{\sigma}_{z} \hat{\sigma}_{x}=i \hat{\sigma}_{y}, \quad \hat{\sigma}_{x} \hat{\sigma}_{y}=i \hat{\sigma}_{z} \\
\hat{\sigma}_{i} \hat{\sigma}_{k}+\hat{\sigma}_{k} \hat{\sigma}_{i} & =2 \delta_{i k}, \quad\left[\hat{\sigma}_{i}, \hat{\sigma}_{j}\right]=2 i \varepsilon_{i j k} \hat{\sigma}_{k}, \quad \operatorname{Tr}\left\{\hat{\sigma}_{i}\right\}=0
\end{aligned}
$$

- Every $2 * 2$ hermitian matrix is a linear combination of the unity matrix and the Pauli matrices
- Rotations (same results as for L): for an infinitely small rotation

$$
\hat{U}(\vec{n}, \delta \varphi)=1-i \delta \varphi(\vec{n} \cdot \hat{S})
$$

for a rotation by an arbitrary angle (rotation by 2π changes the sign of $\psi!$)

$$
\hat{U}(\vec{n}, \varphi)=\exp [-i \varphi(\vec{n} \cdot \hat{\sigma}) / 2]=\cos \frac{\varphi}{2}-i(\vec{n} \cdot \hat{\sigma}) \sin \frac{\varphi}{2}
$$

Spin $1 / 2$: rotations

- Generally, the rotation operator is

$$
\hat{U}(\vec{n}, \varphi)=\exp [-i \varphi(\vec{n} \cdot \hat{\sigma}) / 2]=\cos \frac{\varphi}{2}-i(\vec{n} \cdot \hat{\sigma}) \sin \frac{\varphi}{2}
$$

- Explicitly, rotations about X, Y, Z

$$
\hat{U}_{x}(\varphi)=\left(\begin{array}{cc}
\cos \frac{\varphi}{2} & \sin \frac{\varphi}{2} \\
\sin \frac{\varphi}{2} & \cos \frac{\varphi}{2}
\end{array}\right), \hat{U}_{y}(\varphi)=\left(\begin{array}{cc}
\cos \frac{\varphi}{2} & i \sin \frac{\varphi}{2} \\
-i \sin \frac{\varphi}{2} & \cos \frac{\varphi}{2}
\end{array}\right), \hat{U}_{z}(\varphi)=\left(\begin{array}{cc}
e^{i \varphi / 2} & 0 \\
0 & e^{-i \varphi / 2}
\end{array}\right),
$$

- Euler rotations transition from any reference frame to a new frame can be achieved
 by three elemental rotations
- We go from an old x, y, z to new $x, y, z: z y z$-rotation by α, β, γ
- The rotation operator is

$$
\hat{R}=\hat{R}(\alpha, \beta, \gamma)=\hat{R}_{z "}(\gamma) \hat{R}_{y}(\beta) \hat{R}_{z}(\alpha)
$$

Spin evolution

- We can write the Schrödinger equation for the spin w.f.

$$
i \hbar \frac{\partial}{\partial t} \Psi=\hat{H} \Psi, \quad \Psi(t=0)=\Psi_{0}
$$

- Here the Hamiltonian (operator, which stands for the energy) is a matrix, which acts on the spin w.f.; it includes magnetic interactions
- For instance, interaction with external field, spin-spin interactions, etc.

$$
\hat{H}=-\omega_{0} \sum_{i}\left(1+\delta_{i}\right) \hat{S}_{i z}+\sum_{j<i} J_{i j}\left(\hat{S}_{i} \cdot \hat{S}_{j}\right)
$$

- To solve the time-dependent solution we first solve the eigen-problem

$$
\hat{H}\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle, \quad\left|\Psi_{0}\right\rangle=\sum_{n} c_{n}\left|\Psi_{n}\right\rangle
$$

- Then the solution is $|\Psi(t)\rangle=\sum_{n} c_{n} e^{-i E_{n} t / \hbar} \mid \Psi_{n}$
- Physical observables are:

$$
\langle f\rangle=\langle\Psi(t)| \hat{f}|\Psi(t)\rangle=\sum_{m n} \exp \left(i \omega_{m n} t\right) c_{m}^{*} c_{n} f_{m n}, \omega_{m n}=\left(E_{m}-E_{n}\right) / \hbar
$$

Spin Hamiltonian

- To calculate what happens to the spin system we need to know the Hamiltonian
- Spins are little magnets, μ is proportional to $S \quad \vec{\mu}=g \frac{q \hbar}{2 m c} \vec{S}$
- Spin interactions coming from μ
\checkmark Zeeman interaction

$$
E=-(\vec{\mu} \cdot \vec{B})=-g \beta B_{0} \hat{S}_{z}=-\hbar \omega_{0} \hat{S}_{z}
$$

in molecules this interaction is modified due to shielding of the external field (chemical shift). Generally, C.S. is a tensor
\checkmark Interaction with time-dependent RF-fields can be treated in the same way
\checkmark Spin-spin interaction
scalar

$$
E=J\left(\vec{S}_{1} \cdot \vec{S}_{2}\right)
$$

\checkmark Quadrupolar interaction

Simple example: spin $1 / 2$ particle in an external field

- The Hamiltonian $\hat{H}=-\hbar \omega_{0} \hat{S}_{z}, \quad E_{\alpha, \beta}=\mp \hbar \omega_{0} / 2$
- Let us calculate the "spin polarization" vector: $\vec{P}=\langle\hat{\sigma}\rangle \propto \vec{J} \propto \vec{M}$
- General expression for the w.f.: $|\Psi\rangle=\cos \frac{\theta}{2}|\alpha\rangle+e^{i \delta} \sin \frac{\theta}{2}|\beta\rangle$
- Calculation result:
$P_{x}=\sin \theta \cos \delta, \quad P_{y}=\sin \theta \sin \delta, \quad P_{z}=\cos \theta \Rightarrow|\vec{P}|=1$
- What happens to the P-vector? Example:

$$
\left.\left|\Psi_{0}\right\rangle=\frac{1}{\sqrt{2}}(\alpha\rangle+|\beta\rangle\right) \Rightarrow \theta=\frac{\pi}{2}, \delta=0 \Rightarrow \vec{P} \| x
$$

- The time-dependent S.e. gives the following result (Larmor precession):

$$
P_{x}(t)=\cos \left(\omega_{0} t\right), \quad P_{y}(t)=-\sin \left(\omega_{0} t\right), \quad P_{z}(t)=0
$$

Ensemble of spins

- This is not the end of the story: the w.f. description is often not sufficient
- Example: N_{1} spins in the α-state and N_{2} spins in the β-state
- What is the P-vector in this case?

$$
P_{x}=P_{y}=0, \quad P_{z}=(+1) \frac{N_{1}}{N_{1}+N_{2}}+(-1) \frac{N_{2}}{N_{1}+N_{2}} \Rightarrow|P| \leq 1
$$

- When spin $1 / 2$ has a w.f. $|P|=1$: the spin ensemble does not have a w.f.!
- Similar problems arise when a system contains two subsystems: there might be a total w.f. existing, but (sometimes) no w.f. of a subsystem
- What should we do if the w.f. does not exist? Can we still evaluate expectation values of interest and describe experiments?

Density matrix

- If we have two sub-ensembles, we calculate expectation values for each realization and then perform averaging

$$
\langle f\rangle=w_{1}\left\langle\Psi_{1}\right| \hat{f}\left|\Psi_{1}\right\rangle+w_{2}\left\langle\Psi_{2}\right| \hat{f}\left|\Psi_{2}\right\rangle, \quad w_{i}=\frac{N_{i}}{N}
$$

- From the mathematical point of view:

$$
\langle f\rangle=\operatorname{Tr}\{\hat{f} \hat{\rho}\}, \quad \hat{\rho}=\sum_{i} w_{i}\left|\Psi_{i}\right\rangle\left\langle\Psi_{i}\right|=|\Psi\rangle \Psi
$$

- The new operator is called "density operator" or "density matrix"
- The problem is solved: we can calculate expectation values!

$$
\begin{aligned}
& \langle f\rangle=\operatorname{Tr}\{\hat{f} \hat{\rho}\}=\sum_{m n} \overline{c_{m}^{*} c_{n}} f_{m n}=\sum_{m n} \rho_{n m} f_{m n} \\
& \hat{\rho}=\sum_{m, n} \rho_{m n}|m\rangle\langle n|, \quad \rho_{m n}=\overline{c_{m} c_{n}^{*}}
\end{aligned}
$$

- Questions:

Properties of the d.m.? Time-dependence of d.m.?

Properties of the density matrix

- Physical meaning of the elements:

Diagonal elements are populations $p_{n}=\rho_{n n}=\overline{\left.c_{n}\right|^{2}}$
Off-diagonal elements are coherences $\rho_{m n}$ (explained later)

- The trace of d.m. is equal to 1
- The d.m. is a hermitian matrix: $\left(N^{2}-1\right)$ independent parameters
- When can we still use the w.f. description?
- When the w.f. is existing (pure state), we obtain

$$
\hat{\rho}=|\Psi\rangle\langle\Psi| \Rightarrow \hat{\rho}^{2}=|\Psi\rangle\langle\Psi \mid \Psi\rangle\langle\Psi|=|\Psi\rangle\langle\Psi|=\hat{\rho}
$$

- When this relation does not hold (mixed state), we must not (!) use the w.f. description. Example: ensemble of spins-1/2 at equilibrium

$$
\hat{\rho}_{e q}=\frac{1}{Z} \exp \left[-\frac{\hat{H}}{k T}\right] \Rightarrow w_{\alpha} / w_{\beta}=\exp \left[-\frac{\Delta E}{k T}\right]=1+\delta p / 2, \quad \delta p \ll 1
$$

In this case $\rho^{2}=\rho$ does not hold

Density matrix of a spin- $-1 / 2$ particle

- D.m. of a spin $1 / 2$ particle $\hat{\rho}=\left(\begin{array}{cc}\rho_{\alpha \alpha} & \rho_{\alpha \beta} \\ \rho_{\beta \alpha} & \rho_{\beta \beta}\end{array}\right)$
- The polarization vector components are

$$
P_{x}=2 \operatorname{Re}\left\{\rho_{\alpha \beta}\right\}, \quad P_{y}=-2 \operatorname{Im}\left\{\rho_{\alpha \beta}\right\}, \quad P_{z}=\rho_{\alpha \alpha}-\rho_{\beta \beta}
$$

- Rewriting the d.m.: $\hat{\rho}=\frac{1}{2}\left(\begin{array}{cc}1+P_{z} & P_{x}-i P_{y} \\ P_{x}+i P_{y} & 1-P_{z}\end{array}\right)=\frac{1}{2}[\hat{E}+(\vec{P} \cdot \hat{\sigma})]$
- The d.m. is expressed via the P-vector and the Pauli matrices

- Longitudinal $M=\Delta$ (population); transverse $M=$ coherence
- Phase of the coherence: direction in the $\{x, y\}$-plane

Density matrix of a spin- $-1 / 2$ particle

- D.m. of a spin $1 / 2$ particle $\hat{\rho}=\left(\begin{array}{cc}\rho_{\alpha \alpha} & \rho_{\alpha \beta} \\ \rho_{\beta \alpha} & \rho_{\beta \beta}\end{array}\right)$
- The polarization vector components are

$$
P_{x}=2 \operatorname{Re}\left\{\rho_{\alpha \beta}\right\}, \quad P_{y}=-2 \operatorname{Im}\left\{\rho_{\alpha \beta}\right\}, \quad P_{z}=\rho_{\alpha \alpha}-\rho_{\beta \beta}
$$

- Rewriting the d.m.: $\hat{\rho}=\frac{1}{2}\left(\begin{array}{cc}1+P_{z} & P_{x}-i P_{y} \\ P_{x}+i P_{y} & 1-P_{z}\end{array}\right)=\frac{1}{2}[\hat{E}+(\vec{P} \cdot \hat{\sigma})]$
- We can use the operator basis (each matrix is like a basis ket)

$$
\left\{\hat{E}, \hat{S}_{x}, \hat{S}_{y}, \hat{S}_{z}\right\}
$$

- The d.m. is a vector in this basis:

$$
\hat{\rho}=\frac{1}{2} \hat{E}+P_{x} \hat{S}_{x}+P_{y} \hat{S}_{y}+P_{z} \hat{S}_{z}=\sum c_{i} \hat{Q}_{i}
$$

- It is easy to obtain the equation of motion (comes later)

Two or more spins $1 / 2$

- The d.m. for two spins can be expressed in terms of product operators

$$
\left\{\hat{E}, \hat{S}_{x}, \hat{S}_{y}, \hat{S}_{z}\right\} \otimes\left\{\hat{E}, \hat{I}_{x}, \hat{I}_{y}, \hat{I}_{z}\right\}=\left\{\begin{array}{l}
\hat{E} ; \hat{S}_{x}, \hat{S}_{y}, \hat{S}_{z} ; \hat{I}_{x}, \hat{I}_{y}, I_{z} ; \hat{S}_{x} I_{x}, \hat{S}_{y} \hat{I}_{x}, \hat{S}_{z} \hat{I}_{x}, \\
\hat{S}_{x} I_{y}, \hat{S}_{y} \hat{I}_{y}, \hat{S}_{z} I_{y}, \hat{S}_{x} I_{z}, \hat{S}_{y} I_{z}, \hat{S}_{z} I_{z}
\end{array}\right\}
$$

- Each product operator is now a $4 * 4$ matrix; likewise, the Hamiltonian is a 4*4 matrix and it is expressed via the product operators
- What is the direct product (Kronecker product)?

$$
\hat{A} \otimes \hat{B}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \otimes\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)=\left(\begin{array}{ll}
a_{11} \hat{B} & a_{12} \hat{B} \\
a_{21} \hat{B} & a_{22} \hat{B}
\end{array}\right)=\left(\begin{array}{llll}
a_{11} b_{11} & a_{11} b_{12} & a_{12} b_{11} & a_{12} b_{12} \\
a_{11} b_{21} & a_{11} b_{22} & a_{12} b_{21} & a_{12} b_{22} \\
a_{21} b_{11} & a_{21} b_{12} & a_{22} b_{11} & a_{22} b_{12} \\
a_{21} b_{21} & a_{21} b_{22} & a_{22} b_{21} & a_{22} b_{22}
\end{array}\right)
$$

- Example with 2 spins:

$$
\begin{aligned}
& \text { with } 2 \text { spins: } \\
& \hat{S}_{x}=\hat{S}_{x} \otimes \hat{E}=\left(\begin{array}{cc}
0 & 1 / 2 \\
1 / 2 & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
\end{aligned}
$$

- Other operators can be constructed in the same way. More spins: use direct products of spin operators

Two spins $1 / 2$

- Relation between populations/coherences and d.m. elements

Energy level diagram

Density matrix

	$\boldsymbol{\alpha} \boldsymbol{\alpha}$	$\boldsymbol{\alpha} \boldsymbol{\beta}$	$\boldsymbol{\beta} \boldsymbol{\alpha}$	$\boldsymbol{\beta} \boldsymbol{\beta}$
$\boldsymbol{\alpha} \boldsymbol{\alpha}$	$p_{a \alpha}$	SQC	SQC	DQC
$\boldsymbol{\alpha} \boldsymbol{\beta}$	SQC	$p_{a \beta}$	ZQC	SQC
$\boldsymbol{\beta} \boldsymbol{\alpha}$	SQC	ZQC	$p_{\beta \alpha}$	SQC
$\boldsymbol{\beta \beta}$	DQC	SQC	SQC	$p_{\beta \beta}$

- SQCs are given by $S_{x}, S_{y}, S_{x} I_{z}, S_{y} I_{z}, I_{x}, I_{y}, S_{z} I_{x}, S_{z} I_{y}$
- DQCs and ZQCs are given by combinations of $S_{x} I_{x}, S_{y} I_{y}, S_{x} I_{y}, S_{y} I_{x}$
- We can directly measure only transverse magnetization $S_{x}, S_{y}, I_{x}, I_{y}$
- Other operators cannot be observed directly, but they affect the signal
- Coherence order for $\left.\rho_{m n}: p_{m n}=M(\mid m)-M(n)\right)$

How does the d.m. evolve?

- The S.e. in the bra and ket representations is

$$
\frac{\partial}{\partial t}|\Psi\rangle=-\frac{i}{\hbar} \hat{H}|\Psi\rangle, \quad \frac{\partial}{\partial t}\langle\Psi|=\frac{i}{\hbar}\langle\Psi| \hat{H}
$$

- The equation for the d.m. is as follows:

$$
\left.\frac{\partial}{\partial t} \hat{\rho}=\frac{\partial}{\partial t}\{\Psi\rangle\langle\Psi|\right\}=\left\{\frac{\partial}{\partial t}|\Psi\rangle\right\}\langle\Psi|+\left\lvert\, \Psi\left\{\frac{\partial}{\partial t}\langle\Psi|\right\}=-\frac{i}{\hbar}[\hat{H}, \hat{\rho}]\right.
$$

Liouville-von Neumann equation

- The solution is simple for a time-independent Hamiltonian:

$$
\hat{\rho}(t)=\exp \left[-\frac{i}{\hbar} \hat{H} t\right] \hat{\rho}_{0} \exp \left[\frac{i}{\hbar} \hat{H} t\right]
$$

- For a time-dependent Hamiltonian we solve the equation numerically in small time steps or use some tricks
- The LvN equation is similar to that for the time-derivative of an operator in the Heisenberg representation. However, the sign is "-" and the meaning is different: in the Heisenberg representation the d.m. and w.f are constant

Time-dependence of the d.m.

- The LvN equation is simple in the eigen-basis of the Hamiltonian

$$
\frac{\partial}{\partial t} \rho_{m m}=0, \frac{\partial}{\partial t} \rho_{m n}=-\frac{i}{\hbar}\left(E_{m}-E_{n}\right) \rho_{m n}=-i \omega_{m n} \rho_{m n}
$$

- The solution is also simple:

$$
\rho_{m m}=\text { const }, \quad \rho_{m n}=e^{-i \omega_{m m} t} \rho_{m n}^{0}
$$

- Eigen-state populations do not evolve (a quantum system stays forever in an eigen-state); off-diagonal elements oscillate at the $\omega_{m n}$ frequency (coherence).
- Oscillatory evolution comes about when the initial state is a coherent superposition of eigen-states.
 coherences result in "quantum beats"

Precession of spins $1 / 2$

- The d.m. is $\hat{\rho}=\frac{1}{2}[\hat{E}+(\vec{P} \cdot \hat{\sigma})]$
- Likewise, the Hamiltonian is: $\hat{H}=\frac{1}{2}[\hat{E} \cdot \operatorname{Tr}\{\hat{H}\}+(\vec{H} \cdot \hat{\sigma})]$
- So, we can define the P-vector and the field-vector
- Substitution to the LvN equation:

$$
2 \frac{\partial}{\partial t} \hat{\rho}=\frac{\partial}{\partial t}\{(\vec{P} \cdot \hat{\sigma})\}=-\frac{i}{2 \hbar}[(\vec{H} \cdot \hat{\sigma}),(\vec{P} \cdot \hat{\sigma})]
$$

- The commutator term is:

$$
[(\vec{H} \cdot \hat{\sigma}),(\vec{P} \cdot \hat{\sigma})]=\sum_{i, j} H_{i} P_{j}\left[\hat{\sigma}_{i}, \hat{\sigma}_{j}\right]=2 i \sum_{i, j} H_{i} P_{j} \varepsilon_{i j k} \hat{\sigma}_{k}=2 i([\vec{H} \times \vec{P}] \cdot \hat{\sigma})
$$

- Finally we obtain precession of the P-vector: $\frac{d \vec{P}}{d t}=\frac{1}{\hbar}[\vec{H} \times \vec{P}]$
- Furthermore, all 2-level systems behave this way: precession of the effective spin in an external field in 3D. The prec. frequency is $\omega_{p r}=|H| / \hbar$

Magnetic resonance

- Let us consider also the B_{1}-field (circular polarization)

$$
\vec{B}=\vec{i} B_{1} \cos (\omega t)-\vec{j} B_{1} \sin (\omega t)+\vec{k} B_{0}
$$

- The Hamiltonian is

$$
\hat{H}=-\hbar \gamma\left(B_{0} \hat{S}_{z}+B_{1} e^{i \omega \omega \hat{S}_{z}} \hat{S}_{x} e^{-i \omega t \hat{S}_{z}}\right)
$$

- The LvN equation reads

$$
\frac{\partial \hat{\rho}}{\partial t}=i \omega_{0}\left(\hat{S}_{z} \hat{\rho}-\hat{\rho} \hat{S}_{z}\right)-i \omega_{1}\left\{e^{i \omega t \hat{S}_{z}} \hat{S}_{x} e^{-i \omega t \hat{S}_{z}} \hat{\rho}-\hat{\rho} e^{i \omega t \hat{S}_{z}} \hat{S}_{x} e^{-i \omega t \hat{S}_{z}}\right\}
$$

- We can define the d.m. in the rotating frame (interaction representation)

$$
\hat{\rho}=e^{i \omega t \hat{S}_{z}} \widehat{\rho} e^{-i \omega t \hat{S}_{z}}
$$

- Equation for the new d.m.

$$
\frac{\partial \widehat{\rho}}{\partial t}=i \omega_{0}\left(\hat{S}_{z} \stackrel{\widetilde{\rho}}{ }-\widehat{\rho} \hat{S}_{z}\right)+i \omega_{1}\left(\hat{S}_{x} \stackrel{\widetilde{\rho}}{ }-\hat{\rho} \hat{S}_{x}\right)=-\frac{i}{\hbar}\left[\hat{H}_{e f f}, \stackrel{\rho}{\rho}\right]
$$

- The result is (still) precession in an effective field

$$
\hat{H}_{e f f}=-\hbar\left(\omega_{0}-\omega\right) \hat{S}_{z}-\hbar \omega_{1} \hat{S}_{x} \Rightarrow \vec{H}_{e f f}, \Omega_{p r}=\sqrt{\Delta \omega^{2}+\omega_{1}^{2}}
$$

QM description of NMR experiments

- We (usually) start with thermally polarized spins:

$$
\hat{\rho}_{e q}=\frac{1}{Z} \exp \left[-\frac{\hat{H}_{0}}{k T}\right] \approx \frac{1}{Z}\left(\hat{E}+\frac{\hbar \omega_{0}}{k T} \hat{S}_{z}\right)
$$

- The same is true in the rotating frame because the d.m. commutes with the rotation operator; the unity operator can be dropped off.
- The d.m. evolves under the action of a time-dependent Hamiltonian (pulses, free evolution, MAS)
- Solution methods: split the time-axis into small intervals δt, where $H \approx$ const

$$
\begin{aligned}
& \hat{\rho}(t)=e^{-i \hat{H}\left(t_{n}\right) \delta t} \cdot e^{-i \hat{H}\left(t_{n-1}\right) \delta t} \cdot \ldots \cdot e^{-i H\left(t_{2}\right) \delta t} \cdot e^{-i H\left(t_{1}\right) \delta t} \times \\
& \quad \times \hat{\rho}_{0} e^{i H\left(t_{1}\right) \delta t} \cdot e^{i H\left(t_{2}\right) \delta t} \cdot \ldots \cdot e^{i H\left(t_{n-1}\right) \delta t} \cdot e^{i A\left(t_{n}\right) \delta t}
\end{aligned}
$$

- Looks complex, but the idea is simple: each evolution period leads to two multiplications (at the left and at the right)
- In many cases the solution can only be done numerically
- When the Hamiltonian is changed in a periodic way, there are some tricks available (AHT, Floquet theory)

RF-pulses

- What happens to the d.m. (magnetization) when we apply a pulse?

the phase is the flip angle is $\varphi \stackrel{p}{=} \omega_{1} \tau_{p}$
- The w.f. and d.m. after the pulse

$$
\begin{aligned}
& \left|\Psi_{\text {affer }}\right\rangle=\hat{R}_{\phi_{p}}(\varphi)\left|\Psi_{\text {before }}\right\rangle, \quad\left\langle\Psi_{\text {affer }}\right|=\left\langle\Psi_{\text {before }}\right| \hat{R}_{\phi_{p}}(-\varphi) \\
& \hat{\rho}_{\text {affer }}=\hat{R}_{\phi_{p}}(\varphi) \hat{\rho}_{\text {before }} \hat{R}_{\phi_{p}}(-\varphi)
\end{aligned}
$$

- The action of a strong pulse is equivalent to a rotation (we assume that only the B_{1}-term is relevant)

$$
\hat{R}_{\phi_{p}}(\varphi)=\exp \left[-i \omega_{1} \tau_{p}\left(\cos \phi_{p} \hat{S}_{x}+\sin \phi_{p} \hat{S}_{y}\right)\right]=\exp \left[-i \varphi\left(\cos \phi_{p} \hat{S}_{x}+\sin \phi_{p} \hat{S}_{y}\right)\right]
$$

- A $\pi / 2$-pulse generates a coherence, a π-pulse inverts the populations

$$
\hat{R}_{\phi_{p}}(\pi / 2) \hat{S}_{z} \hat{R}_{\phi_{p}}(-\pi / 2)=-\hat{S}_{y}, \quad \hat{R}_{\phi_{p}}(\pi) \hat{S}_{z} \hat{R}_{\phi_{p}}(-\pi)=-\hat{S}_{z}
$$

"Sandwich relationships"

- Is there a simple way to calculate the effect of pulses?
- Three cyclically commuting operators:

$$
[\hat{A}, \hat{B}]=i \hat{C}, \quad[\hat{C}, \hat{A}]=i \hat{B}, \quad[\hat{B}, \hat{C}]=i \hat{A}
$$

- Example:

$$
\left[\hat{S}_{y}, \hat{S}_{z}\right]=i \hat{S}_{x},\left[\hat{S}_{z}, \hat{S}_{x}\right]=i \hat{S}_{y},\left[\hat{S}_{x}, \hat{S}_{y}\right]=i \hat{S}_{z}
$$

- The following relation is then true:

$$
\exp [-i \theta \hat{A}] \hat{B} \exp [i \theta \hat{A}]=\cos \theta \hat{B}+\sin \theta \hat{C}
$$

- A, B, C are like the axis of our 3D-space; we "rotate" B "around" A by the angle θ. Cyclic permutations provide two more relations

$$
\begin{aligned}
& \exp [-i \theta \hat{B}] \hat{C} \exp [i \theta \hat{B}]=\cos \theta \hat{C}+\sin \theta \hat{A} \\
& \exp [-i \theta \hat{C}] \hat{A} \exp [i \theta \hat{C}]=\cos \theta \hat{A}+\sin \theta \hat{B}
\end{aligned}
$$

- Of course, these rules apply to the spin operators
- RF-pulses give x and y-rotations. Free precession gives a z-rotation by a time-dependent angle ωt
See M. H. Levitt, "Spin Dynamics", cyclic commutation

Phase of the pulse

- Different phases x-pulse, $\quad p=0$

$$
y \text {-pulse, } \quad p=\pi / 2
$$

$-x$-pulse, $\quad{ }_{p}=\pi$

- Pulse of a general phase is a combination of three rotations

$$
\hat{R}_{\phi_{p}}(\varphi)=\exp \left[-i \varphi\left(\cos \phi_{p} \hat{S}_{x}+\sin \phi_{p} \hat{S}_{y}\right)\right]=\hat{R}_{z}\left(\phi_{p}\right) \hat{R}_{x}(\varphi) \hat{R}_{z}\left(-\phi_{p}\right)
$$

- Rotation about z turns the $\{\mathrm{x}, \mathrm{y}\}$ axes; then a pulse is turning the spins around the new x ; finally, we return to the original frame.
- Free precession is just a z-rotation

Single-pulse NMR experiment

- Initial spin order is S_{z}

$$
\hat{\rho}=\frac{1}{2} \hat{E}+\frac{1}{2} P \hat{S}_{z}
$$

- A pulse generates transverse magnetization

$$
\hat{\rho}=\frac{1}{2} \hat{E}-\frac{1}{2} P \hat{S}_{y}
$$

- Free precession changes the d.m.

$$
\hat{\rho}=\frac{1}{2} \hat{E}-\frac{1}{2} P\left(\hat{S}_{y} \cos \omega t-\hat{S}_{x} \sin \omega t\right)
$$

- We can detect the FID and obtain the spectrum by doing the Fourier transform
- Generally, the FID is

$$
\operatorname{FID}(t) \propto 2 i \rho_{-} \exp \left(-i \phi_{r e c}\right), \quad \rho_{-}=\rho_{\beta \alpha}=P_{x}+i P_{y}
$$

- If the receiver phase is 0 we obtain a positive Lorentzian (after adding T_{2})
when rec $=\pi$ we obtain a negative line
when rec $= \pm \pi / 2$ we obtain a dispersive line

More complex NMR experiments

- The S_{x}, S_{y}, S_{z} are not the only operators, which satisfy the cyclic commutation relation
- Other operators of this kind:

$$
\left\{\hat{S}_{x}, \hat{S}_{y} \hat{I}_{z}, \hat{S}_{z} \hat{I}_{z}\right\} \quad\left\{\hat{S}_{y}, \hat{S}_{x} \hat{I}_{z}, \hat{S}_{z} \hat{I}_{z}\right\}
$$

- The operator $S_{z} I_{z}$ is often present in the Hamiltonian (secular interaction)
- We can immediately obtain what different interactions do Effect of the chemical shift: $S_{x} \Rightarrow S_{x} \cos \left(\omega_{a} t\right)+S_{y} \sin \left(\omega_{a} t\right)$

Effect of J-coupling with spin I : $S_{x} \Rightarrow S_{x} \cos \left(J_{a b} t\right)+S_{y} I_{z} \sin \left(J_{a b} t\right)$

x-component changes in the usual way; y-component is given by the population difference of the α - and β-states of spin I, which is I_{z}

Key to simple experiments (from Shimon Vega)

Example: COSY experiment

COSY: J-coupling (through bond connectivities of neighboring atoms, max. ~ 3 bonds)

How does it work?
$\stackrel{\pi / 2_{x}}{\Rightarrow}-S_{x} \stackrel{t_{1}}{\Rightarrow} S_{x} \stackrel{\pi / 2_{x}}{\Rightarrow} S_{x} \stackrel{t_{2}}{\Rightarrow}-S_{y}$
x-magnetization stays on spin a The efficiency of this pathway is $\sin \left(\omega_{a} t_{1}\right) \cos \left(J_{a b} t_{1}\right) \sin \left(\omega_{a} t_{2}\right) \cos \left(J_{a b} t_{2}\right)$

A diagonal peak will appear in the COSYspectrum

Gain is two-fold:
(1) Spectral resolution is increased because peaks become resolved in 2D;
(2) Knowledge on additional coherence pathways can be obtained.

Example: COSY experiment

COSY: J-coupling (through bond connectivities of neighboring atoms, max. ~ 3 bonds)

How does it work?

$$
\stackrel{\pi / 2_{x}}{S_{z}} \stackrel{J_{a b}}{\Rightarrow}-S_{y} \stackrel{\pi / 2_{x}}{\Rightarrow} 2 S_{y} I_{z} \stackrel{J_{a b}}{\Rightarrow} 2 S_{z} I_{x} \stackrel{I}{\Rightarrow}-I_{y}
$$

x-magnetization has gone from spin a to spin b
The efficiency of transfer is $\sin \left(\omega_{a} t_{1}\right) \sin \left(J_{a b} t_{1}\right) \sin \left(\omega_{b} t_{2}\right) \sin \left(J_{a b} t_{2}\right)$

A cross-peak will appear in the COSYspectrum
The cross-peak is the direct evidence for J-coupling

Gain is two-fold:
(1) Spectral resolution is increased because peaks become resolved in 2D;
(2) Knowledge on additional coherence pathways can be obtained.

Example: COSY experiment

COSY: J-coupling (through bond connectivities of neighboring atoms, max. ~ 3 bonds)

Result for more than 2 spins

When the spins are scalar coupled cross-peak will appear
In 2D peaks, which overlap in 1D-spectrum, become resolved

Summary, part 2

\checkmark Density matrix description of spin ensembles
\checkmark QM description of NMR experiments
\checkmark QM in action: some NMR examples

Example: INEPT experiment

INEPT experiment: explanation

All spins are along x

INEPT: transferring polarization
from proton to X -nucleus

INEPT experiment: explanation

For $\tau=1 / 4 J$ the angle between spins is 90 degrees

INEPT: transferring polarization
from proton to X -nucleus

INEPT experiment: explanation

Components are flip by protons pulse
Their colors are exchanged by
X-nucleus pulse
INEPT: transferring polarization from proton to X -nucleus

INEPT experiment: explanation

INEPT: transferring polarization from proton to X -nucleus

Spins are along y for $\tau=1 / 4 J$

The last proton pulse results in one component positive and one negative
Reminder: first both were positive

INEPT experiment: explanation

INEPT: transferring polarization from proton to X -nucleus

Pulses really make possible many nice tricks with spins ©

Resulting populations

Now the final pulse for X-nucleus does the detection
The gain is given by the ratio of gammas
The gain can be further increased when NMR of X is detected via protons

