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Outline, part 1

Zeeman interaction
Chemical shift, chemical shift anisotropy;
Spin-spin interactions: dipolar coupling and scalar coupling;

Quadrupolar interaction.



Spin Hamiltonian

* In quantum mechanics, we need to solve the Schrodinger equation for y or
the Liouville-von Neumann equation for p

* Generally, we need to write down and solve the following equation:

o .
“|w)=—iH
v =i

V)

Here v is the w.f. of the entire system of electrons and nuclei. This equation is
virtually impossible to solve.

* Solution is provided by the spin Hamiltonian hypothesis:

0 P
5‘ 4 spin> =—i spin| W spin>

* We limit ourselves to only nuclear spin degrees of freedom, which are
decoupled from other degrees of freedom.
* Key question: how can we write down the spin Hamiltonian?

* In most cases, one can introduce s.H. by separating timescales of electronic
and nuclear motions and by keeping in mind that nuclear spin energies are
small 3



Nuclear spin interactions
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Angular momentum and magnetic moment

« In NMR we deal with spin magnetism. What 1s ‘spin’?
e Charged nucleus (or electron) is spinning:
there 1s angular momentum (spin) and magnetic moment

attention: this is a simple view, which 1s not (entirely) correct

v
T The electric current for a charged I = qv
particle moving around 27
q The magnetic moment is I = ﬁ 7i= qavr i = 9 J
| c c 2mc
: : : : : . qh 4
So, 1 1s proportional to a.m.; when a.m. is measured in 7 units 7 = 5 S
mc

Is it entirely correct? The idea of a very small particle turning around i1s
anyway a simplification...



Angular momentum and magnetic moment

2mc

So, u 1s proportional to a.m.; when a.m. 1s measured in /7 units

Quantum mechanics: this is not entirely correct

We are wrong by the g-factor! g=2 for an elementary spin-'2 particle (Dirac)

Go=gus, u =T g = 2(1+i+...j ~2.0023 (QEDresult) ,

2m,c 272\
How about nuclear spins? /

B h 5 o
. = 1, — , #1 ~5.58, g =——g =3.83, QCDresult
Hy =8nvHntL, Hy > Me En (gp g 3 g, Q )

Proton g-factor is significantly larger than 2, neutron has magnetic moment

a, = 7/65 s Ve =8.Hp y-ratio,
Relation between u and I < ) gyromagnetic

Hy =Vwls ¥y =8ty ratio °




Zeeman interaction

Particles with /0 have magnetic moment and interact with external magnetic
fields. The energy associated with this interaction i1s equal to

E=-(p B) ﬁ=—(ﬁ-5)=—7(f'5)

The field can be static (along Z) or oscillating (along X/Y)
Motion in the static field: precession of u at the frequency w=|y|B
Direction of precession depends on the sign of y.

Motion in the oscillating transverse field: spin nutation once the resonance
condition 1s fulfilled

The resonance frequency is determined by y

Nucleus Net Spin (MHz/T) NnZILr((eI(\]n.H%-, Natl. abundance (%)
H 1/2 4258 300 9998
?H 1 6.54 46 0.0115
13C 1/2 10.71 75 e
- L 4.3 30 0.37
19F 1/2 40.08 282 100
P 1/2 17.25 121 100 .




Chemical shift
electrons

The simple expression i, =y, is (completely) correct 5| (shielding)
only for a nucleus in vacuum °

In molecules, electrons change the local field experienced
by nuclei: Zeeman interaction is modified

This 1s a two-stage process:
the external B, field induces currents in the electronic cloud

when the electrons move, they change the magnetic field at
the location of the nucleus: By—B,,.=By*Bi.q

nucleus

The B, 4 field 1s opposite in direction to B: the field is
“shielded” by the electrons

There are two contributions to B,y (having similar
magnitude but opposite signs)

circulation of electrons in the ground state (diamagnetic)
involvement of electrons in the excited state (paramagnetic)



Chemical shift

The induced field is always proportional to the B, field, therefore

A

Bo

—

B

=B, +B,, =B, +0B, =B,(1+5)

loc

The resonance frequency becomes o =y, B,(1+0) =y, B,(1-0)

The new parameter, 0 (or 6), is called chemical shift: its precise value depends
on the chemical environment of a nucleus (electron density, electronegativity of
neighboring atoms, etc.).

Thus, chemical shift is a very important source of information about molecular
structure

Chemical shift referencing:
o —w .
S=—" o,.¢ 1S the NMR frequency of a standard

@, reference compound (e.g., TMS)

Chemical shift is usually small, so it is measured in ppm’s of w,

Protons have a spread of o-values of several ppm; other nuclei have a much
wide range of 0-values



Chemical shift tensor

For a shape asymmetric molecule, the B;,;, and B,,. fields depend on the
orientation

A A
Bo Bo

a

2 The B,,; value 1s different
'”dp in these two cases

The precise value of B,,; depends on the orientation. Mathematically, this effect
can be described by introducing the chemical shift tensor

On Oy O

Eind = 5}}0 5 = 5yx 5yy 5yz

5zx 5zy 522
Hence, the induced field becomes: 0.,
Eind =B, 5yz

5ZZ

: : 10
At high-fields, only the z-component 1s of importance



Chemical shift tensor, continued

The position of the NMR line 1s given by o.., which is different for different
orientations of the molecule

In isotropic liquids, the result is simple: fast reorientation of the molecule gives
rise to the symmetric CSA tensor. Hence, the 1sotropic chem. shift is

5y = é(@x +5,+6.)= %Tr{g}

1so

In solids, for different orientations we obtain a different result.

There are special directions, for which B, ; 1s parallel to B,: principal axes of the
O-tensor. In the principal axes system (PAS) the tensor is diagonal:

5y,
JKL (o
3
different orientations
55
(-
8,
.

When the B, field is parallel to X,Y,Z of the PAS, the line position is given by
Osrs Opps Oz 11

xxs Yyys

s 0 0
S=[0 5, 0
0 0 6.




Spin-spin coupling

Two nuclei are two magnetic moments, which interact X 1

There are two contributions:

dipole-dipole interaction, goes through spaces, complete analogue of the
classical DDI

scalar coupling, bonding electrons are involved quantum effects

Both contributions can be included in the spin Hamiltonian

[:ID:bik{3(ii°éik)(ik'éikj_fi'fk} [:[D:Jik(jijk)

hy.
The DDI constant b, =— %Zk depends on the distance between the spins

Fir

DDI depends on molecular orientation, given by the vector connecting the
spins, J-coupling is 1sotropic

12



Dipole-dipole coupling

The DDI Hamiltonian can be written by using tensors:

[:ID :bik{3(ii 'éik)(ik 'éik)_ii ik} :jiﬁik

The D-tensor 1s a symmetric traceless tensor

For this reason, on average DDI is zero: in isotropic liquids DDI does not
change the position of NMR lines

In solids, DDI gives rise to broad lines as it vanishes only at the magic angle.

In high-field approximation (Zeeman term dominates)

[:[D =d, {)ﬁizikz _ji ik}

I_A[J — dik 2iizikz

The coupling strengthis  d, = ébik [3cos®, —1]

Homonuclear case

Heteronuclear case

n

1

A
Z||B, I,

®ik

Some numbers: proton-proton DDI at 1.5 A is about 35 kHz

DDI scales with y,xy, and decays as 1/73

13



Dipole-dipole coupling
» Spectral manifestation of DDI:
- In single crystals, DDI gives rise to splitting of the NMR lines. The splitting
1s given by d;; at a specific 0, angle.
- In a powder, the splitting is different for different ®,, angles (ranging from 0

to m). To calculate the spectrum we need to calculate the splitting for each
orientation and weight it with sin®.

R Splitting oc (3cos” @—1)

r

A 4 v ® [0, 7]
Bo |6 A

_ g Q
/M U ( c? Such a pattern 1s termed

l 1 . L ¥ Pake doublet

8/rad 0 a2 a2 0

* In some systems, e.g., liquid crystals, partial averaging of DDI takes place.
Instead of DDI we deal with RDC (Residual Dipolar Coupling)

RDC,, = %bik (3cos®, —1) 14



Scalar coupling

Indirect coupling, which goes through bonding electrons X I,
Physical origin:

nuclear spins interact with the electrons (hyperfine coupling)
electrons become partly ‘unpaired’ and
start interacting with the other nucleus by creating a small magnetic field

As a result, a nuclear spin-spin coupling emerges H, = J, (Z I "j

% ‘\ geminal

Typically, J-coupling is much smaller than DDI: H30 C/ JH2
For protons the largest coupling 1s usually the geminal coupling 2J (15-20 Hz,
negative), vicinal coupling 3J 1s smaller (7 Hz, positive).

For neighboring atoms in the molecule J-couplings are bigger: about 135 Hz
for 13C-H, about 50 Hz for 13C-13C

J-couplings are not averaged out by motions. In liquid-state NMR they
determine splitting of NMR multiplets 15



How can we read NMR spectra?

» For simplicity, here we discuss only liquid-state NMR. We also ignore any
details of the spin dynamics and use selection rules A=t1 for NMR
transitions (single spin flips/flops)

* Hence, we try to construct “stick-spectra”. Interactions, which matter, are
chemical shifts and J-couplings.

* Algorithm:

(1) Different nuclei give signals at very different frequencies because of the

large differences in y’s = 1n experiment we detect separately NMR signals from
protons, or carbons, or nitrogens (etc.);

(2) Different nuclei of the same kind (e.g., protons) give NMR signals not
exactly at the same frequency due to chemical shifts;

(3) Lines corresponding to certain nuclei are split due to the presence of other
spins V2.

Having this strategy, we can draw NMR spectra

16



Simplifications

(1) Spins will be considered weakly coupled: for each pair of non-equivalents
spins difference in Zeeman interactions, @~w;, 1s much larger than the

corresponding coupling J;
(2) Quantum mechanics (perturbation theory) tells us that we can leave only

J.1.I. terms (secular terms);

jriztjz
(3) Equivalent spins do not interact with each other (in fact, they do, but
these couplings cannot be detected).

What do we call equivalent spins:
Same chemical shifts;
Identical couplings to all other nuclei.

17



NMR spectrum of two weakly coupled spins

Without interaction With interaction
4 Paly V/2+ V2 4 Pale V24 vg/2+J/4
3 v ﬂA %5 VA/ 2— VB/ 2 3 v ﬁA %5 VA/ 2— VB/ 2-J/4
{ g —V, 2+ vy/2 { g —v, 2+ vy/2-J/4
2 a4fs 2 a4
1 v 3 v [2—vy/2 1 v — v, [2—vp/2+ /4
a, 0p ay 0p
NMR ‘ NMR
4 transitions from rules ALL=%1; 2 lines 4 transitions from rules Al =%1; 4 lines

. . 18
because transitions overlap because transitions do not overlap



What to do for a larget number of spins?

* Each spin % splits NMR line in two lines; their intensities are 2 times lower

No other spins

< J >
+1 spin %2
< J >
+2 spins 72
<7> To be continued...
« Coupling to a group of equivalent spins Relative line intensities
in the multiplet
1
1 1
[ 1 2 1
1 3 3 1 19
N=0 1 2 3

Pascal’s triangle



Examples: CH,OH and CH;CH,OH

33 12 12 NMR spectrum
'I | ‘ 1 ‘ ‘ of methanol
OH CH;
NMR spectrum
H ‘ of ethanol
| LI
OH CH, CH,

Intensity of all lines in the multiplet is proportional to the number of spins in the group
Splitting 1s the same for both spins (same J is operative)
Distribution of the intensities is given by Pascal’s triangle rules

20



Quadrupolar coupling

Q.C. is an electric interaction, which is nonetheless included in the nuclear
spin Hamiltonian

Origin of Q.C.
A nucleus has electric charges, which interact with external E-fields
Positive electric charge can be distributed non-uniformly

The charge distribution can be decomposed into multipole components
(charge ¢, dipole moment d, quadrupolar moment Q, etc.); the same is true
for the field: the potential is given by the potential ¥, at the nucleus, its
gradient V|, gradient of the gradient V,, etc.

The energy of interaction is the sum of the following components:
E,, energy of ¢ in potential ¥
E,, energy of d in potential V,
E,, energy of Q in potential V,
continued...

Important: nuclei have d=0! Shape of the nucleus, 1.e. charge distribution, is
related to the value of its spin I: =0 for /=0,%2. Spin comes into play! .



Quadrupolar coupling

Q.C. is of importance for nuclei with />
It comes from interaction of O with the electric field gradient at the nucleus

E-field gradient is a tensor, V-tensor: |, _ o'V
v oror,
i

V. 0 0

As any other tensor, it has a PAS, in this frame, simply r-lo v o
B yy

0O 0 7V

zz

The interaction of the E-field gradient with O can be expressed via /
Hy=—"2 i
21(21 —1)h
If H, is much smaller than the Zeeman terms, we can use perturbation
theory. First-order Q.C. 4§1) 3eQV..

2121 -1)h

“)(312 1(1+1)) 0=

Second-order Q.C. is about @ ~ ( (1)) / @,

Q e 29



Quadrupolar coupling

From the expression

A 1 A 3eQV.
M _ 1 (D(r72 () _ z
H, = 6a)Q (3IZ —I([+1)) o, =

2121 -1)h

we can see that

Q.C. vanishes for /=0 and /=%

Orientation dependence is given by V_, which is the zz-component of the V-
tensor.

The result is different for a single crystal and for a powder sample
The result is also different for half-integer and for integer /

If we include the second-order terms into consideration the result becomes
even more complex.

In some cases, when Q is very large, we have to consider this contribution as
well.

23



Quadrupolar coupling, integer spin

Spinl=1
e — single crystal
m, =-1 _ﬂ_’ [ | 2wQ 9 y
(J.)U ().)0 + (,OQ e
Y .
m=0 ———~__ Single crystal:
' :
o, 0~ Just two lines
Y
my =+1 —1 ==
Zeeman Quadrupolar
Powder spectra
Ng=0 Ng= 0.2 Ng = 0.4
@ | | o | o | | * Each component is broadened,
(N since the splitting 1s different for
| . . . .
- - _ . different orientations
=06 =08 = 1.0 . .
W= R s ,  For axially-symmetric V-tensor
(d) AN (e) (f) [ . .
Pake pattern is obtained
. . (. L . .
: , , — | f : * Otherwise, the pattern is more o4
150 0 -150 150 0 -150 150 0 -150

kHz kHz kHz CompleX



Quadrupolar coupling, half-integer spin

Spin 3/2 cT

e 200 o7 Single crystal:
m=-82 ——— " | Just two lines
ST+ ((1)0 =+ Q(DQ)
=i, Y N
my=-1/2 — S
A Single crystal
¥ CT (030]
my=+1/2 — 3 T : CT
A
SE, (g — 2wq)
m; = +3/2 1 e
First-order
Zeeman quadrupolar ST
powder

* In apowder, the central line remain narrow
* Other lines get broadened, like in the previous example



Summary, part 1

Key NMR interactions are introduced;

We may also need to mention spin-rotation interaction, which
is usually (not always) not that important for NMR;

Spectral manifestations of the interactions are discussed.

26



Outline, part 2

Notion of spin;
Spin ensembles: density matrix;
Density matrix description of NMR experiments;

Some examples.

27



Spin: some history

Zeeman effect: lines split in the presence of magnetic field

Normal Zeeman effect (theory by Lorentz): splitting into three

components kL7
In the presence K|z W
) T )

ofBO||Z

w,; 0, £Q Q= eBy

Atom 1s a harmonic oscillator, its frequency is 2m,

Problem: anomalous Zeeman effect also exists (met even more often)!

A colleague who met me [Pauli] strolling rather aimlessly in the beautiful
streets of Copenhagen said to me in a friendly manner, “You look very
unhappy”’; whereupon I answered fiercely, “How can one look happy
when he is thinking about the anomalous Zeeman effect?” 28



Spin: some history

Pauli also tried to solve the problem concerning the number of electrons in
each electron shell

For a given n we have [ from O to (n — 1), [, from —/to [ n? states

In reality there are 2n? electrons in each shell. Why 2 electrons for n=1, 8
electrons for n=2, 18 electrons for n=3?

Pauli’s answer:
(1) there is one more quantum number, which
can take only two possible values (Zweideutigkeit)

(2) there cannot be two electrons in the same state, 1.e., with

all q. numbers being the same — exclusion principle

Problem: nice answer, which leads to even harder questions: Why is it so?
What is the last quantum number? To what degree of freedom does it
correspond?

29



Spin: some history

Uhlenbeck and Goudsmit: particles have “spin”, corresponding to rotation
of a particle spinning around its own axis

Spin of the electron 1s %2: two states +2="spin-up” and —>="spin-down”

This 1s not fully consistent from what people knew before. However, this 1s
appropriate because spin is a quantum notion (we do not know why!)

(S + L) can to explain the anomalous Zeeman effect (Pauli can be happy ©)

Stern-Gerlach experiment

v’ The beam of atoms is deflected by
inhomogeneous field

v’ Reason: intrinsic magnetic moment
(spin) of particles

v’ The distribution of the u-vector is
not continuous!

v’ Spin is quantized!!!

IM FEBRUAR 1922 WURDE IN DIESEM GEBAUDE DES
PHYSIKALISCHEN VEREINS, FRANKFURT AM MAIN,
VOMN OTTO STERN UND WALTHER GERLACH DIE
FUNDAMENTALE ENTDECKUNG DER RAUMQUANTISIERUNG
DER MAGNETISCHEN MOMENTE IN ATOMEN GEMACHT.
. AUF DEM STERN-GERLACH-EXPERIMENT BERUHEN WICHTIGE
PHYSIKALISCH-TECHNISCHE ENTWICKLUNGEN DES 20. JHDTS.,
WIE KERNSPINRESONANZMETHODE, ATOMUHR ODER LASER.
OTTO STERN WURDE 1943 FUR DIESE ENTDEG(UNG fiid: 3
DER.NGBEI.FEEIS VERLI HEN el {1 g f“"* h

30



Spin
Spin of a particle is its intrinsic angular momentum (as if the particle

rotates). Honestly, nobody knows where spin comes from.

Spin 1s a very fundamental concept, which also affects the symmetry of the
w.f. of a system of identical particles. Example: Pauli principle.

Spin 1s a quantum notion: it vanishes if we tend 7 — 0!

Spin operators are introduced in the same way as those for the angular
momentum:

eigen-states are | S, SZ> ; $2=8(5+1), S, varies from —S to S.

commutation rules are

[$,,8.1=i8,, [5,.8,1=i8,, [5,.5,1=iS.

An important difference from angular momentum: spin can be half-integer
Spin operators are (25+1)*(25+1) matrices

For §=1/2 such matrices are related to the Pauli matrices
31



Spin Y

Spin operator can be written as Basis

-

e L, (ony (0 -i) (1 o0) @]
2 o) i o) o -1 pr=1

-

Useful relations of the Pauli matrices:

6.=6,=6.=e, 6,06, =i6,, 6.6,=i6,, 66,6 =I6,
6.6, +6,6,=25,, [é‘,,é‘] 2ig, 6, Tr{6,}=0

Every 2*2 hermitian matrix is a linear combination of the unity matrix and

the Pauli matrices

Rotations (same results as for L): A
for an infinitely small rotation U, 00)=1-i 5(0(77 .S )

for a rotation by an arbitrary angle (rotation by 2z changes the sign of y/!)
U (1, ¢) = exp|— ip(7- )/2] cosg—i(ﬁ-c‘i‘)singzp

32



Spin %2: rotations

Generally, the rotation operator is

U(71,p) =exp|-ip(i-6)/2]= Cosg—i(ﬁ : o‘A‘)sin;D

Explicitly, rotations about X, Y,Z

CoS Z sin ;0 COS (20 isin (5 0?2 0
Ux (¢) = ¢ ¢ 2 Uy (¢) = ¢ ¢ 2 Uz ((0) = 0 —igo/2 9
sin—  cos— —isin— cos— €
2 2 2 2

Euler rotations

transition from any
reference frame to a new
frame can be achieved

by three elemental rotations

We go from an old x,y,z to new x,y,z : zyz-rotation by a.f,y
The rotation operator is

R=R(a,B,7)=R.(y)R,(B)R.(a) >



Spin evolution

We can write the Schrodinger equation for the spin w.f.

ih;\P =AY, Y(=0)=Y,

Here the Hamiltonian (operator, which stands for the energy) is a matrix,

which acts on the spin w.f.; it includes magnetic interactions
For instance, interaction with external field, spin—spin Interactions, etc.

H:—a)OZ(1+5)S £, J.(5.-5))

To solve the time-dependent solution we first solve the eigen-problem

H\Pn>: n>’ LP0>: \Pn>

Then the solutionis  \P(¢) = ¢ e

n

y

Physical observables are: '

VAR JOWINIGIE Zexpla) tkeef .o =(E —E)/h

34



Spin Hamiltonian

To calculate what happens to the spin system we need to know the
Hamiltonian

qhg

Spins are little magnets, x4 1s proportional to S fi=g 5
mc

Spin interactions coming from u
Zeeman interaction ~
E=—(n-B)=-gBB,S. =-hw,S.

in molecules this interaction is modified due to shielding of the external
field (chemical shift). Generally, C.S. 1s a tensor

Interaction with time-dependent RF-fields can be treated in the same way

Spin-spin interaction
scalar dipolar
o 1 N N L
E=J(S,-S)) E=— B -mm-m-p-m)]

v" Quadrupolar interaction

35



Simple example: spin 2 particle 1in an external field

The Hamiltonian H = —hw,S ., E, 5= Fha, /2
Let us calculate the “spin polarization” vector: P = <5‘> oc Joc M

. 0 s . 0O
General expression for the w.1.: ‘P> = COS 5 0(> +e sin 5 ,3>

Calculation result:

P =sinfcosd, P,=sin@sind, P =cost = |Pl=1

What happens to the P-vector? Example:

1 _
\PO>:ﬁQa>+,B>) = 9=Z,5=O:P||x

The time-dependent S.e. gives the following result (Larmor precession):

P,(t) =cos(wyt), P,(1)=—sin(ayt), P.(1)=0



Ensemble of spins

This is not the end of the story: the w.f. description is often not sufficient

Example: N, spins in the a-state and N, spins in the B-state

What is the P-vector in this case?
N, N (_ 1) N,

P=P =0, P.=(+]) o
N, +N, N, +N,

= |P[K1

When spin 72 has a w.f. |P|=1: the spin ensemble does not have a w.1.!

Similar problems arise when a system contains two subsystems: there
might be a total w.f. existing, but (sometimes) no w.f. of a subsystem

What should we do if the w.f. does not exist? Can we still evaluate
expectation values of interest and describe experiments?

37



Density matrix

If we have two sub-ensembles, we calculate expectation values for each
realization and then perform averaging

N,

WARETI VAL ARRTHE AVIL ANRUER

From the mathematical point of view:
fo=Telfpl p=Yw Y,

The new operator 1s called “density operator” or “density matrix™
The problem 1s solved: we can calculate expectation values!

F=Tep) =Y s = DS
P=D PN

- v

)
5 pmn — Cmcn

Questions:
Properties of the d.m.? Time-dependence of d.m.?

38



Properties of the density matrix

Physical meaning of the elements:
2
C

n

Diagonal elements are populations p, = p,, =
Off-diagonal elements are coherences p,,, (explained later)
The trace of d.m. is equal to 1

The d.m. is a hermitian matrix: (N2 — 1) independent parameters

When can we still use the w.f. description?
When the w.f. is existing (pure state), we obtain

p=¥ ¥ = pI=¥ WY Y= ¥ =p

When this relation does not hold (mixed state), we must not (!) use the w.{.
description. Example: ensemble of spins-1/2 at equilibrium

1 n w AE 5
= exp|l- | = "o =expl-—_ |=1+P,, <<l
Pea = 7 P { kT} /vﬂ eXp{ kT} 2> ¥

In this case p?=p does not hold 29



Density matrix of a spin-'2 particle

 D.m. of a spin % particle b= [/Oaa paﬂJ

IO Pa IO P
» The polarization vector components are

P.=2Relp,,} P =-2Imip,} P.=p.— Py

! e +(p-o)

2

* Rewritingthedm.: _ 1 1+F P —iP,
P.+iP, 1-P

* The d.m. is expressed via the P-vector and the Pauli matrices

i) (000008 © p p

paa pﬂﬂ p—:paﬂ p+:IOIBa

» Longitudinal M = A(population); transverse M = coherence

« Phase of the coherence: direction in the {x,y}-plane 9



Density matrix of a spin-'2 particle

D.m. of a spin % particle b= [/Oaa paﬂJ
IOﬂa pﬂﬂ

The polarization vector components are

P.=2Relp,,} P =-2Imip,} P.=p.— Py

! e +(p-o)

2

Rewriting thedm.: _ 1( 1+F P —iP,
P.+iP, 1-P

We can use the operator basis (each matrix is like a basis ket)

{£,5.,5,,5.}
The d.m. 1s a vector 1n this basis:
1 A A A A
,0:2E+Px S.+P S +PS =) c0,

It 1s easy to obtain the equation of motion (comes later)

41



Two or more spins >

The d.m. for two spins can be expressed in terms of product operators
} ES.,S8,,8.:1.,1,,1;8.1,8,1,8.1,
|$1.,87.81,81,81.,8.1

XTydTytydTzoyd T xTzY Tyt zd

£,8.,8,,8.|®1E, 11,1

> T x? y? z

Each product operator is now a 4*4 matrix; likewise, the Hamiltonian is a
4*4 matrix and it is expressed via the product operators

What is the direct product (Kronecker product)?

a,b, a,b, a,b, a,b,

1R B = (an a12j®(b11 blzj _ [a“B a12B) _ a,b, a,b,, a,b, a,b,

a, Ay b, b, aZIB azzg a,b, a,b, a,b, ayb,

a,b, a,b,, ay,b, ay,b,
Example with 2 spins:

SX=SX®E=£0 1/2}@(1 ojzl
1/2 0 0 1) 2
0

Other operators can be constructed in the same way. More spins: use direct
products of spin operators 42

0 0

S = O O
oS O -

0 1
0 0
1 0



Two spins >

« Relation between populations/coherences and d.m. elements

Energy level diagram

Density matrix

o

ae | op | Ba | BB
e | p. | SQC | sQc
ap |sQc | p, |zac | sqc
pa | SQC | zQc | p, | sQC
PB SQC | SQC | pg

* SQCsare givenby S,, S,, S\, S,L, I, I, S.I,, S.1,
* DQCs and ZQCs are given by combinations of S,/,, S,/,, S,1,, S,1,

* We can directly measure only transverse magnetization S,, S, ,, I,

« Other operators cannot be observed directly, but they affect the signal

* Coherence order for p,,,: p,. = M( m>) —M( n>)
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How does the d.m. evolve?

The S.e. in the bra and ket representations is

0 i 0 i
o Y= HY, (Y= (YA

ot

The equation for the d.m. 1s as follows:
®, 0 0 0 i
—p= WY i={_ YHY+YS (¥ =—|H
2p=2twiw)={ 2w b 2wl )
Liouville-von Neumann equation
The solution 1s simple for a time-independent Hamiltonian:

D(t) = exp[— il'z Ht} Do eXpBZ Ht}

For a time-dependent Hamiltonian we solve the equation numerically in
small time steps or use some tricks

The LvN equation 1s similar to that for the time-derivative of an operator in

the Heisenberg representation. However, the sign 1s “—” and the meaning 1s
different: in the Heisenberg representation the d.m. and w.f are constant

44



Time-dependence of the d.m.

The LvN equation is simple in the eigen-basis of the Hamiltonian

5 o i -
afpmm _O’ al‘pmn __h(Em_En) mn __la)m”pm”

The solution is also simple:
_ _ _—iw,,t 0
p,., =const, p =e o

Eigen-state populations do not evolve (a quantum system stays forever in an
eigen-state); off-diagonal elements oscillate at the w,,, frequency
(coherence).

Oscillatory evolution comes about when the initial state is a coherent
superposition of eigen-states.

e Ty B R PR, 30 S )

coherences result in “quantum beats”
45



Precession of spins Y2
Thedm.is p= ;[E+ (Pé‘)]
Likewise, the Hamiltonian is: H = ;[E -Tr {H }+ (F[ - 3)]

So, we can define the P-vector and the field-vector
Substitution to the LvN equation:

2% p=2{P-8)=- " [(-6)(P-6)

Ot Ot

The commutator term 1is:

[(H-&),(P-(ﬁ‘)]:;Hiﬁ[di,ﬁj]:ziZHiﬂgykﬁk :21'([pr]'5‘)

_ b
2

Finally we obtain precession of the P-vector: dP = 1 [H X P]
dt h

Furthermore, all 2-level systems behave this way: precession of the effective
spin in an external field in 3D. The prec. frequency is w,,=|H|/A 46



Magnetic resonance

Let us consider also the B-field (circular polarization)
B =1iB, cos(wt)- jB, sin(wt )+ kB,
The Hamiltonian is

H=-h 7/(BOS’Z + B8 o7 )
The LvN equation reads

(Z: _ ia)o (Szp B pSZ )_ i(()l {eia)tSZ S«xe—ia)tfzp . lbeia)ts'z vae—ia)tSz }

We can define the d.m. in the rotating frame (interaction representation)
,O _ eia)tS'Z ﬁe_M)tSZ

Equation for the new d.m.

%? :i@O(SZﬁ_ﬁSZ)+iwl(Sxﬁ_5§x): _;;[Hef’ﬁ]

The result 1s (still) precession in an effective field

A, =-hlo,-0)S. -hoS, = H,, Q = JAa)2 + @]

oA 47



QM description of NMR experiments

We (usually) start with thermally polarized spins:

1 H,| 1 haw,
Ibeq _ZeXp|:_kT':| ~ Z(E—l_ KT Szj

The same is true in the rotating frame because the d.m. commutes with the
rotation operator; the unity operator can be dropped off.

The d.m. evolves under the action of a time-dependent Hamiltonian (pulses,
free evolution, MAS)

Solution methods: split the time-axis into small intervals oz, where H=const
s _ .H _ _
p(t) — e iH (t,)ot o (t,1)0t R iH (t,)0t e iH ()0t v

v poeiﬂ(tl)& . eiH(tz)& _— eil—”l(tn_l)& . eiH(tn)é't
Looks complex, but the idea 1s simple: each evolution period leads to two
multiplications (at the left and at the right)
In many cases the solution can only be done numerically

When the Hamiltonian is changed in a periodic way, there are some tricks

available (AHT, Floquet theory) 48



RF-pulses

What happens to the d.m. (magnetization) when we apply a pulse?

the phase1s
T @ the tlip angle 1s p=w,7,

>

The w.f. and d.m. after the pulse
\Pafter> = R¢p (@) ¥ytore >a <LPafter

Ibafter = R¢p (¢)pbeforeR¢p (_§0)

The action of a strong pulse is equivalent to a rotation (we assume that only
the B,-term 1s relevant)

R, ()= exp[— ioT, (cos $,S, +sing S, )] = exp[— ip(cos ¢,8. +sing S, )]
A m/2-pulse generates a coherence, a m-pulse inverts the populations

R¢p (7[/2)SZR¢p (—7/2)=-8,, R¢p (E)SZR¢p (-7)=-S.

= <LPbef0re R¢p (—9)
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“Sandwich relationships”

Is there a simple way to calculate the effect of pulses?
Three cyclically commuting operators:

[2,8]=i¢, ¢, a]=i8, |B,C]=iA

Example:

[$,.8.1=iS., [5.,8.1=iS,, [S..8,]=iS.
The following relation is then true:
exp[— i@ﬂ]ﬁ exp[i@?l] =cos@B+sin6C

A, B, C are like the axis of our 3D-space; we “rotate” B “around” A by the
angle 0. Cyclic permutations provide two more relations

exp[— iHB]C’ exp[ié’B] =cos@C+sin@ A4
exp[— i@é]ﬁ exp[iHC] =cos@ A+sinf B
Of course, these rules apply to the spin operators

RF-pulses give x and y-rotations. Free precession gives a z-rotation by a

time-dependent angle wt

See M. H. Levitt, “Spin Dynamics”, cyclic commutation 50



Phase of the pulse

Different phases AZ AZ
x-pulse, =0 y-pulse, ,=m/2
> <
y X
—x-pulse, =n Az —y-pulse, =242
> <
y X

Pulse of a general phase is a combination of three rotations
R, () =expl-iplcosg,S, +sing,$, )}= R.(, R (0)R. (4,

Rotation about z turns the {x,y} axes; then a pulse is turning the spins around
the new x; finally, we return to the original frame.

Free precession is just a z-rotation
51



Single-pulse NMR experiment

Initial spin order is S, i I
p=_E+ PS
2 2

A pulse generates transverse magnetization
1 1
e Lps
p 2 2 7
Free precession changes the d.m.
p= ;E—;P(Sy coswt— S _sin a)t)

We can detect the FID and obtain the spectrum by doing the Fourier
transform

Generally, the FID is

FID(?) o 2ip_exp(=id,..), p- = ppg, =P +iP,
If the receiver phase is 0 we obtain a positive Lorentzian (after adding 75)

when =1 we obtain a negative line

rec

when ,=%7/2 we obtain a dispersive line -



More complex NMR experiments

The §,, S,, S, are not the only operators, which satisfy the cyclic commutation
relation

Other operators of this kind:
($.81.8.1} 8,,8.1

yz? X"z

$.1.}

The operator S.I, is often present in the Hamiltonian (secular interaction)

N (L)

V\

We can immediately obtain what different interactions do
Effect of the chemical shift:
S, = S,co8(w, t)tS,sin(w i)
p
N~

Effect of J-coupling with spin [:
S, = 8,€08(J ) +S, 1 sin(J 1)

x-component changes in the usual way; y-component 1s given by
the population difference of the a- and 3-states of spin /, which is /. 53




Key to simple experiments (from Shimon Vega)

I NMR in a two-spin system

. 90, ehemnical hlf 2L nd ym
w|Ln < » Lo ]J?E+]J%Q
E ) e
] 2]}nlzm d 211?3]2}91
Zm‘90'jj, ——
g ! 1 < ;y 90°
21,1 ynf ] 2fzn1xmh__ﬂgogh 10 _ 20
<t I




Example: COSY experiment

/2 /2 How does it work?
7[/2x tl 7[/2x tz
S;=>-5,=>8= 58 =>-§

X-magnetization stays on spin a
The efficiency of this pathway is

n(w,t1)¢08(J 1 )Sil(,15)¢0S(J
COSY: J-coupling (through STR(t)fosaptSIT(@, )40t

bond connectivities of neigh-
boring atoms, max. ~3 bonds)

A diagonal peak will appear in the COSY-
spectrum

Gain 1s two-fold:

(1) Spectral resolution is increased because peaks become resolved in 2D;
(2) Knowledge on additional coherence pathways can be obtained.
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Example: COSY experiment

/2 /2 How does it work?
71:/2x Jab T[/Zx Jab
t ¥ S, =8, =28, = 251 = -,

x-magnetization has gone from spin a to
spin b

The efficiency of transfer is

siﬁ(watl)s in(J ,t,) si(wyt,)$in(J ,t,)

COSY: J-coupling (through
bond connectivities of neigh-
boring atoms, max. ~3 bonds)

A cross-peak will appear in the COSY-
spectrum

The cross-peak is the direct evidence for
J-coupling

Gain is two-fold:
(1) Spectral resolution is increased because peaks become resolved in 2D;
(2) Knowledge on additional coherence pathways can be obtained.
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Example: COSY experiment

/2 /2
Result for more than 2 spins
t, t,
/
@f\l
COSY: J-coupling (through
bond connectivities of neigh-
boring atoms, max. ~3 bonds)
Q, Q, Q, Q,

When the spins are scalar coupled cross-peak will appear
In 2D peaks, which overlap in 1D-spectrum, become resolved

o7



Summary, part 2

v" Density matrix description of spin ensembles

v" QM description of NMR experiments

v" QM in action: some NMR examples
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Example: INEPT experiment

Populations at equilibrium

pb NMR signal 1s proportional to the y-ratio

o H
po \ 13C 4 times higher signals for protons than for
13C; even 10 higher than for 1N
ol | T
a;‘ :: es Possible improvement is polarization
IH13C transfer 'H—X-spin
NOE is not (always) the best solution:
e coherent mechanism and proper pulsing
work better
0.
pa 13C INEPT=Insensitive Nuclei Enhanced by
%&o&\j;@ Polarization Transfer



INEPT experiment: explanation
/2 T /2
A1 C)
] | ku/
T /2

bl |
~__ A
X

t
X I w All spins are along x

INEPT: transferring polarization
from proton to X-nucleus



INEPT experiment: explanation

/2 T /2

TIT| my
1H
= Y

T /2 e
~— A
X
¥
For t =1/4J the angle between
X L
spins is 90 degrees

INEPT: transferring polarization
from proton to X-nucleus



INEPT experiment: explanation

/2 T /2
g, )
T T o £ \y
H
T /2
X

G
X Components are flip by

protons pulse
Their colors are exchanged by
X-nucleus pulse

INEPT: transferring polarization
from proton to X-nucleus



INEPT experiment: explanation

/2 T /2
1H “— ﬂ >
-
T /2
X

¥
X Spins are along y for t =1/4J
The last proton pulse results in one
INEPT: tI’aIleeI’I’ing pOlaI’ization Component pOSlthe and one
from proton to X-nucleus negative

Reminder: first both were positive




INEPT experiment: explanation

/2 T /2

T T
H

T /2

G
X

INEPT: transferring polarization
from proton to X-nucleus

Pulses really make possible many
nice tricks with spins ©

Resulting populations

pp
0000 2
pa 13C
@
e\@o o
s'\&e&% o ﬂ
' (1)
oo
IH13C '

Now the final pulse for X-nucleus
does the detection

The gain is given by the ratio of
gammas

The gain can be further increased
when NMR of X is detected via
protons



