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Outline
• Angular moment (spin) and magnetic moment;

• Magnetic resonance phenomenon;

• Bloch equations;

• NMR pulses;

• FID, Fourier transform, 1D-NMR, 2D-NMR;

• T1 and T2 relaxation.
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Angular momentum and magnetic moment
• In NMR we deal with spin magnetism. What is ‘spin’?
• Charged nucleus (or electron) is spinning: 

there is angular momentum (spin) and magnetic moment
attention: this is a simple view, which is not (entirely) correct

So, μ is proportional to a.m.; when a.m. is measured in ħ units

Quantum mechanics: this is not entirely correct (we are wrong by the g-factor)!
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The electric current for a charged
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Angular momentum and magnetic moment
• Furthermore, QM tells us that S is quantized: angular moment measured in ħ 

units cannot be an arbitrary number

• Stern-Gerlach experiment:
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 The beam of particles is 
deflected by inhomogeneous field

 Reason: intrinsic magnetic 
moment (spin) of particles

 In contrast to the classical 
expectation the distribution of the 
μ-vector is not continuous!

 Spin is quantized



Angular momentum and magnetic moment
• Furthermore, QM tells us that S is quantized: angular moment measured in ħ 

units cannot be an arbitrary number

• S is integer (0, 1, 2, …) or half-integer (1/2, 3/2, 5/2, …) and |S|={S(S+1)}1/2

• Projection of S onto any axis in space varies in steps of 1 from – S to S
Spin-½ particle (1H, 13C, 15N, 19F, 31P…): possible projections are ±1/2
Spin-1 particle: possible projections are –1, 0, 1

• When discussing spin-½ particles we can use a simplification (and forget 
about QM): spin magnetization is a classical vector in the 3D-space, which is 
changing by moving in external fields and due to spin relaxation

• As we can see from the density matrix description, this is correct (but only 
for two-level systems!): fictitious spin description

5



Magnetic resonance: classical viewpoint
• Motion of a classical magnetic moment in a constant magnetic field B0

• Magnetic moment is 
γN is the gyromagnetic ratio (or magnetogyric ratio)

• We obtain a torque:

• These equations tell us that:
|J|=const; the J-vector is rotating about B0 at a frequency ω0=|γN|B0

This is precession of magnetic moment
The direction is given by the γN sign

• What happens to the magnetic moment if we apply an oscillating field?
• Typically this field is much weaker than B0: it does nothing except for 

some special cases 6
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Magnetic resonance: classical viewpoint
• Let us apply an oscillating field perpendicular to B0: B┴=2B1cos(ωt)
• To account for the effect of this field we can go

to the rotating frame:

• Linear polarized field = 2 circularly polarized fields: two vectors rotating 
with the same speed in opposite directions

• At high w the vector, which rotates with double frequency can be 
neglected. This is (usually) Ok for the description of resonance
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Magnetic resonance: classical viewpoint
• What happens to the transverse field:

• Linear polarized field = 2 circularly polarized fields: two vectors rotating 
with the same speed in opposite directions

• Graphical representation in both frames:

• At high w the vector, which rotates with double frequency can be 
neglected. The other vector does not move. This is (usually) Ok for the 
description of resonance
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Magnetic resonance: classical viewpoint
• Equation of motion in the rotating frame

• By taking derivative we obtain:

• Equation of motion in the rotating frame

• Still the same equation but the new field equals to

• Superposition of the new B0 and B1-fields gives a constant effective field Beff
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• The effective field is the following vector

• Precession frequency is

• If w=w0 the precession axis is the x-axis => variation of Jz reaches its maximum. 
This variation rapidly decays with w going to zero at |w–w0|>>w1

• Resonance condition: w= (free precession frequency). Weak B1 is important!
• Frequency range (given by γN): radio-frequency, i.e., 300 MHz for 1H @ 7 Tesla
• Resonance width is given by condition |w–w0|≈w1. If w1>>|w–w0| the effective 

field is nearly parallel to the x-axis – we are at resonance!
• At resonance the precession frequency is w1. If we switch on the resonant 

oscillating field for time period of τp the flip angle of magnetization is
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• The energy of interaction of the spin with an external field is

• If B0 is parallel to the Z-axis

• The degeneracy of the spin levels is lifted

• Fermi’ golden rule tells us that there is a resonance when ω=ω0

Magnetic resonance: simplified quantum 
viewpoint
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• Up to now we discussed a single spin ½, which is never the case in NMR

• At thermal equilibrium we have almost the same amount of spins pointing up 
and down: the energy gap between the spin levels is much smaller than kT

• We work with net magnetization of all spins; at equilibrium this is a vector 
parallel to B0 (longitudinal magnetization)

• However, we do not measure the longitudinal component, but rotate M with 
RF pulses to obtain transverse magnetization and measure the signal from M┴

Macroscopic spin magnetization
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• Relaxation is a process, which brings a system to thermal equilibrium. 
Physical reason: fluctuating interaction of spins with molecular surrounding

• For spins this means that Mz=M||=Meq and M┴=0

• There are two processes, which are responsible for relaxation
 Longitudinal, T1, relaxation: Meq is reached at t~T1:

 Transverse, T2, relaxation: magnetization decays to zero at t~T2:

• Generally, T1≠T2.
• Taking all that into account we can write down equations describing 

precession+relaxation

T1 and T2 relaxation
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• We write down equations describing precession and add relaxation terms

• Now we can describe simplest NMR experiments. Example:
Mz is flipped by 90 degrees by a resonant RF-pulse: φ=ω1τp=π/2
It starts rotating about the z-axis and decaying with T2

We detect My (or Mx) and collect the Free Induction Decay (FID)

Bloch equations and FID
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• How do we obtain the spectrum – by performing the Fourier transform

• Some examples

Fourier Transform NMR
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• How do we obtain the spectrum – by performing the Fourier transform

• Some examples

• FT can be performed in a fast and efficient way (FFT algorithm)

Fourier Transform NMR
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• A few words about pulses
• RF-synthesizer produces a signal oscillating at the spectrometer reference 

frequency ωref:

• Gating: the signal passes through the transmitter only for certain periods of 
time => we obtain an RF-pulse

• Parameters of the pulse: 
 frequency ωref

 strength B1 and duration τp provide the flip angle φ = |γN|B1τp = ω1τp 
 phase: ψ=0 (x-pulse), ψ=π/2 (y-pulse), ψ=π (–x-pulse), ψ=3π/2 (–y-pulse)

Fourier Transform NMR
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• A few words about FID detection
• We measure the signal comparing it to the reference frequency ωref 

(recording oscillations at ~100 MHz frequency would be a disaster)

• Problem: no sensitivity to the sign of Ω0 (ωref  greater or smaller than ω0)
• The solution is quadrature detection: the receiver provides a phase-shifted 

signal to obtain the information about the sign

• We introduce ‘complex magnetization’, which contains full information 

• Fourier transformation yields

• Yet phasing is a problem

Fourier Transform NMR
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• Fourier transformation yields

• Real and imaginary part of the signal (when C is real)

• Generally, C=|C|eiψ is a complex number because of a phase shift of the 
pulser and receiver

By varying the phase we can obtain the Lorenzian or purely dispersive line
The phase can be set and then kept the same

Fourier Transform NMR
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Before talking about 2D-NMR let us briefly discuss T1 and T2

 Origin of T1 and T2

 Relaxation and molecular motion
 Measurement of the relaxation times

Back to relaxation
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• T1-relaxation: precession in the B0 field and a small fluctuating field Bf (t)

• The precession cone is moving

• Eventually, the spin can even flip

• Spin flips up-to-down and down-to-up have slightly different probability 
(Bolztmann law!): Mz goes to Meq≠0

• General expression for the transition rate

T1-relaxation
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• T2-relaxation: kicks from the environment disturb the precession

• Different spins precess differently and transverse net magnetization is gone

• Generally the T2-rate

T2-relaxation

22

Two contributions:
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• Simple example: spins relaxed by fluctuating local fields, Bf (t)=0
• However, the auto-correlation function is non-zero

• Typical assumption

• Lorentzian-like noise spectral density

Noise spectral density
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• Simple example: spins relaxed by fluctuating local fields, Bf (t)=0
• The auto-correlation function is non-zero
• General expressions for T1 and T2

Expressions for T1 and T2
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• Problem: we need to discriminate two contributions to T2
• Decay of the NMR signal also proceeds due to static inhomogeneities in the 

precession frequency w0. This can be due to external field gradients and local 
static interactions.

• Resulting rate the signal decay

• The first two contributions are the same for all the molecules and thus define 
the homogeneous linewidth.

• The last contribution defines the inhomogeneous linewidth.
• In solids usually

Inhomogeneous linewidth
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T2-measurement: spin echo
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• Large inhomogeneous linewidth means very fast dephasing of the spin
• However, dephased magnetization can be focused back by pulses

• Explanation: let us divide system into isochromates having the same frequency 
w0. Their offsets are w=w0–w. At certain time they all have different phases

• But at t=2t all have the same phase: there is an ‘echo’!
• The spin echo signal decays with T2

p/2 p echo
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T1-measurement: inversion-recovery

• Determination of  T1 is often quite important as well
• Standard method is inversion-recovery
• First we turn the spin(s) by pulse (usually p/2 or p) and then look how system 

goes back to equilibrium (recovers z-magnetization). If the pulse is a p-pulse 
magnetization will be inverted (maximal variation of m-n) and then recovered

• Equation for Mz is as follows:

• The kinetic trace (t-dependence) gives T1-time
• To detect magnetization at time t one more p/2-pulse is applied, the sequence 

is then px - t (variable) - px/2 - measurement
• Spin echo can be used for detection as well, the pulse sequence is then px - t 

(variable) - px/2 - t - px - t - measurement 
• The sequence should be repeated with different delays t
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• 1D-NMR experiment (simplest case)

• Why is it not enough?

1D-NMR
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preparation - detection
S(t)

FT
S(ω)

For large proteins it is really hard to 
assign NMR signals and to obtain 
information from the spectra!

Too many peaks Þ Spectrum is a mess!



2D-NMR
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2D FT-NMR
implementation

Preparation                evolution              mixing           detection

t1 tm

t2

S(t1,t2)
FT1, FT2

S(ω1,ω2)

• Idea: adding a second dimension for improved resolution

t2 – direct domain
t1 – indirect domain 

It is up to you how to design preparation and mixing: decide, what you want to know 
about your molecules!



2D-NMR spectrum of a protein
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Contour plot: 
topographical lines

In 2D the peaks become resolved



Direct and indirect domain

31

Direct time domain (acquisition, t2): FID detection
Indirect time domain (evolution time, t1 in 2D): FIDs are collected for different 
t1 times

t1

The FID depends on the evolution in t1: 
the signal is 'modulated' with ω1

For simplicity here the frequency ω is the same in t1 and in t2

t2=0

FT (t2)

t2
FT (t1)

w2

w1



Cross-peaks and diagonal peaks
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Simple example: SCOTCH experiment
Spin COherence Transfer in (photo) CHemical reactions

Reaction A         B with a proton at ωA in A which resonates at ωB in B. 
hν

t1 t2l
i
g
h
t

M magnetization evoilves with the 
frequency ωA in t1. After the light pulse, 
the frequency changes to ωB. 

FT provides a 2D spectrum with 
a peak at ωA in F1 and ωB in F2

FT

The cross-peak comes from A → B and ωA≠ωB
When conversion A → B is incomplete the diagonal peak stays



Example: NOESY experiment
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tm t2
Cross-peaks come from NOE 
during the mixing period

SY = SpectroscopY

t1

How does it work?

I1z  Þ  –I1y  Þ  –I1y  Þ  –I1z  Þ  –I2z  Þ  I2y

Transverse magnetization has gone from spin 1 to spin 2
The efficiency of transfer is (simplified)
sin(ω1t1) *sin(ω2t2)

A cross-peak will appear in the NOESY-spectrum
The cross-peak gives information on NOE Þ distance between the spins
The same method can be used to study chemical exchange (EXSY)

π/2x           t1           π/2x        NOE        π/2x          

π/2                               π/2              π/2

ω1→

ω 2→

Ω1              Ω2    



Summary

 NMR is working with magnetic moments of nuclei 

(originating from their spins)

 Simple theory (Bloch equations) allows one to understand 

basic experiments

 1D & 2D NMR concepts are introduced
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