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Angular momentum and magnetic moment

« In NMR we deal with spin magnetism. What 1s ‘spin’?
e Charged nucleus (or electron) is spinning:
there 1s angular momentum (spin) and magnetic moment

attention: this is a simple view, which 1s not (entirely) correct

v
T The electric current for a charged I = qv
particle moving around 27
q The magnetic moment is 77 = ﬁ i = qvr i = 9 J
| c 2c 2mc
: : : : : h
So, u 1s proportional to a.m.; when a.m. 1s measured in /2 units [ = 2q S
mc

Quantum mechanics: this 1s not entirely correct (we are wrong by the g-factor)!

I, =g 1S, My=— en , g, = 2(1+a+...j ~2.0023  (QEDresult)
2m,c 2z

eh
2Mc

2
Iy =gulinl, 1y = , gyv#l (g,=558, g, ==,8," 3.83, QCDresult) 3



Angular momentum and magnetic moment

* Furthermore, QM tells us that S is quantized: angular moment measured in 7
units cannot be an arbitrary number

* Stern-Gerlach experiment:

v' The beam of particles is
deflected by inhomogeneous field

v’ Reason: intrinsic magnetic
moment (spin) of particles

z IM FEBRUAR 1922 WURDE IN DIESEM GEBrﬁUDE DEE et _

FHYSIK&LISCHEN VEREINS, FR#NKFURT ﬂ'.M MAlN
. VON CJTTG STEEN UMD WALTHEE GERTLA'CH DlE
v In contrast to the classical FUNDAMENTALE ENTDECKUNG DER RAUMQUANTISIERUNG

) . DER MAGNETISCHEN MOMENTE IN ATOMEN GEMACHT
expectation the distribution of the |

u-vector is not continuous!

v' Spin is quantized



Angular momentum and magnetic moment

Furthermore, QM tells us that S is quantized: angular moment measured in 7
units cannot be an arbitrary number

Sis integer (0, 1, 2, ...) or half-integer (1/2, 3/2, 5/2, ...) and |S|={S(5+1)} 1”2

Projection of S onto any axis in space varies in steps of 1 from —Sto S
Spin-Y particle (1H, 13C, 1SN, 19F, 31P...): possible projections are +1/2
Spin-1 particle: possible projections are —1, 0, 1

When discussing spin-'2 particles we can use a simplification (and forget
about QM): spin magnetization is a classical vector in the 3D-space, which 1s
changing by moving in external fields and due to spin relaxation

As we can see from the density matrix description, this 1s correct (but only
for two-level systems!): fictitious spin description



Magnetic resonance: classical viewpoint

Motion of a classical magnetic moment in a constant magnetic field B,

Magnetic moment is [y = @y My =V yJ

A
yn 18 the gyromagnetic ratio (or magnetogyric ratio) By
-
We obtain a torque: &/ - —)
. dt:_[“xg"]:_“[jxgo] torque 4”
s J
U,
dJ dJ
i = _7/NBOJy9 dl‘y = ]/NBOJx, JZ = const

These equations tell us that:  J_ oc cos(w,t), J , o sin(w,t), J. = const
lJ[=const; the J-vector is rotating about B, at a frequency wq=|yx|B,
This 1s precession of magnetic moment

The direction is given by the y, sign

What happens to the magnetic moment 1f we apply an oscillating field?

Typically this field 1s much weaker than B it does nothing except for
some special cases



Magnetic resonance: classical viewpoint

* Let us apply an oscillating field perpendicular to B: B1=2B,cos(w?)
e To account for the effect of this field we can go

to the rotating frame: A

7=z If a 1s a constant vector in the
Cx = x'cos wt + y' sin wt, RF, in the_)LF we obtain
< y=-Xx'sin @t + y'cos wt, y %:[@xﬁ]
z=2Zz wt
E

-
X
* Linear polarized field = 2 circularly polarized fields: two vectors rotating

with the same speed in opposite directions

Y Y
Lab frame T Rot. frame T ,
| > X ——| —X
« At high o the vector, which rotates with double frequency can be 7

neglected. This 1s (usually) Ok for the description of resonance




Magnetic resonance: classical viewpoint

What happens to the transverse field: 2B, cos wt = 2B, (cos wt,0,0)

Linear polarized field = 2 circularly polarized fields: two vectors rotating
with the same speed in opposite directions

B, (coswt,sin wt,0) + B, (cos(—wt),sin(—wxt),0)

Graphical representation in both frames:

y y
Lab frame T Rot. frame I

| - —4| _’x’

At high o the vector, which rotates with double frequency can be
neglected. The other vector does not move. This 1s (usually) Ok for the
description of resonance




Magnetic resonance: classical viewpoint

Equation of motion in the rotating frame

' ' 7 Here the components of J change and the
=J 1+ + : L
J JX Jy J+J k basis vectors {i, j, k} also change with time

By taking derivative we obtain:

dJ a’J - dJ - dJ, -
L+ k + , ,
dr dt a’ dt Here /0t 1s the time

di d] dk & derivative in the

+J —+J 24, == [@xJ] rotating frame
dt 7 dt dt o

Equation of motion in the rotating frame

g d_J_[a)xJ]——)/N[JXB]‘F[Jxa)] [j)(ée

St dt ]

Still the same equation but the new field equals to Eeﬂ = Bo +o/y, + B1

Superposition of the new B, and B,-fields gives a constant effective field 5,

9



Magnetic resonance: classical viewpoint

The effective field 1s the following vector Beﬁ =(B,,0,(w—wy)/ 7y)

z

Precession frequencyis g B
Bo—allyy| '

Q=yyB,, :X/(a)_a)o)z"'a)lz

If wo=w, the precession axis 1s the x-axis => variation of J, reaches its maximum.
This variation rapidly decays with @ going to zero at |o—wy|>>w,

Resonance condition: w = (free precession frequency). Weak B, 1s important!
Frequency range (given by yy): radio-frequency, 1.e., 300 MHz for 'H (@ 7 Tesla

Resonance width is given by condition |o—wy|~w,. If w,>>|w-w,| the effective
field 1s nearly parallel to the x-axis — we are at resonance!

At resonance the precession frequency is @;. If we switch on the resonant
oscillating field for time period of 7, the flip angle of magnetization is
® = oT, = )/NBlz'p
10



Magnetic resonance: simplified quantum
viewpoint
» The energy of interaction of the spin with an external field is

HN :_(ﬁ'BO):_h?/N(EO'f)

» If By is parallel to the Z-axis E =—hy,B,I.

* The degeneracy of the spin levels is lifted

E=|yy|By/2
-1/2)=|B) Period ot
Absence of MF eriodic perturbation
H'(t)=2F coswt =2y, B, _cos wt
E=—|y\|By/2
a1 Bo ‘1/2>:‘a>
Presence of MF

« Fermi’ golden rule tells us that there is a resonance when w=w,
P, - 2; ‘a\F B S(E, - E, —ha) o BS(ha, —hao)

(27

11



Macroscopic spin magnetization

« Up to now we discussed a single spin %4, which is never the case in NMR

« At thermal equilibrium we have almost the same amount of spins pointing up
and down: the energy gap between the spin levels is much smaller than AT

B A
0
!4 - M = Z I. = ¥B, Nuclear
’7' ’7' . i paramagnetism:
Ny2R2I(I+1)  the induced field
\ <@- ’ﬂ x="" 3T is parallel to B,

«  We work with net magnetization of all spins; at equilibrium this is a vector
parallel to B, (longitudinal magnetization)

 However, we do not measure the longitudinal component, but rotate M with
RF pulses to obtain transverse magnetization and measure the signal from M.

12



T, and T, relaxation

Relaxation is a process, which brings a system to thermal equilibrium.
Physical reason: fluctuating interaction of spins with molecular surrounding

For spins this means that M. =M,=M,, and M1=0

There are two processes, which are responsible for relaxation
v" Longitudinal, T,, relaxation: M,, 1s reached at t~T:

v" Transverse, T,, relaxation: magnetization decays to zero at t~T5:

M, =M, exp(-t/T))

Generally, T\#75.

Taking all that into account we can write down equations describing

precessiontrelaxation i3



Bloch equations and FID

We write down equations describing precession and add relaxation terms
( dM . /dt =—(w,—o)M ,-M /T,

< dM,/dt=(wy—o)M,—oM,.-M, /T,

aM . /dt=woM,-(M.-M,)/T,

N
Now we can describe simplest NMR experiments. Example:

M, is flipped by 90 degrees by a resonant RF-pulse: p=w,7,=7/2
It starts rotating about the z-axis and decaying with 7,
We detect M, (or M,) and collect the Free Induction Decay (FID)

M (t) =M, cos(wyt)exp(—t/T,)

A9 1 N How to obtain

) /\ 0 the spectrum?
- P o JVV’\V’\VAVA-‘ —

-1 1" Free Induction Decay

14



Fourier Transtform NMR

* How do we obtain the spectrum — by performing the Fourier transform

g(o) = [ 1) cos(wr)ds

1 N Fourier
/\ /\ transform
A AN JL
0 J INAAGS t » .
-1 time domain f{¢) frequency domain g(w)

« Some examples
cos(w,t) o(w—a,) d-function, single freq.

1,

1+ &’T;

exp(—t/T,) L(w) = Lorentzian at zero freq.

1l

M, cos(w,t)exp(—t/T,)

L(o—w,) Lorentzian at o, freq.

15



Fourier Transtform NMR

* How do we obtain the spectrum — by performing the Fourier transform

g(o) = [ 1) cos(wr)ds

1 N Fourier
/\ /\ transform
A AN JL
0 J INAAGS t » .
-1 time domain f{¢) frequency domain g(w)

« Some examples

g(w) % FID(¢) = Icos(cot)g(w)dco
FID(¢) % g(w) Inverse FT gives g(m)
from the FID signal
Widths of g(w) and FID(¢) are inter-related: ot~1/0w

* FT can be performed in a fast and efficient way (FFT algorithm) 16



AN NN

Fourier Transtform NMR

A few words about pulses
RF-synthesizer produces a signal oscillating at the spectrometer reference
frequency .

) The phase is time-dependent and
S(7) o cos(a)ref t+y () can be precisely controlled

Gating: the signal passes through the transmitter only for certain periods of
time => we obtain an RF-pulse 11

14

0 I 01

1]

Parameters of the pulse:

frequency w, .,

strength B, and duration 7, provide the flip angle ¢ = |yy|B,7,= w7,
phase: y=0 (x-pulse), y=r/2 (y-pulse), y=r (—x-pulse), y=37/2 (—y-pulse)

17



Fourier Transtform NMR

A few words about FID detection

We measure the signal comparing it to the reference frequency w, .,
(recording oscillations at ~100 MHz frequency would be a disaster)

r, @0 = Qy=0,-0,,

M (t) oc cos(m,t)e M (t) o cos(Q t)e"'"

Problem: no sensitivity to the sign of Q, (w,., greater or smaller than w,)

The solution is quadrature detection: the receiver provides a phase-shifted
signal to obtain the information about the sign

S, (t)=C-cos(Qt)e"', §,(t)=C-sin(Qt)e "™
We introduce ‘complex magnetization’, which contains full information

St)=S,(t)+i-S,(t)=C-expliQ,t—1/T,)
Fourier transformation yields S(Q)=C j exp(iQ f—=t/T, )e_’Qtdt
0

Yet phasing is a problem

18



Fourier Transtform NMR

 Fourier transformation yields S(Q)=C j eXp(iQot —t/17, )e_’Qtdt
0

* Real and imaginary part of the signal (when C is real)

1,
+(Q_Qo)2T22

Im{S()}=-D(@-0y) =~ f?g__ﬂé)?w

Re{S(Q)}=L(Q-Q,) = :

* Generally, C=|Cle is a complex number because of a phase shift of the
pulser and receiver

Re{S(Q)} oc L(Q—-Q,)cosy —D(Q—-Q,)siny

By varying the phase we can obtain the Lorenzian or purely dispersive line
The phase can be set and then kept the same 19



Back to relaxation

Before talking about 2D-NMR let us briefly discuss T; and T,
v" Origin of T, and T,

v" Relaxation and molecular motion

v’ Measurement of the relaxation times

20



T,-relaxation

T,-relaxation: precession in the B field and a small fluctuating field B(¢)

A AN
By Bt By+B,(1)
1 “::: 177~

e e e
Eventually, the spin can even flip ‘
/

The precession cone 1s moving

\
\
\
\
\
\
\
\
\

/
I /
/
/
/
/
/
\

Spin flips up-to-down and down-to-up have slightly different probability
(Bolztmann law!): M, goes to M, #0

General expression for the transition rate  pp — I — 12 4B J(®)
2T, h
J(w) = 27, Noise spectral density at the transition frequency
1+ w’t 02 7. 1s the motional correlation time

21



T,-relaxation

* T,-relaxation: kicks from the environment disturb the precession

« Different spins precess differently and transverse net magnetization is gone

ﬂ/%ﬁ

/

/

Dephasing l!‘)ﬂ

4

* Generally the T,-rate

1 1 1 1 1 Two contributions:

T, - Ty T T - Ty + 2T Adiabatic and non-adiabatic (T,-related)

22



Noise spectral density

Simple example: spins relaxed by fluctuating local fields, B,(2)=0

However, the auto-correlation function 1s non-zero

4
T

< »
<« »

/\N\A)\/\Mm/\m by
ARRVRR AN A AWAYET

J@Of(t+7)=G(7)

Typical assumption

o\ G(r)=exp(—|7]|/7,) 4 Exponent.ial auto-correlation function
= v’ 7. comes into play
3 o4
0.24
1 2 ged 4 ¢
Lorentzian-like noise spectral density
i y 27 6
J(w)=2 j G(t)e ™ ™dt=—""¢ =
g l+w't;

23




Expressions for T, and T,

* Simple example: spins relaxed by fluctuating local fields, B/(£)=0
* The auto-correlation function 1s non-zero

» General expressions for T and 7,

1 > (7793 * T
— =y (B + B ), |
T, "Nt o’ el
i
1+ o’ | —
T o -
.

T

C

24



Inhomogeneous linewidth

Problem: we need to discriminate two contributions to 7,

Decay of the NMR signal also proceeds due to static inhomogeneities in the

precession frequency @,. This can be due to external field gradients and local
static interactions. A

> »
l P

NMR
spectrum /\/\

\\ >
Resulting rate the signal decay @
1 1 1 1
r=—t+tAR—+—+A Reason: ow-o0t~2n
I, 1, I, 1

The first two contributions are the same for all the molecules and thus define
the homogeneous linewidth.

The last contribution defines the inhomogeneous linewidth.
In solids usually Tz* << T2

25



T,-measurement: spin echo

Large inhomogeneous linewidth means very fast dephasing of the spin
However, dephased magnetization can be focused back by pulses

echo
/2 T A pulse sequence 7/2, - 7- 7,
L > |

0 T 27
Explanation: let us divide system into isochromates having the same frequency

@,. Their offsets are Aw=w,—w. At certain time they all have different phases

=0| ¢=0 o=Awt o=r—Aor+Aa(t—1) =27 | ¢=n
) /é\ A
y y Y, Y,
v x v x v x v x

But at =2 r all have the same phase: there is an ‘echo’!

The spin echo signal decays with T,
26



T,-measurement: inversion-recovery

Determination of 7 1s often quite important as well
Standard method is inversion-recovery

First we turn the spin(s) by pulse (usually 772 or 7) and then look how system
goes back to equilibrium (recovers z-magnetization). If the pulse is a 7-pulse
magnetization will be inverted (maximal variation of m-n) and then recovered

Equation for M. is as follows:

M_()=M, (M, —M,)exp(~t/T,)

° t

@ >

The kinetic trace (#-dependence) gives 7;-time

To detect magnetization at time ¢ one more 7/2-pulse 1s applied, the sequence
is then 7z, - ¢ (variable) - 7/2 - measurement

Spin echo can be used for detection as well, the pulse sequence is then 7, - ¢
(variable) - 7,/2 - 7- 7, - 7- measurement

The sequence should be repeated with different delays ¢



1D-NMR

* 1D-NMR experiment (simplest case)

N -

S(9) . S(o)

preparation - detection

* Why is it not enough?

For large proteins it is really hard to
assign NMR signals and to obtain
information from the spectra!

Too many peaks = Spectrum is a mess!




2D-NMR

* Idea: adding a second dimension for improved resolution

2D FT-NMR FT,, FT,
implementation S(t1,t)
\
t, — direct domain
t; — indirect domain
\ J\ J
Y Y Y Y
Preparation evolution mixing detection

It 1s up to you how to design preparation and mixing: decide, what you want to know
about your molecules! 29



2D-NMR spectrum of a protein
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In 2D the peaks become resolved



Direct and indirect domain

Direct time domain (acquisition, #,): FID detection
Indirect time domain (evolution time, ¢, in 2D): FIDs are collected for different

t; times

\/\N\/\/\M FT (1)

8§/>>>w\
3

The FID depends on the evolution in #: g /\/\/\/‘vw/v\

the signal 1s 'modulated' with o,

T : : : 31
For simplicity here the frequency w 1s the same in ¢, and in ¢,



Cross-peaks and diagonal peaks

Simple example: SCOTCH experiment
Spin COherence Transfer in (photo) CHemical reactions

: V : : : :
Reaction A—> B with a proton at w, in A which resonates at @y in B.

o

i

M magnetization evoilves with the
frequency w, in ¢,. After the light pulse,
the frequency changes to wj.

FT provides a 2D spectrum with
a peak at w, in F, and wzin F,

The cross-peak comes from A — B and o #w;

When conversion A — B 1s incomplete the diagonal peak stays
32



Example: NOESY experiment

/2 /2 /2
t Cross-peaks come from NOE
2

\/\/WM during the mixing period

SY = SpectroscopY

How does it work?

/2, t /2, NOE /2,
L, = ), = Ay, = 1, = -1, = I

/
3

Transverse magnetization has gone from spin 1 to spin 2
The efficiency of transfer is (simplified)

sip(o,1)) *Sih(c,t,) Q, Q,

A cross-peak will appear in the NOESY-spectrum

The cross-peak gives information on NOE = distance between the spins
The same method can be used to study chemical exchange (EXSY)

33



Summary

v" NMR is working with magnetic moments of nuclei

(originating from their spins)

v" Simple theory (Bloch equations) allows one to understand

basic experiments

v 1D & 2D NMR concepts are introduced

34



