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1 Solution: Relaxation Theory

Solving the questions requires to implement the equations given in the exercise

in MATLAB or another matrix calculation package. An example implementation is

included in the solution.

There are some user-defined functions that are used in the exercise:

• define_constants.m

% This file defines all important constants used 
% for relaxation calculation.
% started12.3.1991MAER
%
%
mu0= 4*pi*1e-7;
mu04pi= 1e-7;
hbar= 1.05457266e-34;
h = 6.6260755e-34;
gh_gc= 3.979;
gh_gn= -9.869;
gammah= 2.67522128e8;
gammac= gammah / gh_gc;
gamman= gammah / gh_gn;
gammae  =-1.7608598e11;
betae   = 9.274e-24;
rch= 1.09e-10;
rnh = 1.1e-10;
rad= pi/180;
kB      = 1.3806488e-23;

• J.m

function Jiso = J(omega, tau)
Jiso = 2/5 * tau ./(1+(omega .* tau).^2);

• T1.m

function T1 = T1(delta, sigmazz, omegaI, omegaS, tau)

T1 = ((delta/4)^2*(1*J(omegaI-omegaS,tau)+3*J(omegaS,tau) + ...
                   6*J(omegaI+omegaS,tau))+ ...   
       3/4*(sigmazz*omegaS).^2.*J(omegaS,tau)).^-1;

• T2.m

function T2 = J(delta, sigmazz, omegaI, omegaS, tau)

T2 = (delta^2/32*(4*J(0,tau)+1*J(omegaI-omegaS,tau)+3*J(omegaS,tau) + ...
                  6*J(omegaI,tau) +6*J(omegaI+omegaS,tau))+ ... 
       1/2*(sigmazz*omegaS).^2.*J(0,tau) + ...  
       3/8*(sigmazz*omegaS).^2.*J(omegaS,tau)).^-1;
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• T1x.m

function T1x = T1x(delta, sigmazz, omegaI, omegaS, tau)

T1x = ((delta/4)^2*(-1*J(omegaI-omegaS,tau) + ...
                   6*J(omegaI+omegaS,tau))).^-1;

1.1 T1 Dependence on Magnetic Field and Correlation Time

• Calculate  as a function of the correlation time  assuming that the chemical-

shielding tensor is  = 0 ppm. Generate a double-logarithmic plot of  vs.

. Where do you observe a minimum of the  time? Rationalize the position

of the minimum by discussing the form of the spectral-density function.

• Solution: 

Figure 1.1 shows a log-log plot of T1 as a function of the correlation time. One

can clearly see that the T1 curve has a minimum that is roughly at the position 

= 1. 

MATLAB code to plot the T1 dependence on the correlation time:

clear;
define_constants;
colormap(jet);

omegaS = 14.1*gamman;
omegaI = 14.1*gammah;
delta = -2*mu04pi*gamman*gammah*hbar/rnh^3;
sigmazz00=0;
sigmazz05=50e-6;
sigmazz15=150e-6;

tauc = 10 .^ (-12:0.01:-5);
T1N00 = T1(delta,sigmazz00,omegaI,omegaS,tauc);
T1N05 = T1(delta,sigmazz05,omegaI,omegaS,tauc);
T1N15 = T1(delta,sigmazz15,omegaI,omegaS,tauc);

loglog(omegaS*tauc,T1N00,'b');
hold on
loglog(omegaS*tauc,T1N05,'r');
loglog(omegaS*tauc,T1N15,'g');
hold off
axis([-1e3 -1e-3 1e-1 1e3])
set(gca,'XDir','Reverse')
set(gca,'FontSize',14);
xlabel('\omega_0^{(S)}\tau_c')
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ylabel('T_1 [s]')
legend('\sigma_{zz}^{(S)} = 0 ppm','\sigma_{zz}^{(S)} = 50 
ppm','\sigma_{zz}^{(S)} = 150 ppm')

The location of the minimum can be understood when looking at the spectral-

density functions as a function of the correlation time as shown in Figure 1.2. One can

clearly see that the spectral density function at frequency  is largest and will

dominate the behavior of T1. Each of the spectral-density functions will have a

maximum at  = 1 and, therefore, T1 will have a minimum there. There are some

additional features visible in Figure 1.1 which come from the minima of the spectral-

density functions at the frequencies  and .

MATLAB code to plot the spectral density functions:

loglog(omegaS*tauc,J(omegaS,tauc),'b');
hold on
loglog(omegaS*tauc,J(omegaS-omegaI,tauc),'r');
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Figure 1.1: Plot of Longitudinal T1 Relaxation Times
Plot of the longitudinal relaxation times for a N-H two-spin system in a static magnetic field
of 14.1 T with a bond length of 1.1 Å. Three different values for the chemical-shielding tensor
are shown.
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loglog(omegaS*tauc,J(omegaS+omegaI,tauc),'g');
loglog(omegaS*tauc,J(0,tauc),'b');
hold off
axis([-1e3 -1e-3 1e-14 1e-6])
set(gca,'XDir','Reverse')
set(gca,'FontSize',14);
xlabel('\omega_0^{(S)}\tau_c')
ylabel('J(\omega)')
legend('\omega_0^{(S)}','\omega_0^{(S)}-
\omega_0^{(I)}','\omega_0^{(S)}+\omega_0^{(I)}','0')

• Calculate and plot  for chemical-shielding tensor values of  = 50 ppm and

150 ppm. What do you observe?

• Solution:

Increasing the chemical-shielding tensor value will lead to additional

relaxation that makes the rate constant larger and, therefore, decreases the T1 time as

can be seen in Figure 1.1. 

MATLAB code for this is already included in the first part.

Figure 1.2: Plot of Spectral-Density Functions
Plot of the spectral-density functions as a function of the correlation time for different
frequencies ( , , , and 0). The spectral-density function at frequency

 has the largest value and will dominate the behavior of T1. 
w0

S  w0
S  w0

I – w0
S  w0

I +
w0

S 

-10 3-10 2-10 1-10 0-10 -1-10 -2-10 -3

0
(S)

c

10-14

10-12

10-10

10-8

10-6

J(
)

0
(S)

0
(S)-

0
(I)

0
(S)+

0
(I)

0

T1S szz
S 
 



5

• Calculate  as a function of the static magnetic field  between 1 and 30 T for

correlation times  of 10-12, 10-10, and 10-8 s. We assume that the chemical-

shielding tensor is  = 0 ppm.

• Solution:

The dependence of T1 on the static magnetic field is shown in Figure 1.3 for

three different correlation times. For the correlation times of 10-12 and 10-10 s we are

always in the extreme narrowing limit (  < 1) and the value of the spectral-

density function does not depend on the static magnetic field. Only for the correlation

time of 10-8 s can we observe a dependence of T1 on B0 since  > 1.

MATLAB code to plot the B0 dependence of T1: 

tauc1=1e-12;
tauc2=1e-10;
tauc3=1e-8;
B0=1:0.01:30;
omegaI=gammah*B0;
omegaS=gamman*B0;
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Figure 1.3: Plot of T1 as a Function of B0 
Plot of the 15N T1 relaxation time as a function of the static magnetic field B0 for three different
values of the correlation time.
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T1N1 = T1(delta,sigmazz00,omegaI,omegaS,tauc1);
T1N2 = T1(delta,sigmazz00,omegaI,omegaS,tauc2);
T1N3 = T1(delta,sigmazz00,omegaI,omegaS,tauc3);

semilogy(B0,T1N1,'b');
hold on
loglog(B0,T1N2,'r');
loglog(B0,T1N3,'g');
hold off
set(gca,'FontSize',14);
xlabel('B_0 [T]')
ylabel('T_1 [s]')
legend('\tau_c = 10^{-12} s','\tau_c = 10^{-10} s','\tau_c = 10^{-8} s')

1.2 T2 Dependence on Magnetic Field and Correlation Time

• Calculate  as a function of the correlation time  assuming that the chemical-

shielding tensor is  = 0 ppm. Generate a double-logarithmic plot of  vs.

. Rationalize why the T2 relaxation time shows no minimum but decreases

continuously with increasing correlation time.

• Solution:

Implementing the T2 calculation in MATLAB is straightforward using the

equations given in the exercise. The plot shown in Figure 1.4 shows no minimum like

the T1 plot but decreases monotonically. This is due to the fact that the equation for T2

relaxation contains the spectral-density function at frequency 0 (see Figure 1.2) which

dominates the behavior at longer correlation times. 

MATLAB code to plot T2 as a function of the correlation time:

omegaS = 14.1*gamman;
omegaI = 14.1*gammah;
delta = -2*mu04pi*gamman*gammah*hbar/rnh^3;
sigmazz00=0;
sigmazz05=50e-6;
sigmazz15=150e-6;

tauc = 10 .^ (-12:0.01:-5);
T2N00 = T2(delta,sigmazz00,omegaI,omegaS,tauc);
T2N05 = T2(delta,sigmazz05,omegaI,omegaS,tauc);
T2N15 = T2(delta,sigmazz15,omegaI,omegaS,tauc);

loglog(omegaS*tauc,T2N00,'b');
hold on
loglog(omegaS*tauc,T2N05,'r');
loglog(omegaS*tauc,T2N15,'g');
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hold off
axis([-1e3 -1e-3 1e-4 1e3])
set(gca,'XDir','Reverse')
set(gca,'FontSize',14);
xlabel('\omega_0^{(S)}\tau_c')
ylabel('T_2 [s]')
legend('\sigma_{zz}^{(S)} = 0 ppm','\sigma_{zz}^{(S)} = 50 
ppm','\sigma_{zz}^{(S)} = 150 ppm')

• Calculate and plot  for chemical-shielding tensor values of  = 50 ppm and

150 ppm. What do you observe?

• Solution:

As in the case of T1 relaxation, increasing the CSA tensor will increase the

relaxation rate constant and, therefore, decrease the T2 time as can be seen in Figure

1.4

MATLAB code already included in the previous question.

Figure 1.4: Plot of Transverse T2 Relaxation Times
Plot of the transverse relaxation times for a N-H two-spin system in a static magnetic field of
14.1 T with a bond length of 1.1 Å. Three different values for the chemical-shielding tensor are
shown.
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• Calculate  as a function of the static magnetic field  between 1 and 30 T for

correlation times  of 10-12, 10-10, and 10-8 s. We assume that the chemical-

shielding tensor is  = 0 ppm.

• Solution:

The B0-field dependence of T2 relaxation can be seen in Figure 1.5. There is

only a weak dependence on the B0 field since for all three correlation time T2 is mainly

determined by the J(0) spectral-density contribution.

MATLAB code to plot the B0 dependence of T2:

tauc1=1e-12;
tauc2=1e-10;
tauc3=1e-8;
B0=1:0.01:30;
omegaI=gammah*B0;
omegaS=gamman*B0;
T2N1 = T2(delta,sigmazz00,omegaI,omegaS,tauc1);
T2N2 = T2(delta,sigmazz00,omegaI,omegaS,tauc2);
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Figure 1.5: Plot of T2 as a Function of B0 
Plot of the 15N T2 relaxation time as a function of the static magnetic field B0 for three different
values of the correlation time.
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T2N3 = T2(delta,sigmazz00,omegaI,omegaS,tauc3);
semilogy(B0,T2N1,'b');
hold on
loglog(B0,T2N2,'r');
loglog(B0,T2N3,'g');
hold off
set(gca,'FontSize',14);
xlabel('B_0 [T]')
ylabel('T_2 [s]')
legend('\tau_c = 10^{-12} s','\tau_c = 10^{-10} s','\tau_c = 10^{-8} s')

• Back calculate the correlation time from the T1 and T2 values calculated for the

chemical-shielding tensor of  = 0 ppm. Plot the back calculated values against

the input correlation times. In which range of correlation times is Equation [3.6]

valid? Derive Equation [3.6] from the analytical Equations [3.4] and [3.5] for T1 and

T2.

• Solution:

The plot of the back calculated correlation time against the theoretical

correlation time is shown in Figure 1.6. From this it is clear that Equation [3.6] is valid

only for large molecules with a correlation time longer than about 1 ns. To obtain
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Figure 1.6: Plot Back Calculated Correlation Time
Plot of the back calculated correlation time against the theoretical correlation time.
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Equation [3.6], we assume that only the spectral densities at frequency 0 and

frequency  are important which is correct for long correlation times or big

molecules that tumble slowly. Using this assumption, we find:

[S-1.1]

Equation [S-1.1] can be solved for  and leads to Equation [3.6].

MATLAB code to plot the back calculated correlation time:

tauc = 10 .^ (-12:0.01:-5);
loglog(tauc,-real(1/(2*omegaS)*sqrt(6*T1N00./T2N00-7)),'b');
hold on
loglog(tauc,tauc,'r')
hold off
xlabel('\tau_c [s]')
ylabel('\tau_c [s]')
axis([1e-12 1e-5 1e-12 1e-5])
set(gca,'FontSize',14);
legend('\tau_c (theory) vs. \tau_c (fit)','\tau_c (theory) vs. \tau_c 
(theory)')

1.3 Coupled Relaxation Modes

• Calculate the time evolution of the Sz magnetization after a 180° inversion pulse,

i.e., for an initial condition  by solving the differential Equation [3.8]

assuming isotropic rotational tumbling at correlation times of  = 10-8 and 10-10 s

assuming that the chemical-shielding tensor is  = 0 ppm. Compare the curve

with a mono-exponential buildup towards thermal equilibrium with a time

constant of T1S. Discuss the results.

• Solution:

If we assume no CSA-dipole cross-correlated cross relaxation, the system

simplifies to two coupled differential equations

[S-1.2]

with the formal solution 
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. [S-1.3]

The initial conditions are given by  and

. In principle one can diagonalize the 2x2 matrix analytically but the

expressions obtained are quite complicated and it is simpler to calculate a numerical

solution in MATLAB. For a correlation time of 10-10 s, we obtain values of  =

0.2925 s-1,  = 0.3047 s-1, and  = 0.1495 -1. For a correlation time of 10-8 s, we

obtain values of  = 0.0261 s-1,  = 0.6537 s-1, and  = 0.0153 -1. In the first

case, the diagonal and the off-diagonal matrix elements are all in the same order of

magnitude and we will get a bi-exponential decay where both time constants

contribute about equally. This can be seen by calculating the eigenvalues and the

eigenvectors of the relaxation matrix. In the second case, the off-diagonal element is

much smaller than the auto-relaxation rate constant of the S spin and we expect a

mostly mono-exponential decay with the auto-relaxation rate constant. This can also

be seen from the eigenvalues and eigenvectors of the relaxation matrix which show

very little coupling between the two modes. This can be seen in Figure 1.7 where the

numerical solution of the coupled differential equations is plotted together with the

mono-exponential decay for the T1S time constant.

MATLAB code to plot the time evolution of the coupled system:

omegaS = 14.1*gamman;
omegaI = 14.1*gammah;
delta = -2*mu04pi*gamman*gammah*hbar/rnh^3;
sigmazz00=0;
tauc=1e-10;
T1S = T1(delta,sigmazz00,omegaI,omegaS,tauc);
T1I = T1(delta,sigmazz00,omegaS,omegaI,tauc);
T1IS = T1x(delta,sigmazz00,omegaS,omegaI,tauc);

R = [1/T1I,1/T1IS;1/T1IS,1/T1S];
t=0:0.01:15;
Sz=zeros(size(t));
Iz=zeros(size(t));

for k=1:length(t)
  z = expm(-R*t(k))*[0;-2]+[10;1];
  Iz(k)=z(1);
  Sz(k)=z(2);
end
plot(t,Sz,t,exp(-t/T1S)*(-2)+1)
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Figure 1.7: Plot of the Time Evolution of <Sz>
Plot of the time evolution of the Sz magnetization after inversion of the S spin calculated by
solving the system of coupled differential equations (blue lines) and as a mono-exponential
decay with the time constant T1S (red lines). a) for a correlation time 10-10 s and b) for a
correlation time of 10-8 s.
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ylabel('<S_z(t)>')
xlabel('t [s]')
set(gca,'FontSize',14);
legend('coupled system','T_1 decay')

There is also an alternate solution which uses the capability of MATLAB to solve

differential equations:

clear all
%% Initializing constants

mu_0=4*pi*1e-7;
h_bar=1.05457*1e-34;
gamma_H=2.675e8;
gamma_N=-2.716e7;

B0=14.1;
r12=1.1e-10;
delta_iso=0; 
delta_iso_H=0;
tau_c=1e-10; % correlation time

omega_H=-gamma_H*B0;
omega_N=-gamma_N*B0;

delta_HN=-2*mu_0*gamma_H*gamma_N*h_bar/4/pi/(r12^3);
S_z0=-1; % initital condition for S spin after inversion
S_zeq=1; % thermal equilibrium
I_z0=S_zeq*omega_H/omega_N; % I spin in thermal equilibrium = I_z(eq)
I_zeq=I_z0;

J_tau=@(omega) 2/5*tau_c/(1+(omega*tau_c).^2); % isotropic rotational 
tumbling 

G_Iz=(delta_HN/4)^2*(J_tau(omega_H-
omega_N)+3*J_tau(omega_H)+6*J_tau(omega_H+omega_N))+3/
4*(omega_H*delta_iso_H)^2*J_tau(omega_H); %matrix elements of relaxation 
matrix

G_Sz=(delta_HN/4)^2*(J_tau(omega_H-
omega_N)+3*J_tau(omega_N)+6*J_tau(omega_H+omega_N))+3/
4*(omega_N*delta_iso)^2*J_tau(omega_N);

G_IzSz=(delta_HN/4)^2*(-J_tau(omega_H-omega_N)+6*J_tau(omega_H+omega_N));

%% Coupled differential equations

syms Iz(t) Sz(t) % integrated solver for coupled differential equations in 
matlab; 

G = -[G_Iz G_IzSz; G_IzSz G_Sz]; % relaxation matrix
Y = [Iz; Sz]; % time dependence of spins
B = [I_zeq; S_zeq]; % equilibrium value
C = Y(0) == [I_z0; S_z0]; % initial condition
eqn = diff(Y) == G*(Y-B);
[IzSol(t), SzSol(t)] = dsolve(eqn, C);

figure(1)
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ezplot(SzSol,[0 15])
hold on;
title('')
xlabel('t / s')
ylabel('<S_Z(t)>')
ylim([-1 1])

%% Monoexponential decay

T1 = 1/G_Sz; % T1 for monoexponential decay of S_z
t=(0:0.02:15); % generate time axis
Sz_mono = 1-2*exp(-t/T1); % evolution of S_z magnetization during inversion 
recovery

figure(1)
plot(t,Sz_mono,'r')
legend('coupled system', 'T_1 decay')

• If we saturate the protons by applying on-resonance cw irradiation on the I spin

during the relaxation delay, the system of differential equations is modified. We can

assume that  = 0. Calculate the time evolution of the Sz magnetization after a

180° inversion pulse under these conditions analytically. What is now the rate

constant with which the system relaxes towards the steady-state equilibrium value. 

• Solution:

If we assume hat  = 0, Equation [S-1.2] simplifies to 

[S-1.4]

and we obtain a differential equation for Sz that is no longer coupled to Iz:

[S-1.5]

The solution for Equation [S-1.5] can be calculated and gives

. [S-1.6]

This is again a mono-exponential decay with the T1S time constant but the

equilibrium value against which the magnetization relaxes has been changed (see

next question).
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• The same experiment, i.e., saturation of the I spin is the so-called steady-state NOE

experiment. Calculate analytically the steady-state value of the NOE. What is the

signal enhancement generated by the NOE? Calculate the signal enhancement

numerically as a function of the correlation time assuming that the chemical-

shielding tensor is  = 0 ppm.

• Solution:

We can again start from Equation [S-1.5] and assume a steady-state condition,

i.e. . This leads to

 [S-1.7]

which we can solve for  leading to

. [S-1.8]

Therefore, the signal enhancement is given by

[S-1.9]

which can either be negative of positive depending on the relative sign of the

gyromagnetic ratios. Figure 1.8 shows a plot of the enhancement  as a function of the

correlation time. One can clearly see that for small molecules (short correlation times)

a significant enhancement of the steady-state polarization is obtained compared to the

Boltzmann polarization. For larger molecules (long correlation times), only a small

enhancement is observed.

MATLAB code to generate the NOE plot:

tauc = 10 .^ (-12:0.01:-5);
omegaS = 14.1*gamman;
omegaI = 14.1*gammah;
delta = -2*mu04pi*gamman*gammah*hbar/rnh^3;
sigmazz00=0;
T1S = T1(delta,sigmazz00,omegaI,omegaS,tauc);
T1IS = T1x(delta,sigmazz00,omegaS,omegaI,tauc);

eta = T1S./T1IS*gammah/gamman;
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d
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semilogx(omegaS*tauc,eta,'b');

ylabel('\eta')
set(gca,'FontSize',14);
axis([-1e3 -1e-3 -6 1])
set(gca,'XDir','Reverse')
set(gca,'FontSize',14);
xlabel('\omega_0^{(S)}\tau_c')

If you find mistakes or want to suggest additions/corrections, please E-mail me at

maer@ethz.ch.

Figure 1.8: Plot of the NOE Enhancement  as a function of the correlation time 
For short correlation times (small molecules) a significant enhancement of the steady-state
polarization is obtained compared to the Boltzmann polarization. For larger molecules (long
correlation times), only a small enhancement is observed.
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