1 Exercise: Relaxation Theory

We will try to investigate the behavior of spin relaxation as a function of various parameters for a simple system that we can analyze using numerical simulations in MATLAB (or any other matrix-calculation package). We assume an isolated heteronuclear ${ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ two-spin system attached to a rigid molecule that undergoes isotropic rotational tumbling with a correlation time τ_{c}. The spectraldensity function for isotropic rotational tumbling is given by

$$
\begin{equation*}
J(\omega)=\frac{2}{5} \frac{\tau_{\mathrm{c}}}{1+\left(\omega \tau_{\mathrm{c}}\right)^{2}} . \tag{1.1}
\end{equation*}
$$

We will look at the relaxation properties of the nitrogen atom due to dipolar coupling to the directly bound proton as well as the axially symmetric CSA tensor of the ${ }^{15} \mathrm{~N}$ nucleus. The anisotropy of the dipolar coupling is defined by

$$
\begin{equation*}
\delta^{(\mathrm{IS})}=-2 \frac{\mu_{0} \gamma_{I} \gamma_{S} \hbar}{4 \pi r_{I S}^{3}} \tag{1.2}
\end{equation*}
$$

and the magnitude of the axially symmetric chemical-shielding tensor is characterized by $\omega_{0}^{(S)} \sigma_{z z}^{(S)}$. The constants are given by:

$$
\begin{align*}
\mu_{0} & =4 \pi \cdot 10^{-7} \mathrm{~N} \mathrm{~A}^{-2} \\
\hbar & =1.05457 \cdot 10^{-34} \mathrm{~J} \mathrm{~s} \\
\gamma_{\mathrm{H}} & =2.675 \cdot 10^{8}(\mathrm{~T} \mathrm{~s})^{-1} \tag{1.3}\\
\gamma_{\mathrm{N}} & =-2.716 \cdot 10^{7}(\mathrm{~T} \mathrm{~s})^{-1}
\end{align*}
$$

We will use this simple spin system to look at different relaxation-rate constants. If not specified differently, we assume a static magnetic field of 14.1 T and a distance of 1.1 Å.

1.1 $\quad T_{1}$ Dependence on Magnetic Field and Correlation Time

The longitudinal one-spin auto-relaxation time of the $S \operatorname{spin}\left({ }^{15} \mathrm{~N}\right)$ is given by

$$
\begin{equation*}
\frac{1}{T_{1 S}}=\Gamma_{S_{z}, S_{z}}=\left(\frac{\delta^{(\mathrm{IS})}}{4}\right)^{2}\left[J\left(\omega_{I}-\omega_{S}\right)+3 J\left(\omega_{S}\right)+6 J\left(\omega_{I}+\omega_{S}\right)\right]+\frac{3}{4}\left(\omega_{0}^{(S)} \sigma_{z z}^{(S)}\right)^{2} J\left(\omega_{S}\right) \tag{1.4}
\end{equation*}
$$

- Calculate $T_{1 S}$ as a function of the correlation time τ_{c} assuming that the chemicalshielding tensor is $\sigma_{z z}^{(S)}=0 \mathrm{ppm}$. A reasonable range for τ_{c} is from 10^{-12} to $10^{-5} \mathrm{~s}$. Generate a double-logarithmic plot of $T_{1 S}$ vs. $\omega_{0}^{(S)} \tau_{\mathrm{c}}$. Where do you observe a minimum of the $T_{1 S}$ time? Rationalize the position of the minimum by discussing the form of the spectral-density function.
- Calculate and plot $T_{1 S}$ for chemical-shielding tensor values of $\sigma_{z z}^{(S)}=50 \mathrm{ppm}$ and 150 ppm . What do you observe?
- Calculate $T_{1 S}$ as a function of the static magnetic field B_{0} between 1 and 30 T for correlation times τ_{c} of $10^{-12}, 10^{-10}$, and $10^{-8} \mathrm{~s}$. We assume that the chemicalshielding tensor is $\sigma_{z z}^{(S)}=0 \mathrm{ppm}$.

1.2 $\quad T_{2}$ Dependence on Magnetic Field and Correlation Time

The transverse one-spin auto-relaxation time of the S spin $\left({ }^{15} \mathrm{~N}\right)$ is given by

$$
\begin{align*}
\frac{1}{T_{2 S}}=\Gamma_{S^{+}, S^{+}}= & \frac{\left(\delta^{(\mathrm{IS})}\right)^{2}}{32}\left[4 J(0)+J\left(\omega_{I}-\omega_{S}\right)+3 J\left(\omega_{S}\right)+6 J\left(\omega_{I}\right)+6 J\left(\omega_{I}+\omega_{S}\right)\right] \tag{1.5}\\
& +\frac{1}{2}\left(\omega_{0}^{(S)} \sigma_{z z}^{(S)}\right)^{2} J(0)+\frac{3}{8}\left(\omega_{0}^{(S)} \sigma_{z z}^{(S)}\right)^{2} J\left(\omega_{S}\right)
\end{align*}
$$

- Calculate $T_{2 S}$ as a function of the correlation time τ_{c} assuming that the chemicalshielding tensor is $\sigma_{z z}^{(S)}=0 \mathrm{ppm}$. Generate a double-logarithmic plot of $T_{2 S}$ vs. $\omega_{0}^{(S)} \tau_{\mathrm{c}}$. Rationalize why the T_{2} relaxation time shows no minimum but decreases continuously with increasing correlation time.
- Calculate and plot $T_{2 S}$ for chemical-shielding tensor values of $\sigma_{z z}^{(S)}=50 \mathrm{ppm}$ and 150 ppm . What do you observe?
- Calculate $T_{2 S}$ as a function of the static magnetic field B_{0} between 1 and 30 T for correlation times τ_{c} of $10^{-12}, 10^{-10}$, and $10^{-8} \mathrm{~s}$. We assume that the chemicalshielding tensor is $\sigma_{z z}^{(S)}=0 \mathrm{ppm}$.

If the longitudinal and the transverse relaxation time have been measured, one can determine the correlation time of the molecule as

$$
\begin{equation*}
\tau_{\mathrm{c}}=\frac{1}{2} \sqrt{\frac{1}{\omega_{S}^{2}}\left(6 \frac{T_{1}}{T_{2}}-7\right)} . \tag{1.6}
\end{equation*}
$$

- Back calculate the correlation time from the T_{1} and T_{2} values calculated for the chemical-shielding tensor of $\sigma_{z z}^{(S)}=0 \mathrm{ppm}$. Plot the back calculated values against the input correlation times. In which range of correlation times is Equation [1.6] valid? Derive Equation [1.6] from the analytical Equations [1.4] and [1.5] for T_{1} and T_{2}.

1.3 Coupled Relaxation Modes

If we look at longitudinal relaxation in a heteronuclear two-spin system, we find that all three relaxation modes are coupled and can be described by a system of coupled differential equations.

$$
\frac{d}{d t}\left[\begin{array}{c}
\left\langle I_{z}\right\rangle(t) \tag{1.7}\\
\left\langle S_{z}\right\rangle(t) \\
\left\langle 2 I_{z} S_{z}\right\rangle(t)
\end{array}\right]=-\left[\begin{array}{ccc}
\Gamma_{I_{z}}, I_{z} & \Gamma_{S_{z}, ~}, & \Gamma_{2 I_{z} S_{z}}, I_{z} \\
\Gamma_{S_{z}}, I_{z} & \Gamma_{S_{z}, S_{z}} & \Gamma_{2 I_{z} S_{z}, S_{z}} \\
\Gamma_{2 I_{z} S_{z}, I_{z}} & \Gamma_{2 I_{z} S_{z}, S_{z}} & \Gamma_{2 I_{z} S_{z}, 2 I_{z} S_{z}}
\end{array}\right]\left[\begin{array}{c}
\left\langle I_{z}\right\rangle(t)-\left\langle I_{z}\right\rangle_{\mathrm{eq}} \\
\left\langle S_{z}\right\rangle(t)-\left\langle S_{z}\right\rangle_{\mathrm{eq}} \\
\left\langle 2 I_{z} S_{z}\right\rangle(t)-\left\langle 2 I_{z} S_{z}\right\rangle
\end{array}\right]
$$

If we neglect cross-correlated cross relaxation, the system simplifies into two sub blocks.

$$
\frac{d}{d t}\left[\begin{array}{c}
\left\langle I_{z}\right\rangle(t) \tag{1.8}\\
\left\langle S_{z}\right\rangle(t) \\
\left\langle 2 I_{z} S_{z}\right\rangle(t)
\end{array}\right]=-\left[\begin{array}{ccc}
\Gamma_{I_{z}}, I_{z} & \Gamma_{S_{z}, I_{z}} & 0 \\
\Gamma_{S_{z}, I_{z}} & \Gamma_{S_{z}} S_{z} & 0 \\
0 & 0 & \Gamma_{2 I_{z} S_{z}, 2 I_{z} S_{z}}
\end{array}\right]\left[\begin{array}{c}
\left\langle I_{z}\right\rangle(t)-\left\langle I_{z}\right\rangle_{\mathrm{eq}} \\
\left\langle S_{z}\right\rangle(t)-\left\langle S_{z}\right\rangle_{\mathrm{eq}} \\
\left\langle 2 I_{z} S_{z}\right\rangle(t)-\left\langle 2 I_{z} S_{z}\right\rangle_{\mathrm{eq}}
\end{array}\right]
$$

The four relevant relaxation-rate constants are given by

$$
\begin{align*}
\Gamma_{I_{z}, I_{z}} & =\left(\frac{\delta^{(\mathrm{IS})}}{4}\right)^{2}\left[J\left(\omega_{I}-\omega_{S}\right)+3 J\left(\omega_{I}\right)+6 J\left(\omega_{I}+\omega_{S}\right)\right]+\frac{3}{4}\left(\omega_{0}^{(I)} \sigma_{z z}^{(I)}\right)^{2} J\left(\omega_{I}\right) \\
\Gamma_{S_{z}, S_{z}} & =\left(\frac{\delta^{(\mathrm{IS})}}{4}\right)^{2}\left[J\left(\omega_{I}-\omega_{S}\right)+3 J\left(\omega_{S}\right)+6 J\left(\omega_{I}+\omega_{S}\right)\right]+\frac{3}{4}\left(\omega_{0}^{(S)} \sigma_{z z}^{(S)}\right)^{2} J\left(\omega_{S}\right) \\
\Gamma_{2 I_{z} S_{z}, 2 I_{z} S_{z}} & =\left(\frac{\delta^{(\mathrm{IS})}}{4}\right)^{2}\left[3 J\left(\omega_{I}\right)+3 J\left(\omega_{S}\right)\right]+\frac{3}{4}\left(\omega_{0}^{(I)} \sigma_{z z}\right)^{2} J\left(\omega_{I}\right)+\frac{3}{4}\left(\omega_{0}^{(S)} \sigma_{z z}^{(S)}\right)^{2} J\left(\omega_{S}\right) \\
\Gamma_{S_{z}, I_{z}} & =\left(\frac{\delta^{(\mathrm{IS})}}{4}\right)^{2}\left[-J\left(\omega_{I}-\omega_{S}\right)+6 J\left(\omega_{I}+\omega_{S}\right)\right] \tag{1.9}
\end{align*}
$$

- Calculate the time evolution of the S_{z} magnetization after a 180° inversion pulse, i.e., for an initial condition $\sigma_{0}=-S_{z}$ by solving the differential equation [1.8] assuming isotropic rotational tumbling at correlation times of $\tau_{\mathrm{c}}=10^{-8}$ and $10^{-10} \mathrm{~s}$ assuming that the chemical-shielding tensor is $\sigma_{z z}^{(S)}=0 \mathrm{ppm}$. Compare the curve with a mono-exponential buildup towards thermal equilibrium with a time constant of $T_{1 \mathrm{~S}}$. Discuss the results.
- If we saturate the protons by applying on-resonance cw irradiation on the I spin during the relaxation delay, the system of differential equations is modified. We can assume that $\left\langle I_{z}\right\rangle(t)=0$. Calculate the time evolution of the S_{z} magnetization after a 180° inversion pulse under these conditions analytically. What is now the rate constant with which the system relaxes towards the steady-state equilibrium value.
- The same experiment, i.e., saturation of the I spin is the so-called steady-state NOE experiment. Calculate analytically the steady-state value of the NOE. What is the signal enhancement generated by the NOE? Calculate the signal enhancement numerically as a function of the correlation time assuming that the chemicalshielding tensor is $\sigma_{z z}^{(S)}=0 \mathrm{ppm}$.

2 Appendices

2.1 Matrix Properties

A real matrix A with elements $A_{i j}$ is called symmetric if

$$
\begin{equation*}
A^{T}=A \tag{2.1}
\end{equation*}
$$

where A^{T} is the transpose of the matrix, i.e., for all elements the condition $A_{i j}=A_{j i}$ is fulfilled. The real matrix A is called antisymmetric if

$$
\begin{equation*}
A^{T}=-A, \tag{2.2}
\end{equation*}
$$

i.e., for all elements the condition $A_{i j}=A_{j i}$ is fulfilled. The real matrix A is called orthogonal if

$$
\begin{equation*}
A^{T}=A^{-1} . \tag{2.3}
\end{equation*}
$$

A complex matrix A with elements $A_{i j}$ is called hermitian if

$$
\begin{equation*}
A^{\dagger}=A \tag{2.4}
\end{equation*}
$$

where A^{\dagger} is the adjoint (transposed and complex conjugate) of the matrix, i.e., for all elements the condition $A_{i j}=A_{j i}{ }^{*}$ is fulfilled. The complex matrix A is called unitary if

$$
\begin{equation*}
A^{\dagger}=A^{-1} . \tag{2.5}
\end{equation*}
$$

The matrix representation of a Hamiltonian is always a Hermitian matrix. Form this it follows that the matrix representation of a propagator is always a unitary matrix and, therefore, the propagation of a density operator is always a unitary transformation.

2.2 Wigner Rotation Matrix Elements

2.2.1 Rank 0 Elements

Rank 0 tensors are quantities that transform like a scalar. They have only a single component, which is independent of the coordinate system. Therefore, the Wigner rotation matrix element is given by

$$
\begin{equation*}
\mathfrak{D}_{00}^{0}=d_{00}^{0}(\beta)=1 \tag{2.6}
\end{equation*}
$$

2.2.2 Rank 1 Elements

Rank 1 tensor are vectors and their respective reduced Wigner rotation elements $d_{m^{\prime}, m}^{1}(\beta)$ are given by

Table 2.1: Reduced Wigner Rotation Matrix Elements of Rank 1

$\mathrm{m}^{\prime} \mathrm{m}$	-1	0	+1
-1	$\cos ^{2}\left(\frac{\beta}{2}\right)$	$\frac{\sin \beta}{\sqrt{2}}$	$\sin ^{2}\left(\frac{\beta}{2}\right)$
0	$\frac{-\sin \beta}{\sqrt{2}}$	$\cos \beta$	$\frac{\sin \beta}{\sqrt{2}}$
+1	$\sin ^{2}\left(\frac{\beta}{2}\right)$	$\frac{-\sin \beta}{\sqrt{2}}$	$\cos ^{2}\left(\frac{\beta}{2}\right)$

2.2.3 Rank 2 Elements

Rank 2 tensors are second-rank tensors and the reduced Wigner rotation matrix elements are given by $d_{m^{\prime}, m}^{2}(\beta)$

Table 2.3: Reduced Wigner Rotation Matrix Elements of Rank 2

m^{\prime}	-2	-1	0	+1	+2
-2	$\left(\frac{1+\cos \beta}{2}\right)^{2}$	$\frac{1+\cos \beta}{2} \sin \beta$	$\sqrt{\frac{3}{8}} \sin ^{2} \beta$	$\frac{1-\cos \beta}{2} \sin \beta$	$\left(\frac{1-\cos \beta}{2}\right)^{2}$
-1	$-\frac{1+\cos \beta}{2} \sin \beta$	$\cos ^{2} \beta-\frac{1-\cos \beta}{2}$	$\sqrt{\frac{3}{8}} \sin (2 \beta)$	$\frac{1+\cos \beta}{2}-\cos ^{2} \beta$	$\frac{1-\cos \beta}{2} \sin \beta$
0	$\sqrt{\frac{3}{8}} \sin ^{2} \beta$	$-\sqrt{\frac{3}{8}} \sin (2 \beta)$	$\frac{3 \cos ^{2} \beta-1}{2}$	$\sqrt{\frac{3}{8}} \sin (2 \beta)$	$\sqrt{\frac{3}{8}} \sin ^{2} \beta$
+1	$-\frac{1-\cos \beta}{2} \sin \beta$	$\frac{1+\cos \beta}{2}-\cos ^{2} \beta$	$-\sqrt{\frac{3}{8}} \sin (2 \beta)$	$\cos ^{2} \beta-\frac{1-\cos \beta}{2}$	$\frac{1+\cos \beta}{2} \sin \beta$
+2	$\left(\frac{1-\cos \beta}{2}\right)^{2}$	$-\frac{1-\cos \beta}{2} \sin \beta$	$\sqrt{\frac{3}{8}} \sin ^{2} \beta$	$-\frac{1+\cos \beta}{2} \sin \beta$	$\left(\frac{1+\cos \beta}{2}\right)^{2}$

