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1 Exercise: Relaxation Theory

We will try to investigate the behavior of spin relaxation as a function of

various parameters for a simple system that we can analyze using numerical

simulations in MATLAB (or any other matrix-calculation package). We assume an

isolated heteronuclear 15N-1H two-spin system attached to a rigid molecule that

undergoes isotropic rotational tumbling with a correlation time . The spectral-

density function for isotropic rotational tumbling is given by

. [1.1]

We will look at the relaxation properties of the nitrogen atom due to dipolar coupling

to the directly bound proton as well as the axially symmetric CSA tensor of the 15N

nucleus. The anisotropy of the dipolar coupling is defined by 

[1.2]

and the magnitude of the axially symmetric chemical-shielding tensor is

characterized by . The constants are given by:

. [1.3]

We will use this simple spin system to look at different relaxation-rate constants. If

not specified differently, we assume a static magnetic field of 14.1 T and a distance of

1.1 Å.

1.1 T1 Dependence on Magnetic Field and Correlation Time

The longitudinal one-spin auto-relaxation time of the S spin (15N) is given by
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. [1.4]

• Calculate  as a function of the correlation time  assuming that the chemical-

shielding tensor is  = 0 ppm. A reasonable range for  is from 10-12 to 10-5 s.

Generate a double-logarithmic plot of  vs. . Where do you observe a

minimum of the  time? Rationalize the position of the minimum by discussing

the form of the spectral-density function.

• Calculate and plot  for chemical-shielding tensor values of  = 50 ppm and

150 ppm. What do you observe?

• Calculate  as a function of the static magnetic field  between 1 and 30 T for

correlation times  of 10-12, 10-10, and 10-8 s. We assume that the chemical-

shielding tensor is  = 0 ppm.

1.2 T2 Dependence on Magnetic Field and Correlation Time

The transverse one-spin auto-relaxation time of the S spin (15N) is given by

. [1.5]

• Calculate  as a function of the correlation time  assuming that the chemical-

shielding tensor is  = 0 ppm. Generate a double-logarithmic plot of  vs.

. Rationalize why the T2 relaxation time shows no minimum but decreases

continuously with increasing correlation time.

• Calculate and plot  for chemical-shielding tensor values of  = 50 ppm and

150 ppm. What do you observe?

• Calculate  as a function of the static magnetic field  between 1 and 30 T for

correlation times  of 10-12, 10-10, and 10-8 s. We assume that the chemical-

shielding tensor is  = 0 ppm.
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If the longitudinal and the transverse relaxation time have been measured, one

can determine the correlation time of the molecule as

. [1.6]

• Back calculate the correlation time from the T1 and T2 values calculated for the

chemical-shielding tensor of  = 0 ppm. Plot the back calculated values against

the input correlation times. In which range of correlation times is Equation [1.6]

valid? Derive Equation [1.6] from the analytical Equations [1.4] and [1.5] for T1 and

T2.

1.3 Coupled Relaxation Modes

If we look at longitudinal relaxation in a heteronuclear two-spin system, we

find that all three relaxation modes are coupled and can be described by a system of

coupled differential equations.

[1.7]

If we neglect cross-correlated cross relaxation, the system simplifies into two sub

blocks.

[1.8]

The four relevant relaxation-rate constants are given by
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. [1.9]

• Calculate the time evolution of the Sz magnetization after a 180° inversion pulse,

i.e., for an initial condition  by solving the differential equation [1.8]

assuming isotropic rotational tumbling at correlation times of  = 10-8 and 10-10 s

assuming that the chemical-shielding tensor is  = 0 ppm. Compare the curve

with a mono-exponential buildup towards thermal equilibrium with a time

constant of T1S. Discuss the results.

• If we saturate the protons by applying on-resonance cw irradiation on the I spin

during the relaxation delay, the system of differential equations is modified. We can

assume that  = 0. Calculate the time evolution of the Sz magnetization after a

180° inversion pulse under these conditions analytically. What is now the rate

constant with which the system relaxes towards the steady-state equilibrium value. 

• The same experiment, i.e., saturation of the I spin is the so-called steady-state NOE

experiment. Calculate analytically the steady-state value of the NOE. What is the

signal enhancement generated by the NOE? Calculate the signal enhancement

numerically as a function of the correlation time assuming that the chemical-

shielding tensor is  = 0 ppm.
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2 Appendices

2.1 Matrix Properties

A real matrix A with elements  is called symmetric if

[2.1]

where  is the transpose of the matrix, i.e., for all elements the condition  is

fulfilled. The real matrix A is called antisymmetric if 

, [2.2]

i.e., for all elements the condition  is fulfilled. The real matrix A is called

orthogonal if

. [2.3]

A complex matrix A with elements  is called hermitian if

[2.4]

where  is the adjoint (transposed and complex conjugate) of the matrix, i.e., for all

elements the condition  is fulfilled. The complex matrix A is called unitary

if

. [2.5]

The matrix representation of a Hamiltonian is always a Hermitian matrix.

Form this it follows that the matrix representation of a propagator is always a unitary

matrix and, therefore, the propagation of a density operator is always a unitary

transformation.
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2.2 Wigner Rotation Matrix Elements

2.2.1 Rank 0 Elements

Rank 0 tensors are quantities that transform like a scalar. They have only a

single component, which is independent of the coordinate system. Therefore, the

Wigner rotation matrix element is given by

. [2.6]

2.2.2 Rank 1 Elements

Rank 1 tensor are vectors and their respective reduced Wigner rotation

elements  are given by
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2.2.3 Rank 2 Elements

Rank 2 tensors are second-rank tensors and the reduced Wigner rotation

matrix elements are given by dm' m
2 b( )

Table 2.3: Reduced Wigner Rotation Matrix Elements of Rank 2
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