Numerical Methods I
 Midterm Exam

April 19, 2019
Total: 100 Marks

1. A and B are measurements with associated uncertainties (errors) δA and δB, respectively. C is a derived quantity with associated uncertainty δC. Derive expressions for the uncertainty δC for the following cases:
(a) Addition of an exact (constant) number $\beta: C=A+\beta$,
(b) Addition (or subtraction) : $C=A \pm B$,
(c) Multiplication and division : $C=A \times B, C=\frac{A}{B}$,
(d) Power law : $C=A^{n}(n \neq 0 ; n$ can be fractional or negative),
(e) Exponential relationship : $C=\beta \exp (\alpha A)$.

(20 Marks)

2. Consider the sequence of numbers

$$
\begin{equation*}
x_{i}=a_{0}+0.1 i, \quad(i=1, \ldots, N) \tag{1}
\end{equation*}
$$

(a) The average of these numbers can be evaluated using the expressions

$$
\begin{equation*}
a_{1}=\frac{\sum_{i=1}^{N} x_{i}}{N} ; \quad a_{2}=a_{0}+\frac{\sum_{i=1}^{N}\left(x_{i}-a_{0}\right)}{N} \tag{2}
\end{equation*}
$$

(b) The second moment is given by

$$
\begin{equation*}
b=\frac{\sum_{i=1}^{N} x_{i}^{2}}{N} \tag{3}
\end{equation*}
$$

Estimate the roundoff error in each of the above expressions.
(20 Marks)
3. Consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 & 4 \tag{4}\\
3 & 8 & 14 \\
2 & 6 & 13
\end{array}\right)
$$

(a) Perform a direct triangular decomposition of A using the Gaussian elimination algorithm.
(b) Perform an LU decomposition of A.

(20 Marks)

4. The upward velocity of a rocket is measured as a function of time as

time (s)	velocity $(\mathrm{m} / \mathrm{s})$
0	0
10	227.04
15	362.78
20	517.35
22.5	602.97
30	901.67

Determine the value of the velocity at $t=35$ seconds using Lagrange interpolation with
(a) the first two data points,
(b) the first four data points,
(c) all six data points.
(20 Marks)
5. Consider the function $f(x)$ evaluated at three equally spaced points $x_{0}, x_{1}=x_{0}+h$ and $x_{2}=x_{0}+2 h$.
(a) Derive the three-point endpoint formula for the numerical derivative:

$$
\begin{equation*}
f^{\prime}\left(x_{0}\right)=\frac{1}{2 h}\left[-3 f\left(x_{0}\right)+4 f\left(x_{0}+h\right)-f\left(x_{0}+2 h\right)\right] \tag{5}
\end{equation*}
$$

(b) Derive Simpson's rule for the numerical integral:

$$
\begin{equation*}
\int_{x_{0}}^{x_{2}} f(x) d x=\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{0}+h\right)+f\left(x_{0}+2 h\right)\right] . \tag{6}
\end{equation*}
$$

(20 Marks)

