Numerical Methods I

Assignment IV

Due: May 1, 2019

1. Find the roots of the function

$$
\begin{equation*}
f(x)=(x-3)(x-7) \tag{1}
\end{equation*}
$$

using:
(a) bisection,
(b) fixed point iteration,
(c) the Newton-Raphson method.

Choose reasonable starting guesses x_{i} with $\left|x_{i}-\omega_{i}\right| \geq 1$, where $\omega_{i}=3,7$ are the actual roots. How does the error converge in each of these cases?

(15 Marks)

2. Compute

$$
\begin{equation*}
\int_{0}^{1} \frac{\sin (x)}{x} d x \tag{2}
\end{equation*}
$$

using:
(a) the trapezoidal rule, with $h=\frac{1}{4}$,
(b) a three-term Gaussian quadrature formula,
(c) Simpson's rule.
(15 Marks)
3. The evolution equation for the probability of a random walker on an $N \times N$ periodic square lattice is given by

$$
\begin{equation*}
\frac{d}{d t} P(x, y, t)=\frac{1}{4}[P(x+1, y, t)+P(x-1, y, t)+P(x, y+1, t)+P(x, y-1, t)]-P(x, y, t) \tag{3}
\end{equation*}
$$

Derive an expression for $P(x, y, t)$ given that the random walker begins at the origin, i.e. $P(x, y, 0)=\delta_{x, 0} \delta_{y, 0}$. What is the limiting form at large times?
(20 Marks)

