Numerical Methods I

 Assignment II

 Assignment II}

Due: March 13, 2019

1. Estimate the error in evaluating the following expressions, where the input value of x has a relative error ϵ :
(a) $x(1-x) \quad x=0.01,0.1,0.51,0.6,0.9,0.99$
(b) $\sqrt{1+x^{2}} \quad x=1,100,10000$
(c) $\sqrt{1+x^{2}}+100-x \quad x=1,100,10000$
(10 Marks)
2. Compute the sum $(x+x+\ldots+x)$, where $x=1 / 3$ using floating point arithmetic with three decimal digits. What is the calculated value of the sum if the number of terms are $4,30,50,300,400$, and 1000 .

(10 Marks)

3. Consider the sum

$$
\begin{equation*}
s_{n}=\sum_{i=1}^{n / 2} \frac{1}{2 i(2 i-1)} \tag{1}
\end{equation*}
$$

Assuming that n is even, estimate the bounds on roundoff error for this series and compare them with the actual error.

(15 Marks)

4. The derivative of a function is defined to be

$$
\begin{equation*}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \tag{2}
\end{equation*}
$$

Write a program to find this limit for the following functions, by taking $h=2^{-n},(n=1,2, \ldots)$:
(a) $f(x)=e^{x}$
$x=-1,0,1$
(b) $f(x)=\sin (x)$
$x=0, \frac{\pi}{4}, \frac{\pi}{2}$
(c) $f(x)=x^{2}+3 x+2$
$x=0,1$
(d) $f(x)=\frac{x^{2}+3 x+2}{x+5}$
$x=0,1$
In each case, estimate the truncation and round-off error in the calculation and explain the results. Increase n until successive iterations yield a zero derivative (for $x \neq 0$). Use this value of n to estimate the number of bits stored in the fraction part of floating-point numbers on your computer.

(15 Marks)

