Condensed Matter Physics Assignment III Due: February 5, 2021

1. Tight-Binding Orbitals

In the tight binding model we assume that there is a single orbital on atom n which we call $|n\rangle$. Consider these orbitals to be the (1d analogues) of the ground state wavefunction of the hydrogen atom given by

$$|n\rangle = \frac{1}{\sqrt{a_0}} e^{-|x-x_n|/a_0},$$
 (1)

where x_n represents the mean position of the n^{th} orbital.

- (a) Compute the overlap integral s for electrons on adjacent sites. For what lattice spacing a is the assumption of orthogonality of adjacent orbitals valid? (Use $a_0 = 5.292 \times 10^{-11}$ m).
- (b) Plot the effect of systematically increasing the lattice spacing on the dispersion relations.

(25 Marks)

2. Tight Binding Model in 2d

Consider an $L \times L$ rectangular lattice in two dimensions as shown in the figure.

Now imagine a tight binding model where there is one orbital at each lattice site, and where the hopping matrix element is $\langle n|H|m\rangle = t_1$ if sites n and m are neighbors in the horizontal direction and is $= t_2$ if n and m are neighbors in the vertical direction. Consider periodic boundary conditions in both directions.

- (a) Calculate the dispersion relation for this tight binding model.
- (b) What does the dispersion relation look like near the bottom of the band?

(25 Marks)

3. Cohesive Energy for a Square Well Potential

(a) Find an expression for the binding energy of an electron in one dimension in a single square well of depth U_0 and width a. (This is the standard first problem in elementary quantum mechanics.) Assume that the solution is symmetric about the midpoint of the well.

(b) Find a numerical result for the binding energy in terms of U_0 for the special case $|U_0| = 2\hbar^2/ma^2$.

(25 Marks)

4. Kronig-Penney Model

Consider a one-dimensional periodic potential V(x) as shown in the figure below. An electron moves in this one-dimensional crystal of length L. The regions denoted II correspond to the positively charged ions of the crystal lattice. The regions denoted I represent the empty spaces between the ions. The lattice parameter is a = d + s.

- (a) Set up the single-electron Schrödinger equation for this system (in the two regions).
- (b) What are the eigenfunctions of this Hamiltonian. Determine the relevant constants using the boundary conditions and the normalization.
- (c) What are the conditions for a solution to exist? Plot the energy levels for this system.

(25 Marks)