
Condensed Matter Physics
Assignment II

Due: January 10, 2021

1. Fermi gases in astrophysics

(a) Given M� = 2× 1033 g for the mass of the Sun, estimate the number of electrons in the Sun. In a white
dwarf star this number of electrons may be ionized and contained in a sphere of radius 2 × 109 cm; find
the Fermi energy of the electrons in electron volts.

(b) The energy of an electron in the relativistic limit ε � mc2 is related to the wavevector as ε ≈ pc = ~kc
Show that the Fermi energy in this limit is εF ≈ ~c(N/V )1/3, roughly.

(c) If the above number of electrons were contained within a pulsar of radius 10 km, show that the Fermi
energy would be 108 eV. This value explains why pulsars are believed to be composed largely of neutrons
rather than of protons and electrons, for the energy release in the reaction n→ p+ e− is only 0.8×106 eV,
which is not large enough to enable many electrons to form a Fermi sea. The neutron decay proceeds only
until the electron concentration builds up enough to create a Fermi level of 0.8 × 106 eV, at which point
the neutron, proton, and electron concentrations are in equilibrium.

(25 Marks)

2. Phonons in a Triatomic Chain

Consider a mass-and-spring model with three different masses and three different springs per unit cell
as shown in this diagram.

m1 m2 m3

k1 k2 k3

a

Assume that the masses move only in one dimension.

(a) At k = 0 how many optical modes are there? Calculate the energies of these modes.

(b) If all the masses are the same and k1 = k2, determine the frequencies of all three modes at the zone
boundary k = π/a (you should be able to guess one root of the resulting cubic equation).

(c) Similarly, if all three spring constants are the same, and m1 = m2, determine the frequencies of all three
modes at the zone boundary k = π/a.

(25 Marks)

3. Diatomic Einstein Solid
Consider a three-dimensional simple harmonic oscillator with mass m and spring constant k (i.e., the mass is
attracted to the origin with the same spring constant in all three directions). The Hamiltonian is given by

H =
p2

2m
+
k

2
x2. (1)
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Note: p and x are three dimensional vectors.

(a) Calculate the classical partition function

Z =

∫
dp

2π~

∫
dx exp (−βH(p,x)) . (2)

(b) Next, consider the same Hamiltonian quantum mechanically. Calculate the quantum partition function

Z =
∑
j

exp(−βEj). (3)

Explain the relationship with Bose statistics.

(c) Next, consider a solid made up of diatomic molecules, modeled as two particles in three dimensions con-
nected to each other with a spring, both at the bottom of a harmonic well. Here
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(x1 − x2)2, (4)

where k is the spring constant holding both particles in the bottom of the well, and K is the spring constant
holding the two particles together. Assume that the two particles are distinguishable atoms.

(d) Analogous to (a) calculate the classical partition function and show that the heat capacity is 3kB per
particle.

(e) Analogous to (b) calculate the quantum partition function and find an expression for the heat capacity.
Sketch the heat capacity as a function of temperature if K � k.

(30 Marks)

4. van Hove Singularities

(a) In a linear harmonic chain with only nearest-neighbor interactions. The normal-mode dispersion relation
has the form ω(k) = ω0| sin(ka/2)|, where the constant ω0 is the maximum frequency (assumed when k is
on the Brillouin zone boundary). Show that the density of normal modes in this case is given by

g(ω) =
2

πa
√
ω2
0 − ω2

. (5)

The singularity at ω = ω0 is a van Hove singularity.

(b) In three dimensions the van Hove singularities are infinities not in the normal mode density itself: but in
its derivative. Show that the normal modes in the neighborhood of a maximum of ω(k) for example, lead
to a term in the normal-mode density that varies as (ω0 − ω)1/2.

(20 Marks)


