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Introduction

We discuss two models, the Kitaev model in the classical limit and
the Hard Square lattice gas model.

We investigate whether the classical analogue of the Kitaev model
diplays order-by-disorder.

We analyse a related one dimensional spin model.

We study the columnar ordered phase of the hard square lattice gas
and the nature of the phase transition to a disordered state as a
function of density.
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The Kitaev Model
Ref: A. Kitaev, Ann. Phys. 321, 2 (2006)

Exactly soluble two dimensional lattice model with interacting
quantum spins (spin-1/2).

êz
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Can be solved as a problem of non-interacting Majorana fermions.

Has been studied as a useful candidate for quantum computation
because it displays topological order.
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Spin-S Kitaev Model
Ref: G. Baskaran, D. Sen, and R. Shankar, Phys. Rev. B 78, 115116 (2008)

Mutually commuting Z2 variables.

Infinitely degenerate classical ground states.

Spin wave expansions about the classical ground states yield an energy
minimum around an ordered state (quantum order-by-disorder).
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Order-by-Disorder

Phenomenon where a disordered system at strictly T = 0 acquires a
fluctuation induced order at temperatures just above zero.

The relative weights of different ground states in the T → 0+ limit
differs from the actual sum over ground states that contribute at
T = 0.

It is important in the study of magnetic systems with frustration.
For example: Heisenberg spins on the kagome lattice with
antiferromagnetic couplings.
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The Kitaev Model with Classical Spins

We consider classical Heisenberg spins on a hexagonal lattice with
Kitaev couplings.
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We consider the case when all the couplings are equal
(Jx = Jy = Jz).
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Finite temperature Partition Function

The partition function of the system is Z [β] =

∫

∏

s

(

d ~Ss
4π

)

exp[−βH]

(3)
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Integrating out the B-spins yields an effective Hamiltonian for the A-

spins.
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where F [x ] = log

[

sinh(x)

x

]

. (5)
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Finite temperature Partition Function (cont.)

The system is thus a triangular lattice of A-sites interacting via
Heff within each down-pointing triangle.
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Characterisation of the Ground State Manifold

We note that F (x) in the effective Hamiltonian is convex. Hence the

Hamiltonian is minimised when Sx
a1

2 + S
y
a2

2
+ Sz

a3
2 = 1 at every

B-site.

We assign a bond-energy vector ǫ(l ,m;α)~eα at every bond

ǫ(l ,m;α) =
(

Sα
a(l ,m)

)2
− 1

3 , where α ≡ x , y , z . The ground state

ensemble is characterised by the constraint that the sum of bond
energies at every site is equal to 0.

We thus have a divergence-free vector field on the bonds of the
lattice at zero temperature.

We can thus parametrise the system at zero temperature using
continuously variable heights (associated with the hexagonal
plaquettes).
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Mapping to a Height Model

The bond energies can be expressed as a difference of the height
field of the plaquettes contiguous to each bond.
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ε ǫ(s, x) = f (h1)− f (h2)

ǫ(s, y) = f (h2)− f (h3)

ǫ(s, z) = f (h3)− f (h1) (6)

For a lattice of 2N sites with periodic boundary conditions, the
ground states form an (N + 1) dimensional manifold.
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Zero temperature correlations

The height model has the symmetry f (hi) → f (hi ) + Const.

We expect the effective Hamiltonian to be |∇f |2, which gives rise
to the spectrum given by ω2 ∝ k2.

Then for two sites s1 and s2 separated by a large distance R

〈(fs1 − fs2)
2〉 ∼ logR (7)

This implies that

〈(Sα
s1
)2(Sβ

s2
)2〉c ∼ 1

R2
. (8)
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Finite temperature height model

At finite temperatures, ∇.ǫ 6= 0 at the B-sites.

This is equivalent to introducing a continuously variable charge
Qb(l ,m) at every B-site.

The partition function takes the form

Z [β] = (Const.)





∏
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∫
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∏
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−1/2
]

× exp
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F
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√
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)



 . (9)
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Zero Temperature Limit

The linear term in Q in the above exponential vanishes due to the
overall charge neutrality of the system.

Hence the leading behaviour of the integral over the range of Q at
large β can be determined asymptotically exactly using a saddle
point approximation.

Each integration to leading order is independent of the
configuration {fl ,m} and gives a factor Cβ−1/2 where C is a
constant.

Thus the classical limit of the spin-S Kitaev model does not display
order-by-disorder.
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Finite Temperature Correlations
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is a symmetry of the Hamiltonian

This leads to 〈Sα
s1
S
β
s2〉 = 0 when sites s1 and s2 are not nearest

neighbours.

At finite temperature, the height fluctuations are still logarithmic, but
the spin-squared correlations decay exponentially.

At infinite temperature we have

〈(fR − f0)
2〉β=0 =

2
√
3

45π
log[R ] +O(1) for large R. (10)
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Monte Carlo Simulations

In order to test our predictions, we simulate the effective
Hamiltonian Heff .

For finite temperature simulations, two kinds of moves were employed:
-single spin moves and
-6-spin cluster moves (to efficiently thermalise the system at low

temperatures).

We looked for possible signatures of ordering as the temperature is
decreased by measuring various correlation functions.
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Monte Carlo Simulations: Results

We define the spin-squared structure factor as
S(~k) = 1√

LM

∑

~r (〈szA2(0)szA
2(~r)〉 − 1

9 ) exp (i
~k .~r)

We find that the peaks in |S(~k)|2 do not scale with system size.
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Monte Carlo Simulations: Results (cont.)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

 1  10

C
(r

)

r

The height fluctuations are logarithmic at all temperatures (Left). The

spin-squared correlation function decays as 1/R2 at zero temperature (Right).
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Spin-S Kitaev Model: Lower Bounds on Energy

We next study the quantum spin-S Kitaev model

We normalise the Hamiltonian by the size of the spin

H = − J

S(S + 1)

∑

a∈A

[Sx
a S

x
a+ex + Sy

a S
y
a+ey

+ Sz
aS

z
a+ez ] (11)

We derive an exact lower bound for the ground state energy of
this model. We have

〈ψ|H|ψ〉 ≥ −JN

√

S

S + 1
. (12)
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Spin-S Kitaev Chain

When the z-coupling is set to zero in the spin-S Kitaev model, the
Hamiltonian of the resulting spin chain is

H =
∑

n

(

J2n−1S
x
2n−1S

x
2n + J2nS

y
2nS

y
2n+1

)

(13)

There is a Z2 valued conserved quantity Wn = Σy
nΣ

x
n+1 for each

bond (n, n + 1) of the system, where Σa
n = e iπS

a
n . Thus the Hilbert

space breaks up into sectors for different values of {Wn}.
The dimension of each sector can be expressed as a trace of
products of 2× 2 transfer matrices depending on the values of
Wn = ±1. We have

T+ =
1

2

[

S − 1 S + 1
S + 1 S + 1

]

for S odd,

=
1

2

[

S + 2 S

S S

]

for S even.

and T
−
= T+

(

0 1
1 0

)

.
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Spin-1 Chain

We consider the case with S = 1.

We use the basis |x〉, |y〉, |z〉 in which the spin operators have the
action Sα|α〉 = 0 with α ≡ x , y , z .

A state with all Wn = 1 is the fully polarized z state ...zzzz ....

{Wn} is left invariant by the interchange zz ⇋ yx . This can be
thought of as a dimer evaporation/deposition process.
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Spin-1 Chain: Ground state

We postulate a ground state variational wavefunction of the type

|ψ〉 =
∑

C

√

Prob(C) |C〉 (14)

Prob(C) is the probability of a lattice gas configuration C in a given
ensemble.

Analysis of the eigenvalues for small systems shows that the ground
state lies in the sector with all Wn = +1 with an energy per site
Eg = −0.60356058

Using the above wavefunction we obtain an estimate of −0.60333 for
the ground state energy, that agrees with the exact answer to
< 0.1% accuracy.
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Spin-1 Chain: Energy Gap

We then consider the sector with one W negative to obtain an
estimate of the gap in the excitation spectrum.

We use a trial wave function of the type

|ψ〉 = 1√
2

[

∑

U

√

Prob(U)|xU〉 −
∑

V

√

Prob(V)|Vy〉
]

(15)

We assign position dependent weights for the lattice gas
configurations.

Using a ten parameter wavefunction we obtain an estimate of the
energy gap ∆ ≃ 0.15556.
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The Hard Square Lattice Gas

We study the lattice gas of particles where each particle is a 2× 2
square that occupies 4 elementary plaquettes of the square
lattice.

The system is disordered at low density and columnar ordered at high density.
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Activity Expansions

The low-activity series of this model can be computed easily

−f (z) = z − 9

2!
z2 +

194

3!
z3 − 6798

4!
z4 + . . . (16)

This expansion has a finite radius of convergence.

At high densities the sublattice ordered state is unstable because a
single square vacancy can break up into half-vacancies and can
be moved arbitrarily far apart.

For this model the standard high-activity cumulant expansion
breaks down.
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Columnar Order
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A configuration near full packing consisting only of horizontal and
vertical rod defects.
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Columnar Order

In the columnar ordered state the even (odd) rows or columns are
preferentially occupied over the others.

The leading order correction to the high-activity expansion is thus of
order 1/

√
z .

There is as yet no rigorous proof of the existence of this type of
order in this system.
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Order Parameters

The row order parameter of the system is defined to be

Or = 4[(ρ1 + ρ2)− (ρ3 + ρ4)], (17)

The column order parameter is

Oc = 4[(ρ1 + ρ4)− (ρ2 + ρ3)]. (18)

Equivalently, we can also define a single Z4 complex order
parameter

OZ4 = 4
√
2[(ρ1 − ρ3) + i(ρ2 − ρ4)]. (19)

The phase of the complex order parameter OZ4 takes the values
π/4,−3π/4,−π/4 and 3π/4 in the A, B, C, and D phases
respectively.
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High-Activity Expansion

We introduce explicit symmetry breaking by assigning different
fugacities to the A (even) and B (odd) rows.

The partition function Ω(zA, zB) can be written as an expansion in
terms of the fugacities of the particles on the B-rows (defects)
and the corresponding partition functions of the A-rows.

Ω(zA, zB)

Ω(zA, 0)
= 1 + zBW1(zA) +

zB
2

2!
W2(zA) + ... (20)

Taking the logarithm we arrive at the cumulant expansion

1

N
log

Ω(zA, zB)

Ω(zA, 0)
= zBκ1(zA) +

zB
2

2!
κ2(zA) + ... (21)
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High-Activity Expansion

When there are no B-particles in the lattice, the partition function of
the system breaks up into a product of 1-d partition functions of
particles on the A-rows.

The A-particles behave as a 1-d lattice gas with nearest neighbour
exclusion.

The terms in the series can be computed using the properties of the
1-d lattice gas.
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High-Activity Expansion

It is possible to explicitly evaluate the first few terms in this
series. We have

κ1(zA) =
1

2

(

ρ1d (zA)

zA

)2

=
1

8

(

1

zA2

)

− 1

8

(

1

zA5/2

)

+O
(

1

zA3

)

and

κ2(zA)

2!
=

1

16

(

1

zA
3

)

+
3

64

(

1

zA
7/2

)

− 21

64

(

1

zA
4

)

+O
(

1

zA
9/2

)

(22)

At the point zA = zB = z terms involving an arbitrary number of
defects contribute at all orders.
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High-Activity Expansion: Order 1/z

We regroup the terms of the series in powers of
√
z.

At order 1/z the contributing objects are defects aligned in the
vertical direction (rods of arbitrary length).
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The term of order 1/z
n+1
2 involves at most n rods.
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High-Activity Expansion: Order 1/z3/2

At Order 1/z3/2 we have contributions from terms involving two
rods.

a)
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(the distance ∆ between the rods is summed over)
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High-Activity Expansion

We can thus generate the exact series expansion for the free
energy and the density of the hard square lattice gas up to order
1/z3/2.

We have

− f (z) =
1

4
log z +

1

4z1/2
+

1

4z
+

(

3 log
(

9
8

)

+ 11
96

)

z3/2
+O

(

1

z2

)

and

ρ(z) =
1

4
− 1

8z1/2
− 1

4z
−
(

9
2 log

(

9
8

)

+ 11
64

)

z3/2
+O

(

1

z2

)

(23)
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Phase Transition in the Hard Square Lattice Gas

At high densities the system can order in any one of four columnar
ordered states.

This model posseses Z4 symmetry and hence the transition is
expected to lie in the universality class of a model with Z4

symmetry.

There are several well studied models that exhibit a transition that
break a Z4 symmetry in two dimensions such as the Eight-Vertex
model and the Ashkin-Teller-Potts model.
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The Ashkin-Teller-Potts Model

Two Ising degrees of freedom at every site with a four spin coupling
term.

The Hamiltonian of the isotropic square lattice Ashkin-Teller
model is given by

H = −





∑

〈i ,j〉

J2σiσj + J2τiτj + J4σiσjτiτj



 (24)

This model has several phases, separated by lines of critical points.
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The Ashkin-Teller-Potts Model

Para

Anti−Ferro

0

Baxter

K

J

Ferro

4−State Potts

Ising

When K = βJ4 is large and
J = βJ2 is small we have
ferromagnetic order.

In the paramagnetic phase
〈στ〉, 〈σ〉 and 〈τ〉 are all zero.

When both J and K are large
〈σ〉, 〈τ〉 and 〈στ〉 all acquire a
nonzero expectation value.
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Mapping to the Ashkin-Teller model

B

CD

A

A

D

AB

A

B

A

A

We coarse grain the system
using a grid at an angle π

4 with
respect to the lattice axes.

From symmetry, there are two types of surface tensions in this high
density phase. σAB = σCD and σAC = σCB = σBD = σDA.

We map this 4-state model to the Ashkin-Teller model with surface
tension energies K and 2J − K .
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Ising Energy Densities

We ascribe Ising labels to the phases in the hard square lattice gas.

The four phases in the Ashkin-Teller model can be described by a
complex valued “clock” variable Θ with the following definition

ΘAT = exp

(

iπ

4

)

(σ + iτ)√
2

(25)

1 2

34

++

+−−+

A

C D

B
−−

We obtain:

E (σ) ∼= (ρ1 + ρ3)

E (τ) ∼= (ρ2 + ρ4) (26)
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Monte Carlo Simulations

Simulations of exclusion gases are inefficient because of
“jamming” (the number of available local moves become very small
at high density).

We use the following algorithm that avoids this problem:

We evaporate all particles that lie on a 1D line (horizontal or
vertical) of the system.

We then reoccupy the empty line using a configuration chosen from
an ensemble of a 1D lattice gas with nearest neighbour exclusion.

Using this algorithm, we are able to obtain reliable estimates of
thermodynamic quantities from lattices upto size 1600 X 1600.
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Monte Carlo Simulations: Results
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Figure: A histogram of the complex order parameter Or + iOc at z = 50 (Left)
and z = 100 (Right)
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Monte Carlo Simulations: Results

We estimate of the critical point of the system to be
zc = 97.5 ± 0.5.
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Figure: Plot of L−7/4〈|OZ4|2〉 with respect to z , showing a critical crossing at the
value zc = 97.5.
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Monte Carlo Simulations: Results

We monitor the variance of Vi = ρ1 + ωiρ2 + ωi
2ρ3 + ωi

3ρ4, where
ωi with i = 1 to 4 are the fourth roots of unity.
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The Variance of V1 rises with a detectable power (≃ 0.16) with increasing

system size whereas that of V3 saturates to a finite value.
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Monte Carlo Simulations: Results

We verify that the scaling exponent γ/ν is equal to 7/4 consistent
with the critical behaviour of the Ashkin-Teller model.

 10

 100

 1000

 10000

 100  1000

V
a
r[

|V
2
|]

L

z = 96.5
z = 97.5
z = 98.5

Kabir Ramola (TIFR) Onset of Order in Lattice Systems Thursday 4th October, 2012 43 / 48



Monte Carlo Simulations: Results

We place the critical point of this model slightly to the
ferromagnetic side of the Ising point of the Ashkin-Teller model.
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The phase diagram of the Ashkin-Teller model.
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Slidability

The columnar ordered phases are characterised by the
deconfinement of half vacancies along stacks of particles that can
be slid to the left or right.

We monitor the number of horizontal and vertical slidable stacks
in the system.

 100

 1000

 10000

 100000

 100  1000

V
a
r[

S
]

L

S+
S-

Kabir Ramola (TIFR) Onset of Order in Lattice Systems Thursday 4th October, 2012 45 / 48



Summary

We have shown that the classical limit of the spin-S Kitaev model
does not order even at T = 0, but has power law correlations.

The corresponding spin-S chain (for S = 1) has a finite energy gap.

We developed a large-z expansion for the hard square lattice gas.

We showed that the phase transition in this model is in the
Ashkin-Teller universality class.
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Thank You.
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Hard Cubes on the Cubic Lattice

The series expansion developed here can be extended to three
dimensional systems that exhibit columnar order.

The extended objects that contribute to order 1/z in the zA = zB = z

series in this case turn out to be rigid rods along the x- or y -
directions.

I

J

A B

D C
L

K

GF
H

1 4

5

6 7

8

2 3

E

A A A

A A A

A A

B

B B

B

CC

BB

C CD

D D

D

A

D

D

Kabir Ramola (TIFR) Onset of Order in Lattice Systems Thursday 4th October, 2012 48 / 48


