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Granular Matter
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Statistical Ensembles

The concept of ‘ensembles’ plays a key role in equilibrium statistical
mechanics.

The distinction between a liquid at thermal equilibrium and a granular
material is that in a liquid, atoms undergo thermal motion.

In a granular medium (in the absence of outside perturbations) the
system is trapped in one of many (very many) local potential energy
minima.

Gibbsian statistical mechanics cannot be used to describe such a
system.
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Granular Ensembles

Granular systems are made up of macroscopic particles and are
inherrently athermal.

What is the correct statistical ensemble for static granular
systems?

How does one build a microscopic theory using local observables?

Edwards proposed that the collection of all stable packings of a
fixed number of particles in a fixed volume might also play the
role of an ‘ensemble’. Ref: S. F. Edwards, R. B. S. Oakeshott, Physica A 157, 180 (1991).

A statistical-mechanics like formalism would result if one assumed
that all such packings were equally likely to be observed, once the
system had settled into a mechanically stable ‘jammed’ state.
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Jammed Packings

Kabir Ramola Jamming of Soft Disks: Disorder, Entropy, and Athermal Statistical Mechanics 5 / 40



Jammed Packings: Contact Points

Kabir Ramola Jamming of Soft Disks: Disorder, Entropy, and Athermal Statistical Mechanics 6 / 40



Summary

We test the hypothesis of equiprobability for soft disks near the
unjamming transition. Ref: S. Martiniani, K. J. Schrenk, K. Ramola, B. Chakraborty and D.

Frenkel, Nature Physics (2017).

We then analyze the system in a fixed energy ensemble.

We develop a statistical framework for the transition using local
grain areas assigned to each contact that play the role of
“quasiparticles”. Ref: K. Ramola and B. Chakraborty, Phys. Rev. Lett. 118, 138001 (2017).

We use the underlying distributions of interparticle distances to
derive a density of states of these areas.

We show that to understand the scaling behaviour near the
unjamming transition, one needs to account for three-body
interactions.
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Jammed Packings: Energy Landscape
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Figure: (a) Snapshot of a jammed packing of disks with a hard core (dark shaded
regions) plus soft repulsive corona (light shaded regions). (b)-(c) Illustration of
configurational space for jammed packings.
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Numerical Simulations: Energy Functions

We use a soft potential around a hard core

U(r) =





∞ r ≤ rHS,

4ε

[(
σ(rHS)
r2 − r2

HS

)12

−
(
σ(rHS)
r2 − r2

HS

)6
]

+ ε rHS < r < rSS,

0 r ≥ rSS

(1)

For short distances r → rSS this becomes a soft linear spring
repulsion potential of the form:

U(r) =

{
c0(r − rSS)2 rHS < r < rSS,
0 r ≥ rSS

(2)

We simulate bidispersed configurations (two different sizes of disks).
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Global Variables approaching Jamming

Pressure: P → 0+,

Energy: EG → 0+,

Packing Fraction: φ→ 0.84...,

Coordination number: ∆Z = (Z − Ziso)→ 0,

Ziso = 2d → 4 for d = 2.
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Testing the Edwards Conjecture

We performed a direct test of the Edwards conjecture, by
numerically computing basin volumes of distinct jammed states
(energy minima) of N = 64, frictionless disks held at a constant
packing fraction φ.

We compute Ω, the number of distinct jammed states, and the
individual probabilities pi∈{1,...,Ω} of each observed packing to occur.

The energy minimization procedure finds individual stable packings
with a probability pi proportional to the volume vi of their basin
of attraction.

We compute vi using a thermodynamic integration scheme, and
compute the average basin volume 〈v〉(φ).
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Phase Space Volumes

The number of jammed states is, explicitly,

Ω(φ) = VJ(φ)/〈v〉(φ), (3)

where VJ(φ) is the total available phase space volume at a given φ.

A convenient way to check equiprobability is to compare the
Boltzmann entropy

SB = ln Ω− lnN! (4)

which counts all packings with the same weight, and

The Gibbs entropy

SG = −
Ω∑

i

pi ln pi − lnN! (5)

The Gibbs entropy satisfies SG ≤ SB , saturating the bound when all
pi are equal: pi∈{1,...,Ω} = 1/Ω.
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Characterizing Basin Volume Distributions

We analyse the statistics of vi along with the pressure Pi of each
packing.

It is convenient to study Fi ≡ − ln vi as a function of Λi ≡ lnPi .

This yields a linear relationship Ref: S. Martiniani, K. J. Schrenk, J. D. Stevenson, D. J. Wales,

D. Frenkel, Phys. Rev. E 93, 012906 (2016).

〈f 〉B(φ; Λ) =λ(φ)Λ + c(φ)

=λ(φ)∆Λ + 〈f 〉B(φ) ,
(6)

where f = F/N, and ∆Λ = Λ− 〈Λ〉B(φ).

The slope λ(φ) characterizes the approach to equiprobability.
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Basin Volume Distributions
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Figure: (a) Gibbs entropy SG and Boltzmann entropy SB . (b) Scatter plot of the
negative log-probability of observing a packing, − ln pi = Fi + lnVJ(φ).
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Jammed Packings: Minimum Cycle Basis
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Partition Function

The partition function at a fixed energy EG is given by

Ω(EG ) =

∫
D[{~rg , σg}]δ (EG − V [{~rg , σg}]) δ

(
∂V [{~rg , σg}]

∂~rg

)
.

(7)

Jammed states are characterised by a system spanning contact
network.

For frictionless disks this naturally partitions the space into convex
minimum cycles (or faces) of zv sides each.

The loop constraints around each face can be implemented as

{~rg} → {~rg ,g ′} ×
∏

v

δ

(
zv∑

i=1

~r ig ,g ′

)
, with ~rg ,g ′ = ~rg ′ − ~rg . (8)
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Jammed Packings: Grain Polygons and Void Polygons
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Total Grain Area
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Figure: (Left) Distribution of the total area covered by the grain polygons AG at
EG = 10−15. Using finite-size scaling fits we find is A∗

G = 0.446(1) as the number
of grains NG →∞ and EG → 0+. (Right) Behaviour of the grain area
distributions for different energies for packings of NG = 512 disks.
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Scaling with Energy
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Figure: Scaling of the excess grain area ∆AG = AG − A∗
G with total energy per

particle EG . We find that the excess grain area scales as a power of the total
energy in the system with exponent βE = 0.28(2).
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Scaling with Coordination
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Figure: Scaling of ∆AG with excess coordination in the system ∆Z . We find that
the excess grain area scales as a power of ∆Z with exponent βZ = 1.00(1).
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Edge Triangles and Local Areas
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Figure: A section of a jammed configuration of soft frictionless disks. The centers
of the grains with radii {σg} are located at positions {~rg}. The triangle formed
by the points (~rg , ~rc , ~rc′) (shaded area) is uniquely assigned to the contact c and
has an associated area a ≡ ag ,c , with a normalized area αc = ag ,c/σ

2
g .
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Partition Function and Local Distributions

These basic triangular units are the local measure of density
(packing fraction) in our description:

αe =
ag ,e
σ2
g

∈
[

0,
1

2

]
. (9)

We can express the partition function in terms of the joint density of
states of these local areas

Ω(EG ,NC ) =

(
NC∏

i=1

∫ 1/2

0
dαi

)
gEG

(α1, α2, ..., αNC
) . (10)

Similarly we can compute probability distributions

pEG
(α1) =

(
NC∏

i=2

∫ 1/2

0
dαi

)
gEG

(α1, α2, ..., αNC
)

Ω(EG ,NC )
. (11)

In real systems (and simulations), the number of contacts NC is a
fluctuating quantity.
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Local Area Distribution
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Figure: Distribution of areas of the edge triangles αe = ag ,e/σ
2
g for NG = 2048.

αe → 1/2 corresponds to disks with relative contact angles close to π/2. We find
well defined peaks that get sharper as EG → 0+.
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Ordered Structures
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Figure: The four three-disk crystallization configurations that can occur in
bidispersed systems. This causes ordered peaks to appear in the distribution of
edge triangle areas (white triangles). The fraction of the system in these ordered
structures gives us a measure of order in the system.

We focus on the A− A− A case. The generalization to the
polydisperse case is straightforward.
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Building a Theory

We use the distribution of contact lengths to derive the areas, which
relates them to the energy.

The distribution of individual areas is given by

p(a) =

∫
~dr1

∫
~dr2 p(~r1, ~r2) δ

( |~r1 × ~r2|
2

− a

)
. (12)

where ~r1 and ~r2 are the contact vectors bounding the triangle.

The one point distribution is independent of orientation

p(~r1) =

∫
d2~r2p(~r1, ~r2) =

1

2π
p(|~r1|). (13)

The joint distribution can be decomposed as

p(~r1, ~r2) = p(|~r1|)p(|~r2|)p(sin θ). (14)
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Local Areas

In terms of the scaled distances ~r → ~r/σg we have

P(α) =

∫ 1

0

dr1

∫ 1

0

dr2

∫ 1

0

d sin θ P(r1)P(r2)P(sin θ) δ

(
1

2
r1r2 sin θ − α

)
.

(15)

α < 1/2 combined with the delta function produces a singularity in
p(α) as r1 → 1, r2 → 1 and θ → π/2.

Therefore the relative angle between contact vectors is crucial in
determining the nature of the divergence as EG → 0+.
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Observed Underlying Distributions
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Figure: (Left) Distribution of lengths of contact vectors measured in packings
with NG = 2048 at different energies. The plot shows the distribution of
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√
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Underlying Distributions: Contact Vector Lengths

Contact lengths are fluctuating quantities

|~r | = σg −∆r with 0 < ∆r < σg (16)

For linear spring potentials

EG =
1

NG

NC∑

i=1

(∆ri )
2 (17)

Therefore the contact fluctuations are drawn from a distribution
with an energy dependent width

√
EG

p

(
∆r =

|~r |
σg
− 1

)
=

1√
EG
P
(

∆r√
EG

)
(18)

This is independent of the cycle to which it belongs
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Building the Angular Distributions
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Figure: Diagrams appearing in the expansion for the joint distribution p(~r1, ~r2).
The vectors r̃ are integrated over.

The terms corresponding to zv = 3 have a fixed length for all the
sides as EG → 0+, and therefore give rise to ρ(θ) localized around a

single value θ = arcsin
√

3
2 .

The terms corresponding to zv > 3 have unconstrained sides
(depicted with dashed lines) and therefore contribute a finite amount
to ρ(θ) at θ = π/2.
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Angular Distributions: > 3-minimum Cycles

For zv > 3 we have a finite expansion about θ = π/2

p(θ,> 3) =
2

∆
p(π/2) for

∣∣∣θ − π

2

∣∣∣ < ∆ (19)

Changing variables θ → sin θ

p(sin θ,> 3) =
2p(π/2)

∆
√

1− sin2 θ
for

∣∣∣θ − π

2

∣∣∣ < ∆ (20)

We refer to the divergence in the area distribution arising from
θ → π/2 as disordered divergences.
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Angular Distributions: 3-minimum Cycles

For zv = 3 we have a distribution centered at a finite value

p(θ, 3) ∼ 1√
EG
P
(
θ − arcsin

√
3

4√
EG

)
. (21)

Changing variables θ → sin θ

p(sin θ, 3) ∼ 1√
1− sin2 θ

1√
EG
P̃
(

sin θ −
√

3
4√

EG

)
. (22)

The contribution at θ = π/2 is exponentially suppressed.

This leads to an integrable singularity for the probability of areas.

We refer to these as ordered divergences.
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Ordered and Disordered Distributions

We can split the distribution into two classes as follows

p(α) =
g(α)

NC
= p(α, 3) + p(α,> 3)︸ ︷︷ ︸

pDO(α)+preg(α)

, (23)

with

p(3) =

∫ 1/2

0
p(α, 3)dα, n(3) = NCp(3), (24)

and

p(> 3) =

∫ 1/2

0
p(α,> 3)dα, n(> 3) = NCp(> 3). (25)

Kabir Ramola Jamming of Soft Disks: Disorder, Entropy, and Athermal Statistical Mechanics 32 / 40



Scaling Form

The disordered divergence has the following scaling form

pDO(α) = EG
−1/4PDO

(
1
2 − α√
EG

)
. (26)

which possesses the following asymptotic behaviour

PDO(x) ∼





x3/2 , x → 0,

x−1/2 , x →∞ .

(27)

Similarly we find that the “ordered” distribution has a scaling form

p(α, 3) = EG
−1/2PO

( √
3

4 − α√
EG

)
, (28)

which is integrable in the EG → 0+ limit.
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Scaling Collapse
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Figure: Scaling collapse of the distribution of areas p(α,> 3) of the zv > 3 cycles
at different energies.
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Scaling Collapse
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Global Scaling

The overall density of states is given by

g(α) = NC (p(α, 3) + p(α,> 3)) , (29)

with
p(α,> 3) = preg(α) + pDO(α)︸ ︷︷ ︸

∆E−1/4

. (30)

The regularity of g(α) at EG = 0 leads to

NC =

∫ 1/2
0 greg(α)dα

p(α,> 3)−∆
. (31)

Which implies the scaling of the excess coordination

∆Z ∼ E 1/4. (32)
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Comparision with Simulations
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Different Repulsive Potentials
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Conclusions

We numerically tested the equiprobability of jammed
configurations near the unjamming transition of soft disks.

We developed a statistical framework for the transition in two
dimensions.

We used local grain areas assigned to each contact as the
microscopic degrees of freedom with which to describe the system.

We found that large scale numerical simulations match the
predictions very well.

It would be interesting to extend this analysis to systems with
different shapes of particles and frictional systems.
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Thank You.
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