Correlated Extreme Values in Branching Brownian Motion

Kabir Ramola

Laboratoire de Physique Théorique et Modèles Statistiques, Orsay, France

In collaboration with Satya N. Majumdar and Grégory Schehr

Monday $5^{\text {th }}$ January, 2015

References

Kabir Ramola, Satya N. Majumdar, Grégory Schehr:

- Universal Order and Gap Statistics of Critical Branching Brownian Motion, Phys. Rev. Lett. 112, 210602, (2014).
- Branching Brownian Motion Conditioned on Particle Numbers, Chaos, Solitons \& Fractals (special edition on Extreme Value Statistics), (2015).

Introduction

- Branching processes are prototypical models of systems where new particles are generated at every time step.
- Well studied in the context of evolution, epidemic spreads, nuclear reactions amongst others.
- Related to several models such as continuum limit of branching-annihilating-random-walk (DP Universality), GREM.
- Used in the modelling of disordered systems and spin-glasses where energy levels are random variables.

Branching Brownian Motion

At each time step $[t, t+\Delta t]$ the particle can:

- A) die with probability $d \Delta t$
- B) split into two independent particles with probability $b \Delta t$
- C) diffuse by a distance $\Delta x=\eta(t) \Delta t$, with probability $1-(b+d) \Delta t$.

$$
\begin{equation*}
\langle\eta(t)\rangle=0, \quad\left\langle\eta\left(t_{1}\right) \eta\left(t_{2}\right)\right\rangle=2 D \delta\left(t_{1}-t_{2}\right) \tag{1}
\end{equation*}
$$

Branching Brownian Motion

Figure: A realization of the dynamics of branching Brownian motion with death (left) in the supercritical regime $(b>d)$ and (right) in the critical regime $(b=d)$. The particles are numbered sequentially from right to left as shown in the inset.

Extreme Value Statistics

- Extreme value statistics has been growing in prominence.
- In many real world examples the extreme value is not independent of the rest of the set and there are strong correlations between near-extreme values.
- Examples include extreme temperatures as part of heat or cold waves, earthquakes and financial crashes where extreme fluctuations are accompanied by foreshocks and aftershocks.
- Particularly important in disordered systems where energy levels near the ground state become important at low but finite temperature.
- Although EVS of independent identically distributed (i.i.d.) variables are fully understood, very few analytical results for strongly correlated random variables.

The Backward Fokker-Planck Approach

- We look at the contribution from the first time step $[0, \Delta t]$ to the final time step $t+\Delta t$

Number of Particles in the system

- $P(n, t)=$ Probability there are exactly n particles at time t.
- Using the Backward Fokker-Planck approach

$$
\begin{align*}
P(n, t+\Delta t)= & {[1-(b+d) \Delta t] P(n, t)+} \\
& b \Delta t \sum_{m=0}^{n} P(m, t) P(n-m, t)+d \Delta t \delta_{n, 0} \tag{2}
\end{align*}
$$

- In the $\Delta t \rightarrow 0$ we have

$$
\begin{equation*}
\frac{\partial P(n, t)}{\partial t}=-(b+d) P(n, t)+b \sum_{m=0}^{n} P(m, t) P(n-m, t)+d \delta_{n, 0} \tag{3}
\end{equation*}
$$

- We can solve this using standard generating functions.

Number of Particles in the system

- The solutions are

$$
\begin{equation*}
P(0, t)=\frac{d\left(e^{b t}-e^{d t}\right)}{b e^{b t}-d e^{d t}}, \quad P(n \geq 1, t)=(b-d)^{2} e^{(b+d) t} \frac{b^{n-1}\left(e^{b t}-e^{d t}\right)^{n-1}}{\left(b e^{b t}-d e^{d t}\right)^{n+1}} . \tag{4}
\end{equation*}
$$

- In the critical regime $(b=d)$ this reduces to

$$
\begin{equation*}
P(0, t)=\frac{b t}{1+b t}, \quad P(n \geq 1, t)=\frac{(b t)^{n-1}}{(1+b t)^{n+1}} \tag{5}
\end{equation*}
$$

- The average number of particles is

$$
\begin{equation*}
\langle N(t)\rangle=e^{(b-d) t} \tag{6}
\end{equation*}
$$

The Rightmost Particle

- $C(n, x, t)=$ joint probability that there are n particles in the system at time t with all the particles to the left of x.
- Conditional Probability $Q(x, t \mid n)=\frac{C(n, x, t)}{P(n, t)}$
- PDF of the position of the rightmost particle

$$
\begin{equation*}
P(x, t \mid n)=\frac{\partial}{\partial x} Q(x, t \mid n) \tag{7}
\end{equation*}
$$

- The initial condition is

$$
\begin{equation*}
Q(x, 0 \mid n)=\theta(x) \quad \text { for } \quad n>1 \tag{8}
\end{equation*}
$$

- The boundary conditions are

$$
Q(x, t \mid n)=\left\{\begin{array}{lll}
1 & \text { for } & x \rightarrow \infty \tag{9}\\
0 & \text { for } & x \rightarrow-\infty
\end{array}\right.
$$

The Rightmost Particle (Cont.)

- We use the backward Fokker Planck approach.
- We have

$$
\begin{aligned}
C(n, x, t+\Delta t) & =(1-(b+d) \Delta t)\langle C(n, x-\eta(0) \Delta t, t)\rangle_{\eta(0)} \\
& +b \Delta t \sum_{r=0}^{n} C(r, x, t) C(n-r, x, t)+d \Delta t \delta_{n, 0} .(10)
\end{aligned}
$$

- In the $\Delta t \rightarrow 0$ we have

$$
\begin{gather*}
\frac{\partial C(n, x, t)}{\partial t}=D \frac{\partial^{2} C(n, x, t)}{\partial x^{2}}-(b+d) C(n, x, t)+ \\
2 b P(0, t) C(n, x, t)+b \sum_{r=1}^{n-1} C(r, x, t) C(n-r, x, t)+d \delta_{n, 0} \tag{11}
\end{gather*}
$$

- Linear equation which can be solved recursively.

Relation to FKPP Equation

- For unconditioned BBM: $F(x, t)=\sum_{n=0}^{\infty} C(n, x, t)$. One recovers

$$
\begin{equation*}
\frac{\partial F(x, t)}{\partial t}=D \frac{\partial^{2} F(x, t)}{\partial x^{2}}-(b+d) F(x, t)+b F^{2}(x, t)+d \tag{12}
\end{equation*}
$$

- For $b>d$: Fisher-Kolmogorov-Petrovsky-Piscounov type of non-linear equations which allow for a traveling front solution with a well defined front velocity v.
- For $b=d$: the solution is diffusive at late times (the non-linearities give rise to only sub-leading corrections).
- Unfortunately, for finite t, this is not exactly solvable.

Late Time Behaviour

- We can remove the linear term by making the transformation

$$
\begin{equation*}
C(n, x, t)=e^{\int f\left(t^{\prime}\right) d t^{\prime}} C^{\circ}(n, x, t)=\frac{e^{(b+d) t}}{\left(b e^{b t}-d e^{d t}\right)^{2}} C^{\circ}(n, x, t) \tag{13}
\end{equation*}
$$

with

$$
\begin{equation*}
f(t)=2 b P(0, t)-(b+d)=(d-b) \frac{b e^{b t}+d e^{d t}}{b e^{b t}-d e^{d t}} \tag{14}
\end{equation*}
$$

- We then have

$$
\begin{aligned}
\frac{\partial C^{\circ}(n, x, t)}{\partial t} & =D \frac{\partial^{2} C^{\circ}(n, x, t)}{\partial x^{2}} \\
& +\frac{b e^{(b+d) t}}{\left(b e^{b t}-d e^{d t}\right)^{2}} \sum_{r=1}^{n-1} C^{\circ}(r, x, t) C^{\circ}(n-r, x, t)(15)
\end{aligned}
$$

Late Time Behaviour (Cont.)

- For the conditional probability $Q(x, t \mid n)$ we have

$$
\begin{gather*}
\frac{\partial Q(x, t \mid n)}{\partial t}=D \frac{\partial^{2} Q(x, t \mid n)}{\partial x^{2}}+ \\
\frac{(b-d)^{2} e^{(b+d) t}}{\left(e^{b t}-e^{d t}\right)\left(b e^{b t}-d e^{d t}\right)} \sum_{r=1}^{n-1}[Q(x, t \mid r) Q(x, t \mid n-r)-Q(x, t \mid n)] \tag{16}
\end{gather*}
$$

- By conditioning on n we obtain a set of linear diffusion equations with source terms which can be solved recursively starting from $n=1$, for all t, b and d.

Diffusion Equation with a Source

- The general diffusion equation with a time-dependent source term

$$
\begin{equation*}
\frac{\partial}{\partial t} G(x, t)=D \frac{\partial^{2}}{\partial x^{2}} G(x, t)+\sigma(x, t) \tag{17}
\end{equation*}
$$

- With a given initial condition $G(x, 0)$,
- Has the exact solution

$$
\begin{gather*}
G(x, t)=\int_{-\infty}^{\infty} \frac{d x^{\prime}}{\sqrt{4 \pi D t}} \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{4 D t}\right) G\left(x^{\prime}, 0\right) \\
+\int_{0}^{t} \frac{d t^{\prime}}{\sqrt{4 \pi D\left(t-t^{\prime}\right)}} \int_{-\infty}^{\infty} d x^{\prime} \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{4 D\left(t-t^{\prime}\right)}\right) \sigma\left(x^{\prime}, t^{\prime}\right) \tag{18}
\end{gather*}
$$

Small n solutions

- For $n=1$ (no source term) we have the exact solution

$$
\begin{equation*}
Q(x, t \mid 1)=\frac{1}{2} \operatorname{erfc}\left(\frac{-x}{\sqrt{4 D t}}\right) \tag{19}
\end{equation*}
$$

where $\operatorname{erfc}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-u^{2}} d u$ is the complementary error function.

- The corresponding PDF of the position of the rightmost particle is

$$
\begin{equation*}
P(x, t \mid 1)=\frac{\partial}{\partial x} Q(x, t \mid 1)=\frac{1}{\sqrt{4 \pi D t}} \exp \left(-\frac{x^{2}}{4 D t}\right) \tag{20}
\end{equation*}
$$

- This is purely diffusive at all times.
- For $n=2$ we have

$$
\begin{align*}
& Q(x, t \mid 2)=(b-d)^{2}\left(\frac{b e^{b t}-d e^{d t}}{e^{b t}-e^{d t}}\right) \int_{0}^{t} \frac{d t^{\prime}}{\sqrt{4 \pi D\left(t-t^{\prime}\right)}} \times \\
& \frac{e^{(b+d) t^{\prime}}}{\left(b e^{b t^{\prime}}-d e^{d t^{\prime}}\right)^{2}} \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{4 D\left(t-t^{\prime}\right)}\right) \frac{1}{4} \operatorname{erfc}^{2}\left(-\frac{x^{\prime}}{\sqrt{4 D t^{\prime}}}\right) . \tag{21}
\end{align*}
$$

Small n solutions (Cont.)

- At late times:

$$
\begin{equation*}
Q(x, t \mid 2) \rightarrow \frac{1}{2} \operatorname{erfc}\left(-\frac{x}{\sqrt{4 D t}}\right) . \tag{22}
\end{equation*}
$$

General n

- The cumulative probability is bounded for all x and t $(0<Q(x, t \mid n)<1)$.
- Therefore at large t, the source term tends to zero as $\sim e^{-|b-d| t}$ (for $b \neq d$), and $\sim 1 /\left(b t^{2}\right)$ (for $b=d$).
- Thus, at large times $Q(x, t \mid n)$ obeys the simple diffusion equation for all $n \geq 1$ and the solution behaves for large t as

$$
\begin{equation*}
Q(x, t \mid n) \sim \frac{1}{2} \operatorname{erfc}\left(\frac{-x}{\sqrt{4 D t}}\right) \tag{23}
\end{equation*}
$$

independently of n.

- The PDF of the rightmost (and by symmetry leftmost) particle is diffusive at large times.

Interpretation

- Conditioning slows down the motion of the rightmost particle from ballistic to diffusive.
- For $b>d$ one picks up contributions only from atypical diffusive trajectories. $n_{\text {typical }} \approx e^{(b-d) t}$.
- For $b \leq d$, this correctly describes the late time behavior of the system. $n_{\text {typical }} \approx b t$.
- Although the individual behaviour of the particles is diffusive, they are strongly correlated.
- In order to understand these correlations, we study the gaps between the succesive particles.

Gap Statistics

- Remarkably (as we show), the PDFs of these gaps become stationary at large times.
- We focus on the first gap $g_{1}(t)=x_{1}(t)-x_{2}(t)$.
- We define $P\left(n, x_{1}, x_{2}, t\right)=$ PDF that there are exactly n particles $(n \geq 2)$ at time t, with the first particle at position x_{1} and the second at position $x_{2}<x_{1}$.
- We start with the simplest case $n=2$ which is already nontrivial.

Two Particle Sector

- Using the Backward Fokker-Planck approach

$$
\begin{aligned}
& P\left(2, x_{1}, x_{2}, t+\Delta t\right)= \\
& \quad(1-(b+d) \Delta t)\left\langle P\left(2, x_{1}-\eta(0) \Delta t, x_{2}-\eta(0) \Delta t, t\right)\right\rangle_{\eta(0)} \\
& \quad+2 b \Delta t P(0, t) P\left(2, x_{1}, x_{2}, t\right)+2 b \Delta t P\left(1, x_{1}, t\right) P\left(1, x_{2}, t\right) .(24)
\end{aligned}
$$

Two Particle Sector (Cont.)

- Expanding and taking the limit $\Delta t \rightarrow 0$, we have

$$
\begin{align*}
& \frac{\partial}{\partial t} P\left(2, x_{1}, x_{2}, t\right)=D\left(\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{2}}\right)^{2} P\left(2, x_{1}, x_{2}, t\right) \\
& \quad+f(t) P\left(2, x_{1}, x_{2}, t\right)+2 b P\left(1, x_{1}, t\right) P\left(1, x_{2}, t\right) \tag{25}
\end{align*}
$$

Exact Solution

- We remove the linear term by the customary transformation

$$
\begin{equation*}
P\left(2, x_{1}, x_{2}, t\right)=\frac{e^{(b+d) t}}{\left(b e^{b t}-d e^{d t}\right)^{2}} P^{\circ}\left(2, x_{1}, x_{2}, t\right) \tag{26}
\end{equation*}
$$

- We then have:

$$
\begin{aligned}
\frac{\partial}{\partial t} P^{\circ}\left(2, x_{1}, x_{2}, t\right. & =D\left(\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{2}}\right)^{2} P^{\circ}\left(2, x_{1}, x_{2}, t\right) \\
+ & 2 b \frac{\left(b e^{b t}-d e^{d t}\right)^{2}}{e^{(b+d) t}} P\left(1, x_{1}, t\right) P\left(1, x_{2}, t\right) .(27)
\end{aligned}
$$

- Change of variables (to Centre of Mass and Gap)

$$
\begin{align*}
& s=\frac{x_{1}+x_{2}}{2} \\
& g_{1}=x_{1}-x_{2}>0 \tag{28}
\end{align*}
$$

Exact Solution (Cont.)

- This yields

$$
\begin{array}{r}
\frac{\partial}{\partial t} P^{\circ}\left(2, s, g_{1}, t\right)=D\left(\frac{\partial}{\partial s}\right)^{2} P^{\circ}\left(2, s, g_{1}, t\right) \\
+2 b \frac{e^{(b+d) t}}{\left(b e^{b t}-d e^{d t}\right)^{2}}(b-d)^{4} \frac{1}{4 \pi D t} \exp \left(-\frac{2 s^{2}+\frac{1}{2} g_{1}^{2}}{4 D t}\right) \tag{29}
\end{array}
$$

- Which is a diffusion equation with a source term!

Exact Solution (Cont.)

- Conditional PDF $P\left(s, g_{1}, t \mid 2\right)=\frac{P\left(2, s, g_{1}, t\right)}{P(2, t)}$.
- We have

$$
\begin{equation*}
P\left(s, g_{1}, t \mid 2\right)=\left(\frac{b e^{b t}-d e^{d t}}{b(b-d)^{2}\left(e^{b t}-e^{d t}\right)}\right) P^{\circ}\left(2, s, g_{1}, t\right) \tag{30}
\end{equation*}
$$

- Integrating w.r.t. to s^{\prime} we have the exact solution:

$$
\begin{gather*}
P\left(s, g_{1}, t \mid 2\right)=\frac{(b-d)^{2}}{2 \pi D}\left(\frac{b e^{b t}-d e^{d t}}{e^{b t}-e^{d t}}\right) \times \\
\int_{0}^{t} d t^{\prime} \frac{e^{(b+d) t^{\prime}}}{\left(b e^{b t^{\prime}}-d e^{d t^{\prime}}\right)^{2}} \frac{e^{-\frac{g_{1}^{2}}{8 D t^{\prime}}-\frac{s^{2}}{2 D\left(2 t-t^{\prime}\right)}}}{\sqrt{t^{\prime}\left(2 t-t^{\prime}\right)}} \tag{31}
\end{gather*}
$$

Marginal Distribution of the Centre of Mass

- Given the exact solution we can derive the marginal distributions of s and g_{1} respectively.
- Integrating over g_{1} gives us the marginal PDF of the centre of mass

$$
\begin{align*}
& P(s, t \mid 2)=(b-d)^{2}\left(\frac{b e^{b t}-d e^{d t}}{e^{b t}-e^{d t}}\right) \times \\
& \int_{0}^{t} d t^{\prime} \frac{e^{(b+d) t^{\prime}}}{\left(b e^{b t^{\prime}}-d e^{d t^{\prime}}\right)^{2}} \frac{\exp \left(-\frac{s^{2}}{2 D\left(2 t-t^{\prime}\right)}\right)}{\sqrt{2 \pi D\left(2 t-t^{\prime}\right)}} \tag{32}
\end{align*}
$$

- This is dominated by the region $t^{\prime} \rightarrow 0$, leading to $P(s, t \mid 2) \sim \frac{1}{\sqrt{4 \pi D t}} \exp \left(-\frac{s^{2}}{4 D t}\right)$ for large t, consistent with diffusive behaviour.

Marginal Distribution of the Gap

- Integrating over the centre of mass variable s marginal PDF of the gap

$$
\begin{equation*}
P\left(g_{1}, t \mid 2\right)=(b-d)^{2}\left(\frac{b e^{b t}-d e^{d t}}{e^{b t}-e^{d t}}\right) \int_{0}^{t} d t^{\prime} \frac{e^{(b+d) t^{\prime}}}{\left(b e^{b t^{\prime}}-d e^{d t^{\prime}}\right)^{2}} \frac{\exp \left(-\frac{g_{1}^{2}}{8 D t^{\prime}}\right)}{\sqrt{2 \pi D t^{\prime}}} \tag{33}
\end{equation*}
$$

- This gap distribution becomes stationary at large times $P\left(g_{1}, t \rightarrow \infty \mid 2\right)=p\left(g_{1} \mid 2\right)$
- We have

$$
\begin{equation*}
p\left(g_{1} \mid 2\right)=(b-d)^{2} \max (b, d) \int_{0}^{\infty} d t^{\prime} \frac{e^{(b+d) t^{\prime}}}{\left(b e^{b t^{\prime}}-d e^{d t^{\prime}}\right)^{2}} \frac{\exp \left(-\frac{g_{1}^{2}}{8 D t^{\prime}}\right)}{\sqrt{2 \pi D t^{\prime}}} \tag{34}
\end{equation*}
$$

Stationary Behaviour

- This stationary gap PDF has the following asymptotic behaviour for $g_{1} \gg 1$

$$
p\left(g_{1} \mid 2\right) \sim \begin{cases}\frac{|b-d|^{3 / 2}}{\sqrt{2 D} \max (b, d)} \exp \left(-\sqrt{\frac{|b-d|}{2 D}} g_{1}\right), & \text { for } b \neq d \\ 8\left(\frac{D}{b}\right) g_{1}^{-3}, & \text { for } b=d\end{cases}
$$

- Exponential decay in the off-critical phases.
- Scale-free power law decay at the critical point.

Higher n Sectors

- For any $n>2$, following the same procedure:

$$
\begin{aligned}
\frac{\partial P\left(n, x_{1}, x_{2}, t\right)}{\partial t}= & D\left(\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{2}}\right)^{2} P\left(n, x_{1}, x_{2}, t\right) \\
& +f(t) P\left(n, x_{1}, x_{2}, t\right)+b \mathcal{S}\left(n, x_{1}, x_{2}, t\right),
\end{aligned}
$$

- The source term is:

$$
\begin{align*}
& \mathcal{S}\left(n, x_{1}, x_{2}, t\right)=\int_{-\infty}^{x_{2}} d x_{3}\left[2 \sum_{\tau \in S_{3}} P\left(1, x_{\tau_{1}}, t\right) P\left(n-1, x_{\tau_{2}}, x_{\tau_{3}}, t\right)\right. \\
& \left.+\sum_{r=2}^{n-2} \int_{-\infty}^{x_{3}} d x_{4} \sum_{\tau \in S_{4}} P\left(r, x_{\tau_{1}}, x_{\tau_{2}}, t\right) P\left(n-r, x_{\tau_{3}}, x_{\tau_{4}}, t\right)\right] \tag{36}
\end{align*}
$$

- Once again, the gap PDF becomes stationary at large times, $P\left(g_{1}, t \rightarrow \infty \mid n\right) \rightarrow p\left(g_{1} \mid n\right)$.

Asymptotic Behaviour

- Leading contribution to \mathcal{S} for $g_{1}=x_{1}-x_{2} \gg 1$ arises from the term $2 b P\left(1, x_{1}, t\right) \int_{-\infty}^{x_{2}} d x_{3} P\left(n-1, x_{2}, x_{3}, t\right)=2 b P\left(1, x_{1}, t\right) P\left(n-1, x_{2}, t\right)$, (37)
- Rightmost particle is diffusive at large $t: P\left(n-1, x_{2}, t\right) \sim P\left(1, x_{2}, t\right)$,
- Therefore for large t
$2 b P\left(1, x_{1}, t\right) \int_{-\infty}^{x_{2}} d x_{3} P\left(n-1, x_{2}, x_{3}, t\right) \sim 2 b P\left(1, x_{1}, t\right) P\left(1, x_{2}, t\right),(38)$
- This is precisely the source term for the two-particle case, leading to $p\left(g_{1} \mid n\right) \sim p\left(g_{1} \mid 2\right)$ independently of $n \geq 2$.
- All other terms in \mathcal{S} involve a large gap between particles generated by the same offspring and are suppressed.

Asymptotic Behaviour (Cont.)

- Similar arguments show $p\left(g_{k}=x_{k}-x_{k+1} \mid n\right) \sim p\left(g_{1} \mid 2\right)$ for $g_{k} \gg 1$

Figure: Dominant terms contributing to the large gap behaviour for a) the first gap $g_{1}(t)$ and c) the k-th gap $g_{k}(t)$. Figure b) shows a realization where the large gap is generated by the particles of the same offspring process and is hence suppressed.

Monte Carlo Simulations

- Simulations in the off-critical regime

Figure: Two and Three particle Sectors

Monte Carlo Simulations (Cont.)

- Simulations in the critical regime

Figure: Two particle sector

Monte Carlo Simulations (Cont.)

- Simulations in the critical regime

Figure: Three particle sector

Universality

Conclusion

- We obtained exact analytical results for the gap statistics of the extreme particles of BBM.
- This was possible by conditioning on the number of particles in the system.
- This allowed us to express these evolution equations as a system of linear diffusion equations with source terms, which we could then solve recursively.
- We generalized this procedure for all particle sectors and showed that the stationary gap distributions have universal tails.
- It will be interesting to extend our analysis to the question of k-point correlation functions of this process.

Acknowledgements

A. Kundu, S. Gupta, A. Gudyma, C. Texier, B. Derrida.

Thank You.

