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Introduction Extreme Value Statistics

Extreme Value Statistics

Extreme value statistics has been growing in prominence.

In many real world examples the extreme value is not independent of
the rest of the set and there are strong correlations between
near-extreme values.

Examples include extreme temperatures as part of heat or cold
waves, earthquakes and financial crashes where extreme
fluctuations are accompanied by foreshocks and aftershocks.

Particularly important in disordered systems where energy levels near
the ground state become important at low but finite temperature.

Although EVS of independent identically distributed (i.i.d.) variables
are fully understood, very few analytical results for strongly
correlated random variables.
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Introduction Branching Brownian Motion

Branching Brownian Motion

At each time step [t, t + ∆t] the particle can:

A) die with probability a∆t

B) split into two independent particles with probability b∆t

C) diffuse by a distance ∆x = η(t)∆t, with probability 1− (a+ b)∆t.

〈η(t)〉 = 0, 〈η(t1)η(t2)〉 = 2Dδ(t1 − t2) (1)
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Introduction Branching Brownian Motion

Branching Brownian Motion

x

t

Xmin Xmax
span

Figure: A realization of the dynamics of branching Brownian motion with death
(left) in the supercritical regime (b > a) and (right) in the critical regime (b = a).
The particles are numbered sequentially from right to left as shown in the inset.
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Backward Fokker-Planck Equations

The Backward Fokker-Planck Approach

We look at the contribution from the first time step [0,∆t] to the
final time step t + ∆t

︸︷︷︸

a∆t b∆t 1− (a + b)∆t

t

x

0

∆t

∆x = η(0)∆t

A) B) C)

t +∆t

x = 0
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Backward Fokker-Planck Equations

Number of Particles in the system

P(n, t) = Probability there are exactly n particles at time t.

Using the Backward Fokker-Planck approach

P(n, t + ∆t) = [1− (a + b)∆t]P(n, t) +

b∆t
n∑

m=0

P(m, t)P(n −m, t) + a∆t δn,0 . (2)

In the ∆t → 0 we have

∂P(n, t)

∂t
= −(a + b)P(n, t) + b

n∑

m=0

P(m, t)P(n −m, t) + a δn,0 . (3)

We can solve this using standard generating functions.
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Backward Fokker-Planck Equations

Number of Particles in the system

The solutions are

P(0, t) =
a(ebt − eat)

bebt − aeat
, P(n ≥ 1, t) = (b − a)2e(a+b)t b

n−1(ebt − eat)n−1

(bebt − aeat)n+1
.

(4)

In the critical regime (b = d) this reduces to

P(0, t) =
bt

1 + bt
, P(n ≥ 1, t) =

(bt)n−1

(1 + bt)n+1
. (5)

The average number of particles is

〈N(t)〉 = e(b−a)t . (6)
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Backward Fokker-Planck Equations

The Maximum of BBM

Q(X , t) = Probability that Xmax ≤ X at time t

PDF of Xmax :

Pmarg(X , t) =
∂

∂X
Q(X , t). (7)

The initial condition is

Q(X , 0) = θ(X ) (8)

The boundary conditions are

Q(X , t) =

{
1 for X →∞
0 for X < 0.

(9)
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Backward Fokker-Planck Equations

The Maximum of BBM (Cont.)

Using the backward Fokker-Planck approach, we have

Q(X , t + ∆t) = (1− (a + b)∆t) 〈Q(X − η(0)∆t, t)〉η(0)

+ b∆tQ2(X , t) + a∆t . (10)

In the ∆t → 0 we have

∂Q(X , t)

∂t
= D

∂2Q(X , t)

∂X 2
− (a + b)Q(X , t) + bQ2(X , t) + a (11)

In terms of R(X , t) = 1− Q(X , t):

∂R(X , t)

∂t
= D

∂2R(X , t)

∂X 2
+ (b − a) R(X , t)− b R2(X , t), (12)

Non-linear equation with no known general solution (a = 0 is the
famous Fisher-Kolmogorov-Pertrovski-Piscounov Equation).
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Backward Fokker-Planck Equations

Dimensionless Variables

It is natural to consider the evolution equations in terms of dimensionless
variables as follows

x =
X√
D/b

,

(
y =

Y√
D/b

, s =
ζ√
D/b

)
,

τ = bt,

∆ =
a

b
− 1. (13)

In terms of these dimensionless variables Eq. (12) takes the simpler form

∂R(x , τ)

∂τ
=

∂2R(x , t)

∂x2
−∆R(x , y , τ)− R2(x , y , τ). (14)

For ∆ > 0: expected to approach a stationary limit as τ →∞:

R(x) = R(x , y , τ →∞). (15)
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Backward Fokker-Planck Equations

The Maximum of BBM: Stationary Critical Solution

In the critical case ∆ = 0 (S. Sawyer and J. Fleischman, Proc. Natl. Acad. Sci. USA 76(2), 87 (1979)):

R(x) =
1

(
1 +

x√
6

)2
. (16)

Consequently, pmarg(x) = −dR(x)/dx has the asymptotic behaviors

pmarg(x) ∼





pmarg(0) =

√
2

3
, x → 0

12

x3
, x →∞ .

(17)
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Backward Fokker-Planck Equations

The Maximum of BBM: Stationary subcritical Solution

In the subcritical case ∆ > 0 (S. Sawyer and J. Fleischman, Proc. Natl. Acad. Sci. USA 76(2), 87

(1979)):

R(x) =
3∆

2
csch2

(√
∆

2
x + sinh−1

√
3∆

2

)
. (18)

Consequently, pmarg(x) = −dR(x)/dx has the asymptotic behaviors

pmarg(x) ∼





pmarg(0) =

√
2

3
+ ∆ , x → 0

6∆
3
2 e
−2 sinh−1

√
3∆
2 exp (−

√
∆ x) , x →∞ .

(19)
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Backward Fokker-Planck Equations

Joint Distribution of the Maximum and Minimum

−Y

Xmin

Xmax

X

t time

space

0

span

s = Xmax −Xmin

Figure: Schematic representation of a trajectory of the BBM confined in the box
[−Y ,X ]. Note that Xmax and Xmin denote respectively the maximum and the
minimum of the process up to time t. The process starts with a single particle at
the origin at time t = 0 and hence Xmax ≥ 0 while Xmin ≤ 0.
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Backward Fokker-Planck Equations

Joint Distribution of the Maximum and Minimum

Q(X ,Y , t) = Joint probability that Xmax ≤ X AND Xmin ≥ −Y at
time t

Using the backward Fokker-Planck approach, we have

Q(X ,Y , t + ∆t) = b∆t Q2(X ,Y , t) + a∆t

+ (1− (b + a)∆t) 〈Q(X −∆x ,Y + ∆x , t)〉η(0), (20)

In the limit ∆t → 0, we arrive at the exact BFP evolution equation

∂

∂t
Q(X ,Y , t) = D

(
∂

∂X
− ∂

∂Y

)2

Q(X ,Y , t) + a

−(b + a) Q(X ,Y , t) + b Q2(X ,Y , t). (21)
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Backward Fokker-Planck Equations

The initial condition is

Q(X ,Y , 0) = Θ(X )Θ(Y ) , (22)

The boundary conditions are

Q(X ,Y , t) =

{
0 for X < 0,

0 for Y < 0 .
(23)
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Backward Fokker-Planck Equations

In terms of the complimentary probability R(X ,Y , t) = 1− Q(X ,Y , t),
we have

∂R(X ,Y , t)

∂t
= D

(
∂

∂X
− ∂

∂Y

)2

R(X ,Y , t)

+(b − a) R(X ,Y , t)− b R2(X ,Y , t), (24)

with the initial conditions

R(X ,Y , 0) = Θ(−X )Θ(−Y ). (25)

and the boundary conditions

R(X ,Y , t) =

{
1 for X < 0,

1 for Y < 0.
(26)
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Backward Fokker-Planck Equations

t = 1
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Figure: The solutions R(s, v , t) at different times obtained by numerical
integration, with dx = 0.1, dt = 0.001, D = 1 and b = 0.5. We find that at large
times this converges to a stationary bivariate function R(s, v).
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Backward Fokker-Planck Equations

Distribution of the Span

The distribution of the span s = Xmax − Xmin is given by

P(s, t) =

∫ ∞

0

∫ ∞

0
dXdY δ(X + Y − s)P(X ,Y , t). (27)

In terms of the dimensionless variables

P(ζ, τ) =

∫ ∞

0

∫ ∞

0
dxdyδ(x + y − ζ)P(x , y , τ). (28)

puncorr(ζ) =

∫ ζ

0
pmarg(x)pmarg(ζ − x)dx . (29)
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Solving the Equations

Change of Variables

v

y

x

ζ

Figure: The change of variables {x , y} → {ζ, v}.

Next, it is convenient to make a change of variables

ζ = x + y ,

v = x − y , (30)

with ζ ∈ [0,∞) and v ∈ [−ζ, ζ]. ζ represents the dimensionless span
of the process.
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Solving the Equations

R(x, y)
R(y) R(x)

R∗(ζ)

x

y

Figure: Graph depicting the stationary joint cumulative probability R(x , y). The
limiting distributions correspond to the marginal probabilities of the maximum
and minimum R(x) = R(x , y →∞) and R(y) = R(x →∞, y) respectively.
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Solving the Equations

In terms of these new variables Eq. (24) becomes

4

(
∂

∂v

)2

R(ζ, v)−∆R(ζ, v)−R2(ζ, v) = 0 , (31)

valid in the regime v ∈ [−ζ,+ζ] and ζ ∈ [0,+∞).

For a fixed ζ, Monotonically decreasing v ∈ [−ζ, 0], Monotonically
increasing v ∈ [0, ζ].

Assuming analyticity around the minimum at v = 0 gives the
condition

∂R(ζ, v)

∂v

∣∣∣
v=0

= 0. (32)
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Solving the Equations

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5  0  5  10

R(ζ, v)

v

ζ = 3

ζ = 5

ζ = 10

ζ = 2

Figure: R(ζ, v) as a function of v ∈ [−ζ,+ζ] for different values of ζ. For fixed
ζ, R(ζ, v) is a smooth non-monotonic function, symmetric around v = 0 in
−ζ ≤ v ≤ +ζ, and has a minimum at v = 0.
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Solving the Equations

Fortunately, Eq. (31) can be integrated with respect to v upon

multiplying by a factor 2∂R(ζ,v)
∂v , yielding

(
∂R(ζ, v)

∂v

)2

=
∆

4
R2(ζ, v) +

1

6
R3(ζ, v) + κ(ζ), (33)

where κ(ζ) is a yet unknown integration constant.

To fix κ(ζ), we use the condition in Eq. (32) and arrive at

(
∂R(ζ, v)

∂v

)2

=
∆

4

(
R2(ζ, v)−R2(ζ, 0)

)
+

1

6

(
R3(ζ, v)−R3(ζ, 0)

)

(34)
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Solving the Equations

This equation can be conveniently expressed as

1√
R(ζ, 0)

G
(

3∆/2

R(ζ, 0)
,
R(ζ, v)

R(ζ, 0)

)
=

v√
6
, (35)

where the bivariate function G is defined by the integral

G(γ, z) =

∫ z

1

dx√
(x3 − 1) + γ (x2 − 1)

, (36)

The above function G(γ, z) can then be expressed as

G(γ, z) =

1

(3 + 2γ)1/4
F

[
tan−1

√
z − 1√
3 + 2γ

,
2
√

3 + 2γ − (3 + γ)

4
√

3 + 2γ

]
,

(37)

where z ≥ 1, γ ≥ 0 and F is the elliptic integral of the first kind.

F(φ, k) =

∫ φ

0

dθ√
1− k sin2 θ

(38)
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Solving the Equations

Next, inserting the boundary condition R(ζ,±ζ) = 1 in the above
equation we have

1√
R(ζ, 0)

G
(

3∆/2

R(ζ, 0)
,

1

R(ζ, 0)

)
=

ζ√
6
. (39)

This is an implicit equation for R(ζ, 0), the solution of which can
then be injected in Eq. (35) to solve for R(ζ, v) for all ζ and v .
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Results
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Figure: The function G(γ, z) for different values of γ. For large z , G(γ, z)
saturates to a γ dependent constant C(γ). The case γ = 0 corresponds to the
function G(0, z) analyzed in the critical case. The limiting behaviors are

G(0, z)→ 0 as z → 1 and G(0, z)→ C∗ =
√
π

3

Γ( 1
6 )

Γ( 2
3 )
≈ 2.4286 as z →∞.
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Results
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Figure: The function R(ζ, 0) versus ζ in the critical regime, showing the limiting
behaviors R(ζ, 0)→ 1 as ζ → 0 and R(ζ, 0)→ B

ζ2 as ζ →∞ (dashed line).

B ≈ 35.3901. Inset: Plot of 1−R(ζ, 0) showing the limiting behavior
1−R(ζ, 0) ∼

(
1
8

)
ζ2 as ζ → 0 (dashed line).
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Results
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Figure: Asymptotic behavior of R(ζ, 0) in the subcritical regime. The plot shows
R(ζ, 0) for different values of ∆. The dashed lines representing the asymptotic

exponential behavior R(ζ, 0)∼A exp
(
−
√

∆
2 ζ
)

as ζ →∞ are indistinguishable

from the theoretically obtained curves as they match exactly. Inset: Plot of
1−R(ζ, 0) showing the limiting behavior 1−R(ζ, 0) ∼ 1

8 (1 + ∆) ζ2 as ζ → 0
(dashed lines).
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Results Asymptotic behavior of p(ζ) for ζ → 0

ζ → 0 Asymptotics

To leading order in ζ we have

R(ζ, 0) = 1− 1

8
(1 + ∆)ζ2 +O(ζ4). (40)

Therefore

R(ζ, v) = 1− 1

8
(1 + ∆)

(
ζ2 − v2

)
+O(ζ4, v4). (41)

And hence

p(ζ, v) =
1

2

(
∂2

∂v2
− ∂2

∂ζ2

)
R(ζ, v) =

1

4
(1 + ∆) +O(ζ2, v2). (42)

And finally

p(ζ) =
1

2
(1 + ∆) ζ +O

(
ζ3
)
, (43)

To be compared with

puncorr(ζ) ∼
(

2

3
+ ∆

)
ζ ,when ζ → 0 . (44)
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Results Asymptotic behavior of p(ζ) for ζ →∞

ζ →∞ Asymptotics: Critical

we obtain

R(ζ, 0) =
B
ζ2

+O
(

1

ζ4

)
, (45)

where

B = 6 C∗2 ≈ 35.3901, with C∗ =

√
π

3

Γ( 1
6 )

Γ( 2
3 )
. (46)

Hence, in the scaling limit ζ →∞, v →∞ keeping ζ/v fixed

G
(

0,
R(ζ, v)

R(ζ, 0)

)
= C∗ v

ζ
. (47)

Inverting the above Eq. (47), we get

R(ζ, v)

R(ζ, 0)
= F

(
C∗ v
ζ

)
, (48)

where F(z) is defined as the inverse function of G(0, z).
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Results Asymptotic behavior of p(ζ) for ζ →∞

R(ζ, v) =
B
ζ2
F
(
C∗ v
ζ

)
. (49)

Inserting this expression into the expression for p(ζ, v) yields

p(ζ, v) = −B
2

[ 6

ζ4
F
(
C∗ v
ζ

)
+ 6C∗ v

ζ5
F ′
(
C∗ v
ζ

)

+C∗2

(
v2

ζ6
− 1

ζ4

)
F ′′
(
C∗ v
ζ

)]
. (50)

The span distribution is then

p(ζ) = − 1

ζ3

( B
C∗
)∫ C∗

0
dz
[
6F (z) + 6zF ′ (z) +

(
z2 − C∗2

)
F ′′ (z)

]
. (51)

Hence, we obtain

p(ζ) ∼ A
ζ3

for large ζ, (52)
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Results Asymptotic behavior of p(ζ) for ζ →∞

We can integrate this exactly!

A = 8π
√

3 = 43.53118 . . . . (53)

Thus the leading asymptotic behavior for large ζ is

p(ζ) ∼ 8π
√

3

ζ3
. (54)

To be compared with

puncorr(ζ) ∼ 24

ζ3
. (55)
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Results Asymptotic behavior of p(ζ) for ζ →∞
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Figure: Theoretical stationary PDF of the dimensionless span p(ζ) (solid line) in
the critical regime.
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Results Asymptotic behavior of p(ζ) for ζ →∞

ζ →∞ Asymptotics: Subcritical

Here we get

p(ζ) ∼ A2

2
ζ exp (−

√
∆ ζ) , ζ →∞ . (56)

where A = 12 ∆ exp
[
−2 sinh−1

(√
3∆/2

)]
.

To be compared with

puncorr(ζ) ∼ ∆

4
A2 ζ exp

(
−
√

∆ ζ
)
. (57)
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Results Asymptotic behavior of p(ζ) for ζ →∞
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Figure: Theoretical stationary PDF of the dimensionless span p(ζ) in the
subcritical regime.

Kabir Ramola Spatial Extent of Branching Brownian Motion 36 / 41



Monte Carlo Simulations

Monte Carlo Simulations
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Figure: a. Probability distribution function of the dimensionless span p(ζ)
extracted from Monte Carlo simulations (open circles) in the critical case (∆ = 0).
Here t = 100, D = 1, a = b = 1, and dt = 0.0001. The data is averaged over
5× 107 realizations. b. Probability distribution function of the dimensionless span
p(ζ) extracted from Monte Carlo simulations (open circles) in the subcritical
regime. Here t = 100, D = 1, a = 2, b = 1 (i.e. ∆ = 1), and dt = 0.0001.
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Monte Carlo Simulations
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Figure: Finite time span PDF P(s, t) obtained from Monte Carlo simulations at
different times with dt = 0.0001, D = 1 and b = 0.5. The data is averaged over
5× 107 realizations. The bold lines represent the PDFs obtained from our
numerical integration of the two dimensional non-linear partial differential
equation. We find a perfect agreement between the PDFs obtained by both
techniques.
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Conclusion

We obtained exact analytical results for the span distribution of
one dimensional BBM.

This was possible by looking at the stationary regime.

We found that correlations between the maximum and minimum
persist in the stationary regime.

It will be interesting to extend our analysis to convex hulls in higher
dimensional BBM.
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Thank You.
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