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Abstract We study the fluctuations of certain random matrix products�N = MN · · · M2 M1

of SL(2,R), describing localisation properties of the one-dimensional Dirac equation
with random mass. In the continuum limit, i.e. when matrices Mn’s are close to the
identity matrix, we obtain convenient integral representations for the variance �2 =
limN→∞ Var(ln ||�N ||)/N . The case studied exhibits a saturation of the variance at low
energy ε along with a vanishing Lyapunov exponent �1 = limN→∞ ln ||�N ||/N , leading to
the behaviour �2/�1 ∼ ln(1/|ε|) → ∞ as ε → 0. Our continuum description sheds new
light on the Kappus–Wegner (band center) anomaly.

Keywords Random matrix products · Lyapunov exponent · Generalised Lyapunov
exponent · Dirac equation · Quantum localisation · Stochastic processes

1 Introduction

Transfer matrices lead to a convenient formulation of many statistical physics problems and
have been extensively used since their introduction in the context of the Ising model [1]. In the
presence of randomness, most of the physics is captured by the Lyapunov exponent�1 which
quantifies the growth rate of the matrix elements of a random matrix product (RMP) �N =
MN · · · M2 M1. Given the measure characterizing the independent and identically distributed
random matrices Mn’s, the Furstenberg formula allows one to obtain, at least in principle,
the Lyapunov exponent �1 = limN→∞ ln ||�N ||/N , where || · || is a suitable norm, in terms
of the solution of the Furstenberg’s integral equation [2]. Besides the Lyapunov exponent,
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498 K. Ramola, C. Texier

Fig. 1 (Color online) Fluctuations of a particular sequence of matrix products�n = Mn · · · M1, with matrices
of the form (1.1)

which describes the mean free energy of the random Ising model [3–5], the fluctuations of
RMP (Fig. 1) also play an important role and are the main subject of this paper.

The study of fluctuations is related to the generalised Lyapunov exponent analysis [3,4]1

and the multifractal formalism introduced by Paladin and Vulpiani [6,7]. Fluctuations are of
particular importance in the context of quantum localisation, where they dominate several
physical quantities, like the local density of states [8] or the Wigner time delay [9]. Their
precise characterisation is an important issue at the heart of the scaling approach used in
the justification of the single parameter scaling (SPS) hypothesis (cf. Refs. [10,11] and
references therein). In the last decade, this question has been re-examined more precisely for
a lattice model [12–14]. Recently Lyapunov exponents have been analytically obtained for
general RMPs of SL(2,R) in the continuum limit [15]. This has significantly improved our
understanding of RMPs and of one-dimensional (1D) quantum localisation models due to
their close connection [16]. The present work is a first step towards generalising this approach
for the fluctuations. We will consider matrices belonging to two particular subgroups of
SL(2,R):

Mn =
(

cos θn − sin θn

sin θn cos θn

) (
eηn 0

0 e−ηn

)
(1.1)

or

Mn =
(

cosh θ̃n sinh θ̃n

sinh θ̃n cosh θ̃n

) (
eηn 0

0 e−ηn

)
. (1.2)

We will show in Sect. 2 that products of matrices of the type (1.1) are transfer matrices
for the bi-spinor � = (ψ, χ) solution of the 1D Dirac equation

[σ2 i∂x + σ1 m(x)]�(x) = ε �(x) (1.3)

for a mass of the form m(x) = ∑
n ηn δ(x − xn) and with θn = ε (xn+1 − xn) ∈ R, where

σi ’s are Pauli matrices. Matrices of the type (1.2) with θ̃n = −iε (xn+1 − xn) correspond to
the case ε ∈ iR. The Dirac equation (1.3) with random mass is a relevant model in several

1 Generalised central limit theorems for matrices was discussed in the mathematical literature (chapter V of
the monograph [2]).
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Fluctuations of RMP and 1D Dirac Equation 499

contexts of condensed matter, e.g. random spin chains or organic conductors (see references
in Refs. [17,18]). It can also be exactly mapped onto supersymmetric quantum mechanics
[19] and the Sinai problem of 1D classical diffusion in a random force field [17,20]. Many
properties of the model can be obtained exactly when the mass is chosen to be a Gaussian
white noise:

〈m(x)〉 = μ g and
〈
m(x)m(x ′)

〉
c = g δ(x − x ′), (1.4)

where 〈XY 〉c = 〈XY 〉 − 〈X〉 〈Y 〉. For example the Lyapunov exponent, defined in the local-
isation problem as γ1 = limx→∞ ln |ψ(x)|/x , is known [20]

γ1 = −μg + ε
H (1)
μ+1(ε/g)

H (1)
μ (ε/g)

, (1.5)

where H (1)
μ (z) is the Hankel function. The case 〈m(x)〉 = 0 is of particular interest since the

Lyapunov exponent vanishes as ε → 0, indicating a delocalisation point in the spectrum.
In this unusual case, the characterisation of γ2 = limx→∞ Var(ln |ψ(x)|)/x (i.e. �2 =
limN→∞ Var(ln ||�N ||)/N ) is thus crucial. We will show that the fluctuations saturate as ε →
0, and thus dominate localisation properties.

2 Mapping

The mapping between RMP and 1D localisation models like the random Kronig–Penney
model [3], was recently extended to general RMPs of SL(2,R) [16]. For the case of interest
here, the mapping works as follows: consider a random mass given as a superposition of delta-
functions m(x) = ∑

n ηn δ(x −xn), where coordinates are ordered x1 < x2 < · · · . Matching
conditions across each impurity read ψ(x+

n ) = ψ(x−
n )e

ηn and χ(x+
n ) = χ(x−

n )e
−ηn , hence

the diagonal matrix in (1.1), while the rotation of angle θn = ε (xn+1 − xn) stands for the free
evolution between two impurities. If we consider the Dirac equation with a purely imaginary
energy ε ∈ iR, the matrix (1.2) with θ̃n = −iθn ∈ R, relates (ψ, χ̃) = (ψ,−iχ) at x−

n and
x−

n+1.2 The product�N = MN · · · M2 M1 thus controls the value of the spinor and the study
of the growth of the RMP characterizes the localisation properties of the wave function. It is
convenient to introduce the Riccati variable z(x) = −ε χ(x)/ψ(x); from Eq. (1.3), we find

d

dx
z(x) = −ε2 − z(x)2 − 2z(x)m(x). (2.1)

If the lengths �n = xn+1 − xn > 0 are either equal (lattice) or distributed with an exponential
law P(�) = ρ e−ρ�, the stochastic differential equation (SDE) defines a Markov process.
Hence,�(x−

N+1) = �N�(x
−
1 ) shows that ln ||�N || and ln |ψ(x)| are asymptotically equiv-

alent, thus their cumulants are related by γn = ρ �n . In the following we will consider the
continuum limit of the RMP problem when the random parameters are small θn = ε�n → 0
and ηn → 0, i.e. the matrices Mn are close to the identity matrix, in such a way that 〈ηn〉 = 0
and g = 〈

η2
n

〉
/ 〈�n〉 is fixed; this limit corresponds to the case where m(x) is a Gaussian white

noise with zero mean [15,21].
The SDE (2.1) must be interpreted in the Stratonovich convention as is usual in physical

problems [22]. The study of the fluctuations of the RMP can be performed by introducing

2 Note that matrices (1.2) with tanh θ̃n = e−2β Jn and ηn = βhn are tranfer matrices for the random Ising
chain with couplings Jn and magnetic fields hn [3]; a continuum approximation of the model was considered
in Ref. [5] allowing these authors to recover the Lyapunov exponent (1.5) obtained first in Ref. [20].
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the generalised Lyapunov exponent [4,7]

�(q) = lim
x→∞

ln 〈|ψ(x)|q〉
x

=
∞∑

n=1

qn

n! γn, (2.2)

which is the generating function for the cumulants of ln |ψ(x)|. In the following discussion
we focus on γ2. From the definition of the Riccati variable, we may write ln |ψ(x)| =∫ x

0 dt
[
z(t)+ m(t)

]
, hence

γ2 = g + 2 lim
x→∞

∫ x

0
dt 〈z(x) [z(t)+ m(t)]〉c . (2.3)

It is convenient to use the relation

2
∫ x

x0

dt [z(t)+ m(t)] = − ln

∣∣∣∣ z(x)

z(x0)

∣∣∣∣ +
∫ x

x0

dt

(
z(t)− ε2

z(t)

)
, (2.4)

obtained by integration of (2.1). Finally we get

γ2 = g − 〈z ln |z/ε|〉 +
∫

dzdz′ z G(z|z′)
(

z′ − ε2

z′

)
f (z′). (2.5)

The propagator is defined as

G(z|z′) =
∫ ∞

0
dx

[
Px (z|z′)− f (z)

]
(2.6)

where Px (z|z′) is the conditional probability, solution of the Fokker–Planck equation
∂x Px (z|z′) = G † Px (z|z′), and f (z) = limx→∞ Px (z|z′) is the stationary distribution of
the Riccati variable, with

G † = 2g ∂z z∂z z + ∂z(z
2 + ε2) (2.7)

being the forward generator of the diffusion (adjoint of the generator). Equation (2.5) is one
of our main results: f can be explicitly obtained as the normalisable solution of G † f = 0
and G solves

G †G(z|z′) = f (z)− δ(z − z′). (2.8)

Note that, in the derivation of the second term of (2.5), we have used the underlying supersym-
metry of the Dirac equation [16,21] f (z) = f (−ε2/z) |ε|2/z2, leading to 〈ln |z|〉 = ln |ε|.
Solving the equation for G, we can obtain an explicit representation for γ2 in terms of mul-
tiple integrals, like it is done for another subgroup of SL(2,R) in Appendix 3. We prefer to
proceed in a different manner in order to derive limiting values for γ2.

3 Universal Regime (Large Real Energy ε � g)

The large energy limit is the universal regime where SPS holds [11]: a unique scale controls
the average and the fluctuations γ2 	 γ1. The variance was explicitly calculated for this
model in Ref. [23] and coincides with the known value for the Lyapunov exponent [20],
Eq. (1.5), that saturates at high energy: γ2 	 g/2 (Fig. 2).
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Fig. 2 (Color online) Plot of the Lyapunov exponent (γ1) and the variance (γ2). The solid black line corre-
sponds to the exact result (1.5). For |ε| → 0, γ1 vanishes while the variance saturates to c = 1 − 2/π . Inset
Plot in log-linear scale showing the low energy saturation of γ2

4 Small Real Energy ε � g

The process z(x) flows through the full interval R and it is convenient to consider the variable

ζ = ∓ ln(±z/|ε|)/2 for z ∈ R± (4.1)

When z(x) goes from +∞ to 0 the process ζ(x) crosses R once, and a second time when
z(x) goes from 0 to −∞. The new process obeys the SDE

d

dx
ζ(x) = −U ′(ζ(x))+ m(x) (4.2)

for the unbounded potential

U(ζ ) = −|ε|
2

sinh 2ζ. (4.3)

Rewriting (2.5) in terms of the new variable, we get

γ2 = g − 2
〈
ζ U ′(ζ )

〉 + 8
∫

dζdζ ′ U(ζ )G(ζ |ζ ′)U(ζ ′)P(ζ ′) (4.4)

where G †P = 0 and

G †G(ζ |ζ ′) = P(ζ )− δ(ζ − ζ ′) (4.5)

for the forward generator

G † = g

2
∂2
ζ + ∂ζU ′(ζ ). (4.6)

The details of the derivation of Eq. (4.4) are given in Appendix 1. The variable ζ is appropriate
for the low energy analysis: the exponential dependence of the potential clearly illustrates the
decoupling between the “deterministic force” U ′(ζ ) and Langevin “force” m(x). We can map
the problem onto an effective free diffusion problem in the interval [ζ−, ζ+], where ζ± =
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± ln(2g/|ε|)/2. The form of U(ζ ) at infinity leads to the boundary conditions: absorption at
one boundary, P(ζ+) = 0, with reinjection of the current at the other boundary, P ′(ζ−) =
P ′(ζ+). The stationary distribution takes the approximate form

P(ζ ) 	 2(ζ+ − ζ )

(ζ+ − ζ−)2
for ζ ∈ [ζ−, ζ+] (4.7)

and the solution of Eq. (4.5) is given by

G(ζ |ζ ′) 	 2

g

{
− 1

6
(ζ+ − ζ )+ 1

3(ζ+ − ζ−)2
[
(ζ+ − ζ>)

3

+ 3(ζ< − ζ−)2(ζ+ − ζ>)+ θH(ζ
′ − ζ ) (ζ ′ − ζ )3

]}
, (4.8)

where θH(ζ ) is the Heaviside function, ζ> = max(ζ, ζ ′) and ζ< = min(ζ, ζ ′). As a check,
we recover that the Lyapunov exponent

γ1 = 2 〈U(ζ )〉 (4.9)

vanishes as

γ1 	|ε|→0

g

ln(2g/|ε|) , (4.10)

a behaviour which coincides with the asymptotic of the exact result (1.5). We easily compute
(4.4), leading to

γ2 	
ε→0

g

[
1

3
+ 1

2 ln(2g/|ε|)
]
, (4.11)

which shows the saturation of the fluctuations as ε → 0.

5 Small Complex Energy −iε � g

For complex energy ε ∈ iR, the process z(x) is trapped on R+. The SDE (4.2) still holds for
the bounded potential

U(ζ ) = |ε|
2

cosh 2ζ. (5.1)

Making use of the fact that U(ζ ) is symmetric, we can show that the representations (4.4) and
(4.9) are still valid (see Appendix 1), the stationary distribution being now an equilibrium
distribution P(ζ ) ∝ exp

[− 2 U(ζ )/g
]
. In the low energy limit, we again use the decoupling

between the deterministic force and the Langevin force: the effect of the confining potential
is now replaced by reflecting boundary conditions P ′(ζ−) = P ′(ζ+) = 0. The stationary
distribution is

P(ζ ) 	 1

ζ+ − ζ−
for ζ ∈ [ζ−, ζ+], (5.2)

thus (4.9) again leads to (4.10). The propagator takes the form

G(ζ |ζ ′) 	 2

g

{
−|ζ − ζ ′|

2
+ ζ 2 + ζ ′2

2(ζ+ − ζ−)
+ ζ+ − ζ−

12

}
(5.3)

123



Fluctuations of RMP and 1D Dirac Equation 503

and Eq. (4.4) gives

γ2 	
ε→i0

g

[
1

3
− 1

2 ln(2g/|ε|)
]
. (5.4)

This shows that, as a function of ε2, the variance γ2 is continuous around 0. Setting ε = 0, a
more direct analysis can be performed (Appendix 2) showing that

γ2 = g

(
1 − 2

π

)
	 0.363 g for ε = 0. (5.5)

The small discrepancy (∼ 8 %) is explained by the fact that the constant term in (4.11,
5.4) is sensitive to the precise position of the cutoffs ζ± of the free diffusion approximation.
Numerical calculations confirm the saturation and suggest a logarithmic behaviour, although
it is difficult to precisely fit this logarithmic correction (Fig. 2).

6 Large Complex Energy −iε � g: A Perturbative Treatment of the Stochastic
Differential Equation

In this case, it is convenient to develop a perturbative approach based on the SDE (2.1). We
perform the rescaling

z(x) = |ε| + √
g|ε| y(u) with x = u/|ε|, (6.1)

leading to

dy(u)

du
= −2 y(u)− 2 η(u)− α

[
y(u)2 + 2 y(u) η(u)

]
, (6.2)

where η(u) is a normalised Gaussian white noise,
〈
η(u)η(u′)

〉 = δ(u − u′). The perturbative
parameter is α = √

g/|ε|. Expansion of the process in powers of α, as y = y0 + y1 + y2 +· · · ,
leads to the explicit integral representations

y0(u) = −2
∫ u

0
dt e−2(u−t) η(t), (6.3)

y1(u) = −α
∫ u

0
dt e−2(u−t) [

y0(t)
2 + 2y0(t)η(t)

]
, (6.4)

y2(u) = −2α
∫ u

0
dt e−2(u−t) [y0(t)+ η(t)] y1(t), (6.5)

where transient terms have been neglected. Order zero y0(u) is the Ornstein–Uhlenbeck
process. These expressions are suitable for computing γ1 = 〈z〉 	 |ε| + √

g|ε| 〈y1(u)〉 =
|ε|+ g/2 and the correlator (2.3). The latter can be rewritten in terms of the rescaled process
as

γ2 = g

{
1 + 2

∫ ∞

0
du 〈y(u0)y(u + u0)〉c + 2〈y(u0)

∫ u0

0
du η(u)〉c

}
, (6.6)

where u0 → ∞. It is easy to see that the first non-zero contribution to this expression comes
at order α2. We then have the following expression for γ2 to lowest order in α
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γ2 = 2g

{∫ ∞

0
du

[
〈y0(u0)y2(u + u0)〉c + 〈y2(u0)y0(u + u0)〉c

+ 〈y1(u0)y1(u + u0)〉c

]
+〈y2(u0)

∫ u0

0
du η(u)〉c + O(α4)

}
. (6.7)

It is possible to compute this expression exactly. Since the process is derived from a Gaussian
white noise source, we can use Wick’s theorem to reduce all the correlation functions to prod-
ucts over two-point correlation functions. However, the full calculation is rather cumbersome.
Instead, we use the stochastic calculus functionalities of Mathematica 9.0 to derive the
values of the correlators. We have

lim
u0→∞

∫ ∞

0
du

[ 〈y0(u0)y2(u + u0)〉c + 〈y2(u0)y0(u + u0)〉c
] = 3

4
α2, (6.8)

lim
u0→∞

∫ ∞

0
du 〈y1(u0)y1(u + u0)〉c = 1

8
α2, (6.9)

lim
u0→∞〈y2(u0)

∫ u0

0
du η(u)〉c = −3

4
α2. (6.10)

Summing these three contributions, we arrive at

γ2 	
ε→i∞

g2

4|ε| . (6.11)

7 Numerical Calculations

7.1 Method

We have performed a Monte Carlo simulation of the matrix problem, i.e. of the Dirac equation
for the random mass

m(x) =
∑

n

ηn δ(x − xn), (7.1)

where the impurities are independently and uniformly dropped on the line with a mean
density ρ. This corresponds to an exponential distribution P(�) = ρ e−ρ� for the distance
�n = xn+1 − xn > 0 between consecutive impurities. The mass is uncorrelated in space,
i.e. is a non-Gaussian white noise. The limit of the Gaussian white noise considered in the
previous sections corresponds to ρ → ∞ and ηn → 0 with 〈ηn〉 = 0 and g = ρ

〈
η2

n

〉
fixed.

This is a continuum model that is easy to implement numerically.

7.1.1 Real Energy

We parametrize the spinor as � = eξ (sin�,− cos�) and study the evolution of the two
variables. Between impurities n and n + 1 we have obviously �−

n+1 − �+
n = ε�n and

ξ−
n+1 − ξ+

n = 0, where we have introduced the notation �±
n = �(x±

n ) and ξ±
n = ξ(x±

n ).
Across the impurity [24]

tan
(
�+

n

) = tan
(
�−

n

)
e2ηn (7.2)

ξ+
n − ξ−

n = 1

2
ln

[
e2ηn sin2�−

n + e−2ηn cos2�+
n

]
. (7.3)
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The norm of the RMP is identified with the norm of the spinor

ln ||�N ||�0 = ξ(x−
N+1) = 1

2
ln

[
�(x−

N+1)
†�(x−

N+1)
]
. (7.4)

7.1.2 Complex Energy

For ε ∈ iR, we write the spinor as � = eξ (sin�,−i cos�). Evolution of the two variables
due to the rotation of complex angle is [23]

tan
(
�−

n+1 + π/4
) = tan

(
�+

n + π/4
)

e2|ε|�n (7.5)

ξ−
n+1 − ξ+

n = 1

2
ln

[
cos 2�+

n /cos 2�−
n+1

]
. (7.6)

Evolution across an impurity are similar to the case of real energy.

7.2 The Saturation of γ2 for ε → i∞ when m(x) is a Non-Gaussian White Noise

For large but finite density ρ we show that the fluctuations saturate for large complex energy
|ε|  ρ. Expansion of the previous equations in the limit |ε|�n → ∞ gives ξ−

n+1 − ξ−
n =

|ε| �n + ln cosh ηn + O(e−2|ε|�n−1) + O(e−2|ε|�n ) . We deduce the following representation
for the process ξ(x)

ξ(x) = |ε|x +
N (x)∑
n=1

ln cosh ηn + O
(
ρ

|ε|ρx

)
(7.7)

where N (x) is the number of impurities on the interval [0, x]. N (x) is a Poisson process
and ξ(x) a compound Poisson process (see for instance the introduction of Ref. [25] and
references therein). Using standard properties of compound Poisson processes, we obtain

γ1 = lim
x→∞

ξ(x)

x
	 |ε| + ρ 〈ln cosh ηn〉 (7.8)

γ2 = lim
x→∞

Var(ξ(x))

x
	 ρ

〈
ln2 cosh ηn

〉
(7.9)

(note that the cumulants of ξ(x) involves the moments of the jump amplitudes). Hence for
|ε|  ρ with ηn � 1 we obtain γ1 	 |ε| + ρ

〈
η2

n

〉
/2 = |ε| + g/2 and γ2 	 ρ

〈
η4

n

〉
/4.

7.3 Results

As a first check, we compare the Lyapunov exponentγ1 obtained from the procedure explained
above with the analytical expression (1.5): green dots and black continuous line on Fig. 2,
respectively. The agreement is excellent.

For large real energy we see on the figure that γ2 saturates at the same value as γ1 (SPS).
For small energy, |ε| → 0, the inset of Fig. 2 shows the logarithmic behaviours.

The behaviour (6.11) is more difficult to observe as it is a property of the Dirac equation
when the mass m(x) is a Gaussian white noise. The numerical simulation is performed for
a non-Gaussian white noise, Eq. (7.1), which leads to a saturation of the fluctuations, as
explained in paragraph 7.2. For this reason, the power law decay (6.11) is only obtained in
an intermediate range of energy g � |ε| � ρ (Fig. 3), and we observe the saturation for
|ε|  ρ. Choosing weights distributed according to a symmetric exponential law like in
Ref. [21], the saturation value is γ2 	 ρ

〈
η4

n

〉
/4 = 3g2/(2ρ), in agreement with the numerics

(black dotted lines in Fig. 3).
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. The saturation values are

γ2 	 3g2/2ρ (dotted lines). The crossover between the two behaviours takes place at a scale |ε| ∼ ρ

8 Localisation

8.1 Low Energy Localisation

The saturation of the fluctuations concomitant with the vanishing of the Lyapunov exponent
has important consequences for the localisation. While the Lyapunov exponent is usually
introduced as a measure of the localisation (see the monographs [3,26] or the review [21]),
for a given small energy |ε| � g, the fluctuations dominate

√
γ2x � γ1x for x � ξε = (1/g) ln2(g/|ε|),

i.e. on a scale ξε much larger than the inverse Lyapunov exponent 1/γ1 ∼ (1/g) ln(g/|ε|).
The scale ξε has appeared in other studies: in the average Green’s function [20] (see discussion
and references in Ref. [27]), in the distribution of the distances between consecutive nodes of
the wave function [18], or in the boundary sensitive average local [28] and global density of
states [18] (Thouless criterion). This is a new indication that the Lyapunov exponent cannot
be interpreted as the inverse localisation length in this case [18,21].

8.2 Band Center Anomaly

The standard weak disorder expansion for the tight-binding (Anderson) model

− t ϕn+1 + Vn ϕn − t ϕn−1 = ε ϕn (8.1)

is known to break down at the band center (ε = 0) [29,30]. Whereas the standard expan-
sion gives [3,31] γ1 	 a

〈
V 2

n

〉
/(8t2 sin2 κ) at ε = −2t cos κ for uncorrelated poten-

tials Vn (a is the lattice spacing), the correct behaviour in the band center is γ1 =
a [�(3/4)/�(1/4)]2

〈
V 2

n

〉
/t2 + O(ε) [31]. This small difference, 0.125 versus 0.114.., and
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those of other physical quantities, have been referred to as band center “anomalies” 3. This
phenomenon may be easily analysed within our continuum description: the continuum limit
of the Anderson model (8.1) near the band center (ε → 0) is the random Dirac equation [32]

[−iσ3 ∂x + V0(x)+ σ1 Vπ (x)] �̃(x) = ε �̃(x) (8.2)

(for 2at = 1), where V0(x) and Vπ (x) describe forward and backward (umklapp) scattering,
respectively. This makes it clear that the disorder cannot be treated perturbatively for ε = 0.
After a rotation

� = 1√
2
(1 − iσ1) �̃ (8.3)

and choosing V0(x) = ∑
n vn δ(x−xn) and Vπ (x) = ∑

n ηn δ(x−xn), this disordered model
can be described by transfer matrices (1.1), by setting the angles θn = ε (xn+1 − xn) − vn .
For ε = 0, the Lyapunov exponent in the continuum limit is expressed in terms of elliptic
integrals (this case was considered in Sect. 6 of Ref. [15]):

γ1 = g

[
1

k2

(
E(k)
K(k)

− 1

)
+ 1

]
with k = 1√

1 + g0/g
(8.4)

where g = ρ
〈
η2

n

〉
and g0 = ρ

〈
v2

n

〉
. For uncorrelated site potentials, 〈Vn Vm〉 ∝ δn,m , we

have g0 = g; Eq. (8.4) with k = 1/
√

2 leads to γ1 = g [2�(3/4)/�(1/4)]2, in perfect
correspondence with the result of Ref. [31]. γ2 at the band center was found in Ref. [13] where
it was shown that the anomaly is small, γ2/γ1 	 1.047. On the other hand, the suppression
of forward scattering 4 (g0 � g) leads to the model studied in the present paper with a strong
anomaly γ2/γ1 ∼ ln(g/g0) at ε = 0 and γ2/γ1 ∼ ln(g/|ε|) for g0 � |ε| � g, Fig. 4 (the
value of γ2 for finite g0 � g is deduced from a continuity assumption). Our continuous
description thus makes clear how one can tune the band center anomaly by adjusting the
relative magnitude of forward and backward scattering.

9 Conclusion

In this paper we have characterized the statistical properties of random matrix products
�N = MN · · · M2 M1 for two subgroups of SL(2,R), by making use of the fact that, for a
certain choice of the distribution of the angles in (1.1) and (1.2), ln ||�N || can be simply
expressed in terms of a Markov process [15]. We have deduced the variance explicitly; the
integral representations Eqs. (2.5, 4.4) were demonstrated to be convenient for extracting
limiting behaviours. Following Ref. [7] and making use of (2.4), the generalised Lyapunov
exponent (2.2) may be obtained as the largest eigenvalue of the operator G † +q (z −ε2/z)/2.
The cumulants can be obtained by using the perturbative method used in Refs. [13,33],
however, apart from γ1, this leads to integral representations that seem less convenient to
handle. We have also obtained an integral representation similar to (2.5) in the case of two
other particular subgroups of SL(2,R) (see Appendix 3), corresponding to the model studied

3 As shown in Ref. [31], the occurence of anomalies is not specific to the band center but is an effect of
commensurability.
4 In the Anderson model, forward and backward scattering may be adjusted as follows: one considers random
potentials Vn = V0(na) + (−1)n Vπ (na), where V0(x) and Vπ (x) are two independent random functions
varying smoothly at the scale of the lattice spacing a. Forward scattering is controlled by the strength g0 of
V0(x) whereas backward scattering is due to anti-correlation of nearest neighbour potentials, described by
Vπ (x) with strength g.
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Fig. 4 (Color online) The ratio
of the two first cumulants for the
random mass Dirac model
presents a logarithmic divergence
for |ε| → 0
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in Ref. [33]. It remains a challenging issue to obtain a resolution of this problem, in the spirit
of the general classification of Lyapunov exponents provided recently in Ref. [15].

Acknowledgments We acknowledge stimulating discussions with Alain Comtet, Bernard Derrida, Thierry
Jolicoeur and Satya Majumdar, and a helpful suggestion of Anupam Kundu.

Appendix 1: Details of the Derivation of Eq. (4.4)

ε2 > 0

For real energy, we see from the SDE (2.1) that the process z(x) flows towards R. We have
introduced the change of variable ζ = ∓ ln(±z/|ε|)/2 for z ∈ R±, implying that the new
process ζ(x) crosses R twice when z(x) does once. Hence the change of variable maps the
SDE (2.1) onto the couple of SDEs

d

dx
ζ = |ε| cosh 2ζ ± m(x) = −U ′±(ζ )+ √

g η(x). (10.1)

In the main text we used 〈m(x)〉 = 0 and the local nature of the mass correlation to disregard
the sign. Here we consider for the moment the general case 〈m(x)〉 = μ g and introduce
a couple of potentials U±(ζ ) = −(|ε|/2) sinh 2ζ ∓ μζ related to the cases z(x) > 0 and
z(x) < 0, respectively. η(x) is a normalised Gaussian white noise with zero mean. The
process is characterised by two stationary distributions P±(ζ ), each normalized, related to
f (z) for z ∈ R±. For example, the Lyapunov exponent is given by [16]

γ1 = 〈z + m(x)〉 = μg + |ε|
2

[∫
dζ P+(ζ ) e−2ζ −

∫
dζ P−(ζ ) e+2ζ

]
. (10.2)

Now considering the case μ = 0 for which P+ = P−, leads to γ1 = −|ε| 〈sinh 2ζ 〉, i.e.

γ1 = 2 〈U(ζ )〉 . (10.3)

Fluctuations may be discussed in a similar way. A crucial observation is that, in the original
SDE (2.1), the diffusion effectively vanishes at z = 0, implying the absence of correlations
between the process at coordinates x and x ′ associated to z(x) > 0 and z(x ′) < 0. It follows
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that the contributions of the fluctuations related to the two intervals z ∈ R+ and z ∈ R−
simply add. The second term of (2.5) takes the form

1

2

( ∫
dζdζ ′ |ε|e−2ζG+(ζ |ζ ′) (−2|ε|) sinh 2ζ ′ P+(ζ ′)

+
∫

dζdζ ′ (−|ε|)e+2ζG−(ζ |ζ ′) (−2|ε|) sinh 2ζ ′ P−(ζ ′)
)
.

For μ = 0 we have G+ = G− leading to Eq. (4.4).

ε2 < 0

For imaginary energy the analysis is slightly different: the process z(x) is trapped on R+ and
ζ(x) does not flow across R. The change of variable is simply ζ = −(1/2) ln(z/|ε|). The
new process is trapped by the potential well U(ζ ) = (|ε|/2) cosh 2ζ − μζ . The equilibrium
distribution is P(ζ ) ∝ exp

[ − (2/g)U(ζ )]. When μ = 0 the potential is symmetric. We can
symmetrize the expression γ1 = |ε| 〈e−2ζ

〉
, leading to γ1 = |ε| 〈cosh 2ζ 〉, i.e. again to (10.3).

Eq. (2.5) leads to

γ2 = g + 2|ε| 〈ζ e−2ζ 〉 + 2|ε|2
∫

dζdζ ′ e−2ζ G(ζ |ζ ′) cosh 2ζ ′ P(ζ ′). (10.4)

The second term can be obviously symmetrized, which gives the second term of (4.4). Sym-
metrization of the third integral term works as follows: the propagator may be decomposed
over the left/right eigenvectors of the forward generator G † as

G(ζ |ζ ′) =
∑
n>0

�R
n (ζ )�

L
n (ζ

′)
En

(10.5)

where G †�R
n (ζ ) = −En�

R
n (ζ ) and G�L

n (ζ ) = −En�
L
n (ζ ). Because the potential U(ζ )

is symmetric, the eigenvectors have a symmetry property �L/R
n (−ζ ) = (−1)n�L/R

n (ζ ).
Integration over ζ ′ in (10.4) selects only the contributions of even eigenvectors which allows
one to symmetrize the integrand with respect to ζ → −ζ , leading to Eq. (4.4).

It is remarkable that despite the dynamics of the process ζ(x) being quite different for
real and imaginary ε, we have found a unique representation for both γ1, Eq. (4.9), and γ2,
Eq. (4.4), expressed in terms of the potential U(ζ ).

Appendix 2: Direct Calculation of γ2 for ε = 0

The study of the case ε = 0 shows some subtlety related to the choice of the norm of the
matrix. In the usual case, the statistical properties of the RMP are independent of the precise
definition of the norm [2,4]. Bougerol and other authors propose

||M || = Sup{|Mx |, x ∈ R
2, |x | = 1} (10.6)

where |x | is the norm on the vector space.
In the numerical calculation, we have parametrized the spinor as� = eξ (sin�,− cos�),

in the spirit of the phase formalism [26], and study the statistical properties of ξ(x) =
(1/2) ln

[
�(x)†�(x)

]
, usually setting�(0) = �0 = 0. Let us discuss the general case where

�0 may differ from 0. Since �(x−
N+1) = �N�(x

−
1 ), the numerical procedure corresponds

to considering the norm
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||�N ||�0 = |�N�0| with �0 =
(

sin�0

− cos�0

)
, (10.7)

i.e. ξ(x−
N+1) = ln ||�N ||�0 . We also introduce another possible definition of the norm

|||�N ||| =
∫

|�0|=1
d�0 ||�N ||�0 , (10.8)

closer to the spirit of (10.6).
For ε = 0, the matrix product�N can be studied rather directly: the angles vanish θn = 0

and the matrices Mn commute. Hence we can write

�N =
(

e� 0

0 e−�

)
with � =

N∑
n=1

ηn . (10.9)

The distribution of the random variable � is given by the central limit theorem: 〈�〉 =
ρx 〈ηn〉 = 0 and Var(�) = ρx

〈
η2

n

〉 = gx (we consider that x is fixed and N fluctuates with
〈N 〉 = ρx). We have

ln ||�N ||�0 = 1

2
ln [cosh 2�− cos 2�0 sinh 2�] . (10.10)

We examine first the particular case�0 = 0, leading to ln ||�N ||�0 = −�. We immediatly
deduce that

〈
ln ||�N ||�0

〉 = 0 and Var(ln ||�N ||�0) = gx , which would lead to γ1 = 0 and,
incorrectly, to γ2 = g. The choice �0 = π/2 leads to a similar conclusion. This reflects the
statistical properties of the two particular zero energy solutions(

1
0

)
e
∫ x dx ′ m(x ′) and

(
0
1

)
e− ∫ x dx ′ m(x ′) (10.11)

selected by the choices �0 = π/2 and �0 = 0, respectively.
We now consider the case of an arbitrary initial vector, with�0 /∈ {0, π/2}. In the N → ∞

limit, the large� behaviour of the norm is selected: ln ||�N ||�0 	 |�|+θH(�) ln | sin�0|+
θH(−�) ln | cos�0|. Some algebra gives, for gx  1,

〈
ln ||�N ||�0

〉 	
√

2gx

π
+ 1

2
ln

∣∣∣∣1

2
sin 2�0

∣∣∣∣ (10.12)

and

Var(ln ||�N ||�0) 	 gx

(
1 − 2

π

)
+ 1

4
ln2 | tan�0|. (10.13)

Note that the average value is reminiscent of the average of the logarithm of the transmission
probability [27] (this calculation was first performed in Ref. [34] in another context). Inter-
estingly, the behaviours (10.12, 10.13) were shown to persist in a quasi-1D situation with an
odd number of channels (see the review [35] and references therein). We obtain

γ1 = 0 (10.14)

γ2 = g

(
1 − 2

π

)
= g × 0.363380... (10.15)
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We can easily repeat this calculation with the second norm. Averaging of (10.10) over the
angle �0 gives

|||�N ||| = 2e|�|

π
E

(√
1 − e−4|�|

)
, (10.16)

where E(k) is the elliptic integral [36]. We deduce the asymptotic behaviours ln |||�N ||| 	
(3/4)�2 for |�| � 1 and ln |||�N ||| 	 |�| − ln(π/2) for |�|  1, leading again to (10.14,
10.15).

In conclusion: for ε �= 0, the calculation of the cumulants γn is insensitive to the precise
definition of the norm, i.e. to the precise choice of the initial spinor. In the Monte Carlo
simulation, we have chosen �0 = 0 in order to set a Dirichlet boundary condition for the
first component of the spinor. On the other hand, setting ε = 0, the behaviour of γ2 as a
function of �0 presents two discontinuities precisely at 0 and π/2. We understand these
singular values as resulting from a lack of ergodicity in the matrix space when considering
the Abelian subgroup describing the case ε = 0. Hence, the value g found for �0 = 0 or
π/2 should not be taken as the correct result.

Appendix 3: Two Other Subgroups of Random Matrices of SL(2, R)

It is well-known that the random Kronig–Penney model
[ − ∂2

x + ∑
n vn δ(x − xn)

]
ψ(x) =

E ψ(x) for energy E = k2 is controlled by transfer matrices of the form

Mn =
(

cos θn − sin θn

sin θn cos θn

) (
1 un

0 1

)
(10.17)

where θn = k (xn+1 − xn) > 0 and un = vn/k. The Schrödinger equation with negative
energy E = −k2 involves matrices of the form [16]

Mn =
(

cosh θn sinh θn

sinh θn cosh θn

) (
1 un

0 1

)
(10.18)

with the same definitions for θn and un .
The study of the continuum limit, �n → 0 and vn → 0 with 〈vn〉 = 0 and σ = 〈

v2
n

〉
/ 〈�n〉

fixed can be done along the same lines as in the paper. In this more simple case, the Riccati
variable z(x) = ψ ′(x)/ψ(x) obeys the SDE z′(x) = −E − z(x)2 + V (x). In the continuum
limit V (x) is a Gaussian white noise of variance σ and the process is characterised by the
(backward) generator G = (σ/2)∂2

z − (E + z2)∂z . We arrive at

γ2 = 2
∫

dzdz′ z G(z|z′) z′ f (z′) (10.19)

where

f (z) = 2N

σ
f0(z)

∫ z

−∞
dt

f0(t)
with f0(z) = e− 2

σ
U(z) (10.20)

is the stationary distribution, involving the potential U(z) = Ez + (1/3)z3 and the integrated
density of states N (E), given in Ref. [37] for instance (also recalled in Ref. [25]). The
equation

G †G(z|z′) = f (z)− δ(z − z′) (10.21)
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for the propagator can be solved:

G(z|z′) = 1

N (E)

{
f (z)

[
c(z′)+

∫ z

−∞
dt f (t)

]
− f0(z)

∫ z

−∞
dt

f (t)2

f0(t)
+ f0(z>) f (z<)

f0(z′)

}
(10.22)

where

c(z′)+ 1

2
= σ

2N (E)

[∫ +∞

−∞
dz′′ f (z′′)2 f (−z′′)− f (−z′) f (z′)

]
−

∫ z′

−∞
dz′′ f (z′′).

(10.23)

We can analyse the limiting behaviours of the variance (10.19). In the high energy regime,
k = √

E  σ 1/3 we obtain the expansions

f (z) = k/π

z2 + k2 + σk

π

z

(z2 + k2)3
+ O(σ 2) (10.24)

(recall that N (E) = k/π + O(σ 2)) and

G(z|z′) =
[

1

z2 + k2 + σ
z

(z2 + k2)3

]
�(z, z′)

+ 3σ

16πk3

(
1

z2 + k2 − 4k4

(z2 + k2)3

)
+ θH(z − z′)

z′2 + k2

f0(z)

f0(z′)
+ O(σ 2) (10.25)

where

�(z, z′) = 1

2
sign(z′ − z)+ 1

π

[
arctan(z/k)− arctan(z′/k)

]
. (10.26)

When introducing these expressions in (10.19), the term O(σ 0) seems at first sight loga-
rithmically divergent but is eliminated by symmetry (i.e. integrals must be understood as
principal parts). We get

γ2 = kσ

π

∫
dz

z2

[U ′(z′)]3 + O(σ 2) = σ

8E
+ O(σ 2) (10.27)

i.e. we have recovered the asymptotic relation γ2 	 γ1 for E → ∞ (SPS).
For E = 0, the fluctuations are finite γ2 = c̃ σ 1/3 where c̃ is a dimensionless constant of

order unity (calculated explicitly in Ref. [33]). γ2 is maximum for a negative value of the
energy, however the numerics shows that the ratio γ2/γ1 reaches its maximum at E = 0
(Fig. 5).

The limit k = √−E  σ 1/3 is more easy to handle. In this case the potential U(z)
develops a deep well at z = k, where the process is most of the “time” trapped. This
dominates the fluctuations, which are those of the Ornstein–Uhlenbeck process,

γ2 	
E→−∞

σ

4(−E)
. (10.28)

The fluctuations thus decay faster as energy decreases than in the Dirac case studied in the
paper, since the relation between the two models involves the mapping E ↔ ε2. Recalling
that γ1 	 √−E in this case shows that γ2 � γ1 (no SPS).

Monte Carlo simulations are in perfect agreement with these behaviours (see Fig. 5).
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Fig. 5 (Color online) Left Plot of the Lyapunov exponent (red circles) and the variance (blue squares) for
σ = 1 obtained by Monte Carlo simulations. Comparison with limiting behaviours (10.27) and (10.28) (dashed
black lines). Right SPS, γ2/γ1 	 1, holds for E  σ 2/3

The problem considered in this appendix was studied earlier in Refs. [33,38] in another
context and with a different method: the generalised Lyapunov exponent (2.2) is obtained as
the largest eigenvalue of the operator G † + qz [7]. The perturbative treatment [33] gives an
integral representation

γ2 = 2
∫

dz (z − γ1) ϕ1(z) (10.29)

where

ϕ1(z) = N

(
2

σ

)2

f0(z)
∫ z

−∞
dz′

f0(z′)

∫ z′

−∞
dz′′ (γ1 − z′′) f0(z

′′)
∫ z′′

−∞
dz′′′

f0(z′′′)
. (10.30)

Although it is not straightforward to prove the equivalence between (10.19) and (10.29), they
seem to give similar results (see Fig. 1 of Ref. [33]).
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