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In this supplementary material we provide additional details related to the critical branching
Brownian motion discussed in our Letter.

I. NUMBER OF PARTICLES IN THE SYSTEM

P (n, t) is defined as the probability that there are n
particles in the system at time t, starting from a single
particle at x = 0 at time t = 0. The normalization
condition is

∞∑
n=0

P (n, t) = 1. (1)

In order to derive the evolution equation for this
quantity we use the backward Fokker-Planck (BFP)
approach. We split the time interval [0, t+ ∆t] into two
subintervals: [0,∆t] and [∆t, t + ∆t]. We then look at
the contribution of the terms generated at the first time
step to the probability P (n, t+∆t) at the final time step.
In the first time interval [0,∆t], the particle at x = 0 can:

A) branch into two walks with probability b∆t, result-
ing in two particles that give rise to r and n− r particles
at time t + ∆t respectively. The contribution from this
branching term is then b∆t

∑n
r=0 P (r, t)P (n− r, t).

B) die with a probability d∆t, leading to no particles
at subsequent times, only contributing to P (n = 0, t).
The contribution from this term is thus d∆tδn,0.

C) diffuse with probability 1 − (b + d)∆t, with the
single particle at time step ∆t giving rise to n particles
at time step t + ∆t. The contribution from this term is
thus (1− (b+ d)∆t)P (n, t).

Adding the contribution from these terms, we have

P (n, t+ ∆t) = δn,0d∆t+ (1− (b+ d)∆t)P (n, t)

+b∆t

n∑
r=0

P (r, t)P (n− r, t). (2)

Expanding the above equation and taking the limit ∆t→

∗kabir.ramola@u-psud.fr
†majumdar@lptms.u-psud.fr
‡gregory.schehr@lptms.u-psud.fr

0, we obtain

dP (n, t)

dt
= δn,0d−(b+d)P (n, t)+b

n∑
r=0

P (r, t)P (n−r, t).

(3)
At the critical point b = d, this becomes

dP (n, t)

dt
= b

(
δn,0 − 2P (n, t) +

n∑
r=0

P (r, t)P (n− r, t)

)
.

(4)
In order to solve this equation we introduce the generat-
ing function

P(λ, t) =

∞∑
n=0

λnP (n, t). (5)

This evolves in time according to

dP(λ, t)

dt
= b (P(λ, t)− 1)

2
, (6)

with the initial condition P (n, 0) = δn,1 which translates
to P(λ, 0) = λ. Solving the above equation we find

P(λ, t) = 1 +
1

1/(λ− 1)− bt
, (7)

from which we extract the individual probabilities

P (0, t) =
bt

1 + bt
,

P (n ≥ 1, t) =
(bt)n−1

(1 + bt)n+1
, (8)

which is Eq. (1) in the main text.

II. STATISTICS OF THE RIGHTMOST
PARTICLE

A. Backward Fokker-Planck equation for Q(n;x, t)

Q(n;x, t) is defined as the probability that starting
with one particle at position x = 0 at time t = 0, there
are n ≥ 1 particles in the system at time t, with all
of them lying to the left of x. To derive the evolution
equation for this quantity, we use the BFP approach as
in Section I. In the time interval [0,∆t], the particle at
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x = 0 can:

A) split with probability b∆t, resulting in two
particles that give rise to r ≥ 1 and n − r ≥ 1
particles at time t + ∆t respectively, with all the
particles lying to the left of x. Either of these par-
ticles can also give rise to no particles at the final
time with the other process giving rise to n particles.
The contribution from the branching term is then
b∆tP (0, t)Q(n;x, t) + b∆t

∑n−1
r=1 Q(r;x, t)Q(n− r;x, t).

B) die with a probability d∆t. Since there are no
particles at subsequent times this does not contribute to
the probability Q(n;x, t+ ∆t).

C) diffuse with probability 1 − (b + d)∆t, mov-
ing a distance ∆x = η(0)∆t in the first time step.
This shifts the process by a distance ∆x at the first
time step. The contribution from this term is then
(1− (b+ d)∆t) 〈Q(n;x − η(0)∆t, t)〉η(0). Here, and
in the following, 〈. . .〉η(0) denotes an average over all
possible values of the diffusive jump at the first time step.

Adding the contribution from these terms, we have

Q(n;x, t+ ∆t) = (1− (b+ d)∆t) 〈Q(n;x− η(0)∆t, t)〉η(0)

+2b∆tP (0, t)Q(n;x, t) + b∆t

n−1∑
r=1

Q(r;x, t)Q(n− r;x, t).

(9)

Using the properties of the Brownian noise

〈η(0)〉 = 0,

〈η(t)η(t′)〉 = 2Dδ(t− t′), (10)

we can Taylor expand Eq. (9) up to second order in ∆t,
and arrive at

∂Q(n;x, t)

∂t
= D

∂2Q(n;x, t)

∂x2
− (b+ d)Q(n;x, t)

+2bP (0, t)Q(n;x, t) + b

n−1∑
r=1

Q(r;x, t)Q(n− r;x, t). (11)

At the critical point b = d, this equation reduces to

∂Q(n;x, t)

∂t
= D

∂2Q(n;x, t)

∂x2
− 2bQ(n;x, t)

+2bP (0, t)Q(n;x, t) + b

n−1∑
r=1

Q(r;x, t)Q(n− r;x, t) ,(12)

which is Eq. (2) in the main text. Using the expression
in Eq. (8) for the value of P (0, t) = bt/(1 + bt) at the
critical point, we arrive at

∂Q(n;x, t)

∂t
= D

∂2Q(n;x, t)

∂x2
− 2b

1 + bt
Q(n;x, t)

+b

n−1∑
r=1

Q(r;x, t)Q(n− r;x, t). (13)

B. Exact expression for n = 1

Using Eq. (13), we have the following evolution equa-
tion for n = 1

∂Q(1;x, t)

∂t
= D

∂2Q(1;x, t)

∂x2
− 2b

1 + bt
Q(1;x, t), (14)

with the initial condition

Q(1;x, 0) = Θ(x), (15)

where Θ(x) is the Heaviside step function. We make the
transformation

Q(n;x, t) = e−
∫
dt 2b

1+btQ◦(n;x, t) =
1

(1 + bt)2
Q◦(n;x, t).

(16)

This transformation is used several times in the subse-
quent discussions (we use the convention that the super-
script ◦ denotes a multiplication by the factor (1 + bt)2).
This removes the linear term in Eq. (14). We therefore
have

∂Q◦(1;x, t)

∂t
= D

∂2Q◦(1;x, t)

∂x2
. (17)

We recall here that the general diffusion equation with a
time-dependent source term

∂

∂t
f(x, t) = D

∂2

∂x2
f(x, t) + s(x, t), (18)

can be solved as

f(x, t) =

∫ ∞
−∞

dx′√
4πDt

exp

(
− (x− x′)2

4Dt

)
f(x′, 0) (19)

+

∫ t

0

dt′√
4πD(t− t′)

∫ ∞
−∞

dx′ exp

(
− (x− x′)2

4D(t− t′)

)
s(x′, t′).

We use this expression to solve Eq. (17) (which is a
simple diffusion equation without a source). The initial
condition is Q◦(1;x, 0) = Θ(x). We then have

Q◦(1;x, t) =

∫ ∞
−∞

dx′√
4πDt

exp

(
− (x− x′)2

4Dt

)
Q◦(1;x′, 0)

=

∫ ∞
0

dx′√
4πDt

exp

(
− (x− x′)2

4Dt

)
=

1

2
erfc

(
−x√
4Dt

)
. (20)

where erfc(z) = 2√
π

∫∞
z

exp(−t2)dt is the complementary

error function. The probability conditioned on the fact
that there is one particle in the system is then

Q(x, t|1) =
Q(1;x, t)

P (1, t)
=

1

(1 + bt)2
Q◦(1;x, t)

P (1, t)

=
1

2
erfc

(
−x√
4Dt

)
. (21)

Above we have used the fact that P (1, t) = 1/(1 + bt)2

from Eq. (8).
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C. Exact expression for n = 2

Using Eq. (13), Q(2;x, t) evolves according to

∂Q(2;x, t)

∂t
= D

∂2Q(2;x, t)

∂x2
− 2b

1 + bt
Q(2;x, t)

+b (Q(1;x, t))
2
. (22)

Using the transformation in Eq. (16) we have

∂Q◦(2;x, t)

∂t
= D

∂2Q◦(2;x, t)

∂x2
+

b

(1 + bt)2
(Q◦(1;x, t))2.

(23)

Using Eq. (19) and the initial condition Q(2;x, 0) = 0
(since there is only one particle in the system at t =
0), we arrive at the following exact expression for the
conditional probability

Q(x, t|2) =
Q(2;x, t)

P (2, t)
=(

1 + bt

bt

)∫ t

0

bdt′

(1 + bt′)2

∫ ∞
−∞

dx′
1√

4πD(t− t′)
×

exp

(
− (x− x′)2

4D(t− t′)

)
1

4
erfc2

(
− x′√

4Dt′

)
. (24)

We have used P (2, t) = bt/(1 + bt)3 from Eq. (8) above.
In order to analyze the large time behavior of this ex-
pression, we make the following change of variables

z =
x√
4Dt

with

{
x′ = xξ,

t′ = tτ,

We then have the following expression in terms of the
scaled variables

Q(x, t|2) =

(
1 + bt

bt

)(z
t

)
×[ ∫ 1

0

bdτ

( 1
t + bτ)2

∫ ∞
−∞

dξ exp

(
−z2 (1− ξ)2

(1− τ)

)
1√

π(1− τ)

1

4
erfc2

(
−z ξ√

τ

)]
.

(25)

The major contribution to this integral arises from the
the region τ → 0. Here, the 1

t in the denominator acts
as a regularization parameter. In order to estimate this
integral we break up the τ integral into a divergent part
[0, ε] which diverges as

(
t
z

)
at large times, and a regular

part [ε,∞] that converges for all ε > 0. The contribution
from the divergent term can be estimated as follows. For
small ε we can expand the complementary error function
as

1

4
erfc2

(
−z ξ√

τ

)
= Θ(ξ) +O

(
exp

(
−ξ z√

ε

))
. (26)
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FIG. 1: Plot of Q(x, t|2) computed from the integral given in
Eq. (25) for different values of t, showing the convergence to
the long time behavior of Eq. (28).

We can then easily perform the integral over ξ. We then
have, for large t

Q(x, t|2) ∼
(

1

t

)[∫ ε

0

bdτ

( 1
t + bτ)2

1

2
erfc

(
− z√

1− τ

)]
.(27)

Taking the limit ε→ 0 gives us the desired result at large
times t

Q(x, t|2) =
1

2
erfc

(
− x√

4Dt

)
. (28)

We can also numerically integrate the expression for
Q(x, t|2) to obtain the behavior at large times. In Fig. 1
we plot the integral given in Eq. (24) for different values
of t, showing the convergence to the long time behavior
of Eq. (28).

D. Asymptotic behavior for n ≥ 1

For general n ≥ 1 we have the following evolution equa-
tion (Eq. 13, which we repeat below)

∂Q(n;x, t)

∂t
= D

∂2Q(n;x, t)

∂x2
− 2b

1 + bt
Q(n;x, t)

+b

n−1∑
r=1

Q(r;x, t)Q(n− r;x, t). (29)

Using the transformation in Eq. (16) we have

∂Q◦(n;x, t)

∂t
= D

∂2Q◦(n;x, t)

∂x2

+
b

(1 + bt)2

n−1∑
r=1

Q◦(r;x, t)Q◦(n− r;x, t). (30)
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Using Eqs. (8) and (16), the probability conditioned on
the number of particles n can be expressed as

Q(x, t|n) =
Q(n;x, t)

P (n, t)
=

(
1 + bt

bt

)n−1
Q◦(n;x, t). (31)

The equation for the evolution of Q(x, t|n) is then

∂

∂t

((
bt

1 + bt

)n−1
Q(x, t|n)

)
=

(
bt

1 + bt

)n−1
D
∂2Q(x, t|n)

∂x2
+

(
bt

1 + bt

)n−2
b

(1 + bt)2

n−1∑
r=1

Q(x, t|r)Q(x, t|n− r).

Simplifying the above equation leads to

∂Q(x, t|n)

∂t
+

n− 1

t(1 + bt)
Q(x, t|n) = D

∂2Q(x, t|n)

∂x2

+
1

t(1 + bt)

n−1∑
r=1

Q(x, t|r)Q(x, t|n− r), (32)

which is Eq. (3) described in the main text. Q(x, t|n)
satisfies the boundary conditions

Q(x, t|n) = 1 for x→∞,
= 0 for x→ −∞, (33)

and is bounded as 0 < Q(x, t|n) < 1 in the domain
(−∞,∞). Thus, in the large time limit Q(x, t|n) obeys
the simple diffusion equation

∂Q(x, t|n)

∂t
= D

∂2Q(x, t|n)

∂x2
, (34)

which has the solution

Q(x, t|n) =
1

2
erfc

(
−x√
4Dt

)
. (35)

Note: Although the initial condition Q(n;x, 0) = 0 for
n > 1, the initial condition for the conditional probability
is Q(x, 0|n) = Θ(x).

III. GAP STATISTICS

A. One Particle Case

1. Backward Fokker-Planck equation for P (1;x, t)

P (1;x, t) is defined as the joint probability distribution
function (PDF) that there is one particle in the system
at time t, which is at position x. To derive the evolution
equation for this quantity we use the BFP approach.
In the first time interval [0,∆t], the particle at x = 0 can:

A) split into two particles with probability b∆t with
one branch giving rise to the single particle at the final

time and the other giving rise to no particles. The
contribution from this term is then 2b∆tP (0, t)P (1;x, t).

B) die with a probability d∆t, leading to no particles
at subsequent times and thus not contributing to the
probability P (1;x, t).

C) diffuse with probability 1 − (b + d)∆t moving a
distance ∆x = η(0)∆t, with the single particle at time
step ∆t giving rise to one particle at time step t + ∆t
at position x. The contribution from this term is thus
(1− (b+ d)∆t)P (1;x− η(0)∆t, t)〉η(0).

Adding the contribution from the different terms we
arrive at

P (1;x, t+ ∆t) = 2b∆tP (0, t)P (1;x, t) +

(1− (b+ d)∆t) 〈P (1;x− η(0)∆t, t)〉η(0). (36)

Expanding the above equation up to second order in ∆t,
using the properties of the noise in Eq. (10) and taking
the limit ∆t → 0, we arrive at the following evolution
equation for the PDF (for b = d)

∂

∂t
P (1;x, t) = D

(
∂

∂x

)2

P (1;x, t)−
(

2b

1 + bt

)
P (1;x, t).

(37)
Above we have used the expression P (0, t) = bt/(1 + bt)
from Eq. (8).

2. Exact Solution

Following Eq. (16), we make the transformation

P (1;x, t) =
1

(1 + bt)2
P ◦(1;x, t), (38)

leading to

∂

∂t
P ◦(1;x, t) = D

(
∂

∂x

)2

P ◦(1;x, t). (39)

Using Eq. (19) and the fact that P ◦(1;x, 0) = δ(x) we
have

P (1;x, t) =
1

(1 + bt)2
1√

4πDt
exp

(
− x2

4Dt

)
. (40)
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This is Eq. (4) in the main text. This can also be arrived
at by using the relation

P (1;x, t) =
∂

∂x
Q(1;x, t). (41)

Inserting the expression from Eq. (20) for Q(1;x, t) in
the above equation, we recover the solution in Eq. (40).
The PDF of the position of the particle conditioned on
the fact that there is one particle in the system is then

P (x, t|1) =
P (1;x, t)

P (1, t)
=

1√
4πDt

exp

(
− x2

4Dt

)
, (42)

where we have used P (1, t) = 1/(1 + bt)2 from Eq. (8).

B. Two Particle Case

1. Backward Fokker-Planck equation for P (2;x1, x2, t)

P (2;x1, x2, t) is defined as the joint PDF that there
are two particles in the system at time t, with the first
at position x1 and the second at x2 < x1. To derive
the evolution equation for this quantity we once again
employ the BFP approach. In the first time interval
[0,∆t], the particle at x = 0 can:

A) split into two particles with probability b∆t. There
are two cases to consider:

• one branch gives rise to two particles at positions
x1 and x2 at the final time and the other gives rise
to no particles. The contribution from this term is
then 2b∆tP (0, t)P (2;x1, x2, t).

• one branch gives rise to one particle at the final
time at position x1 and the other gives rise to a sin-
gle particle at position x2. The contribution from
this term is then 2b∆tP (1;x1, t)P (1;x2, t).

B) die with a probability d∆t, leading to no particles
at subsequent times and thus not contributing to the
probability P (2;x1, x2, t).

C) diffuse with probability 1 − (b + d)∆t moving a
distance ∆x = η(0)∆t, with the single particle at time
step ∆t giving rise to two particles at positions x1 and x2
at time step t + ∆t. The contribution from this term is
thus (1− (b+ d)∆t)P (2;x1−η(0)∆t, x2−η(0)∆t, t)〉η(0).

Adding the contribution from the different terms we
arrive at

P (2;x1, x2, t+ ∆t) = 2b∆tP (0, t)P (2;x1, x2, t)

+2b∆tP (1;x1, t)P (1;x2, t)

+ (1− (b+ d)∆t) 〈P (2;x1 − η(0)∆t, x2 − η(0)∆t, t)〉η(0).
(43)

Expanding the above equation up to second order in ∆t,
using the properties of the noise in Eq. (10) and taking
the limit ∆t → 0, we arrive at the following evolution
equation for the PDF (for b = d)

∂

∂t
P (2;x1, x2, t) = D

(
∂

∂x1
+

∂

∂x2

)2

P (2;x1, x2, t)

−
(

2b

1 + bt

)
P (2;x1, x2, t) + 2bP (1;x2, t)P (1;x2, t). (44)

Above, we have used P (0, t) = bt/(1 + bt) from Eq. (8).
This is Eq. (5) described in the main text.

2. Exact Solution

Following Eq. (16), we make the transformation

P (2;x1, x2, t) =
1

(1 + bt)2
P ◦(2;x1, x2, t). (45)

P ◦(2;x1, x2, t) then satisfies the evolution equation

∂

∂t
P ◦(2;x1, x2, t) = D

(
∂

∂x1
+

∂

∂x2

)2

P ◦(2;x1, x2, t).

+2b(1 + bt)2P (1;x1, t)P (1;x2, t). (46)

We next make the change of variables

s =
x1 + x2

2
,

g1 = x1 − x2 > 0,

P ◦(2;x1, x2, t) → P̃ ◦(2; s, g1, t). (47)

s and g1 have been described in the main text as the
centre of mass and gap variables respectively. The Jaco-
bian of this transformation is 1. Using the expression for
P (1;x, t) from Eq. (40), we have

∂

∂t
P̃ ◦(2; s, g1, t) = D

(
∂

∂s

)2

P̃ ◦(2; s, g1, t)

+
2b

(1 + bt)2
1

4πDt
exp

(
−

2s2 + 1
2g

2
1

4Dt

)
. (48)

This is a diffusion equation with a time-dependent
source term. Using Eq. (19) and the initial condition

P̃ ◦(2; s, g1, t) = 0, we arrive at the following exact solu-
tion

P̃ ◦(2; s, g1, t) =∫ t

0

dt′
∫ ∞
−∞

ds′
1√

4πD(t− t′)
exp

(
− (s′ − s)2

4D(t− t′)

)
×

2b

(1 + bt′)2
1

4πDt′
exp

(
−

2s′2 + 1
2g

2
1

4Dt′

)
. (49)

The conditional PDF that given there are two particles
in the system at time t, their centre of mass and the gap
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between them are s and g1 respectively is

P̃ (s, g1, t|2) =
P̃ (2; s, g1, t)

P (2, t)
. (50)

Using Eq. (45) and the fact that P (2, t) = bt/(1 + bt)3

from Eq. (8), we have

P̃ (s, g1, t|2) =

(
1 + bt

bt

)
P̃ ◦(2; s, g1, t). (51)

Integrating Eq. (49) with respect to s′ and using Eq. (51)
we arrive at

P̃ (s, g1, t|2) =

(
1 + bt

2πDt

)∫ t

0

dt′

(1 + bt′)2
e
− g21

8Dt′−
s2

2D(2t−t′)√
t′(2t− t′)

.

(52)
This is Eq. (6) in the main text. Integrating over the
centre of mass variable s in Eq. (52), we arrive at the
marginal PDF of the gap

P̃ (g1, t|2) =

(
1 + bt

bt

)∫ t

0

bdt′

(1 + bt′)2
exp(− g21

8Dt′ )√
2πDt′

, (53)

which is Eq. (7) in the main text. Using this expres-
sion we can derive the stationary distribution p(g1|2) by
taking the limit t→∞. We have

p(g1|2) =

∫ ∞
0

bdt′

(1 + bt′)2
exp(− g21

8Dt′ )√
2πDt′

. (54)

It is possible to perform this integral exactly. We have
p(g1|2) = (4

√
D/b)−1f [g1/(4

√
D/b)] with

f(x) = −4x+
√

2π e2x
2

(1 + 4x2) erfc(
√

2x) . (55)

This is Eq. (8) in the main text.

C. General n > 2

1. Backward Fokker-Planck equation for P (n;x1, x2, t)

P (n;x1, x2, t) is defined as the joint PDF that there
are n particles in the system at time t, with the first
at position x1 and the second at position x2. To derive
the evolution equation for this quantity we once again
employ the BFP approach. In the first time interval
[0,∆t], the particle at x = 0 can:

A) split into two particles with probability b∆t. There
are three different cases to consider:

• One branch gives rise to 0 particles while the other
gives rise to n particles. This term has the contri-
bution 2b∆tP (0, t)P (n;x1, x2, t)

• One branch gives rise to 1 particle while the other
gives rise to n− 1 particles. The first two particles
from the n−1 particle branch and the particle from
the 1 particle branch are ordered as x1 > x2 > x3
at the final time step, with any of them belonging
to either branch. This term therefore has a con-
tribution 2b∆t

∫ x2

−∞ dx3
∑
σ∈S3

P (1;xσ1 , t)P (n −
1;xσ2

, xσ3
, t). Here

∑
σ∈SN

denotes a sum over

the permutations σ of N elements and σi ≡ σ(i)
and with the convention that P (r;xi, xj , t) = 0 for
i > j. We note that although x1, and x2 are the
positions of the first two particles, x3 is not neces-
sarily the position of the third particle at the edge
of the system.

• One branch gives rise to r ≥ 2 particles
while the other gives rise to n − r ≥ 2.
This term therefore has a contribu-
tion b∆t

∑n−2
r=2

∫ x2

−∞ dx3
∫ x3

−∞ dx4
∑
σ∈S4

×
P (r;xσ1

, xσ3
, t)P (n− r;xσ3

, xσ3
, t).

B) die with a probability d∆t, leading to no particles
at subsequent times and thus not contributing to the
probability P (n;x1, x2, t).

C) diffuse with probability 1 − (b + d)∆t, with the
single particle at time step ∆t giving rise to n particles
at time step t + ∆t. The contribution from this term is
thus (1− (b+ d)∆t)P (n;x1−η(0)∆t, x2−η(0)∆t, t)〉η(0).

Adding the contribution from all these terms, we have

P (n;x1, x2, t+ ∆t) =

(1− (b+ d)∆t) 〈P (n;x1 − η(0)∆t, x2 − η(0)∆t, t)〉η(0)
+ 2b∆tP (0, t)P (n;x1, x2, t)

+ b∆tS(n;x1, x2, t), (56)

where S(n;x1, x2, t) ≡ S is

S =

∫ x2

−∞
dx3

[
2
∑
σ∈S3

P (1;xσ1 , t)P (n− 1;xσ2 , xσ3 , t) (57)

+

n−2∑
r=2

∫ x3

−∞
dx4

∑
σ∈S4

P (r;xσ1 , xσ2 , t)P (n− r;xσ3 , xσ4 , t)
]
.

We note that while x1 and x2 stand respectively for the
positions of the first and second particle, x3 and x4 are
not necessarily the positions of the third and fourth ones.
Expanding Eq. (56) up to second order in ∆t and using
the properties of the noise in Eq. (10) we have (for b = d)

∂P (n;x1, x2, t)

∂t
= D

(
∂

∂x1
+

∂

∂x2

)2

P (n;x1, x2, t)

− 2b

1 + bt
P (n;x1, x2, t) + bS(n;x1, x2, t). (58)

This yields Eq. (10) in the main text, together with the
explicit expression of the source term S (57).
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2. Three Particle Case

Using Eq. (58) for n = 3, we have the following evolu-
tion equation

∂

∂t
P (3;x1, x2, t) = D

(
∂

∂x1
+

∂

∂x2

)2

P (3;x1, x2, t)

−
(

2b

1 + bt

)
P (3;x1, x2, t)

+2b

∫ x2

−∞
dx3

[
P (1;x1, t)P (2;x2, x3, t)

+P (1;x2, t)P (2;x1, x3, t) + P (1;x3, t)P (2;x1, x2, t)
]

Using the procedure outlined in the previous section, we
obtain the exact expression for the marginal PDF of the
gap between the first two particles conditioned on three
particles in the system stated in Eq. (60). It is interest-

 1e-14
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FIG. 2: Contributions to the marginal PDF P̃ (g1, t|3) from
the three terms in the source function P (1;x3, t)P (2;x1, x2, t),
P (1;x2, t)P (2;x1, x3, t) and P (1;x1, t)P (2;x2, x3, t) [inte-
grated over x3 ∈ (−∞, x2] and over the center of mass
s = (x1+x2)/2 ∈ (−∞,+∞)] respectively. We see that in the
large gap limit, only the third term has a significant contri-
bution to the marginal PDF. The other terms are suppressed
by a factor 1/g21 . (D = 1, b = 1/2, t = 105).

ing to note that due to symmetry, the PDF of the gap

between the first and the second particles is the same as
the PDF of the gap between the second and the third

particle. In Fig. 4 we plot P̃ (g1, t|3) computed using the
above expression along with data obtained from directly
simulating the process. We also plot the PDF for large
times showing a convergence to the steady state behav-
ior with the the power law tail 8(Db ) 1

g31
. In Fig. 2 we

plot the contribution of the different terms in the source

function to the marginal PDF P̃ (g1, t|3). We see that
only the term

∫ x2

−∞ P (1;x1, t)P (2;x2, x3, t)dx3 has a sig-
nificant contribution in the large gap limit, x1 − x2 � 1.

3. Four Particle Case

Using Eq. (58) for n = 4, we have the following evolu-
tion equation

∂

∂t
P (4;x1, x2, t) = D

(
∂

∂x1
+

∂

∂x2

)2

P (4;x1, x2, t)

−
(

2b

1 + bt

)
P (4;x1, x2, t)

+2b

∫ x2

−∞
dx3

[
P (1;x1, t)P (3;x2, x3, t)

+P (1;x2, t)P (3;x1, x3, t)

+P (1;x3, t)P (3;x1, x2, t)
]

+2b

∫ x2

−∞
dx3

∫ x3

−∞
dx4

[
P (2;x1, x2, t)P (2;x3, x4, t)

+P (2;x1, x3, t)P (2;x2, x4, t)

+P (2;x1, x4, t)P (2;x2, x3, t)
]
. (59)

This can be solved in a similar manner to the three par-
ticle case. In this case, the exact expression is very large
and we do not present it here. In Fig 5 we plot the PDF of
the first gap conditioned on four particles in the system
obtained from Monte Carlo simulations along with our
theoretical prediction at different times. We also plot the
large time behavior of this function, showing the conver-
gence to the asymptotic behavior 8(Db ) 1

g31
at large times.

P̃ (g1, t|3) = 2

(
1 + bt

bt

)2 ∫ t

0

bdt1
(1 + bt1)2

∫ t1

0

bdt2
(1 + bt2)2

× (60)e
− g21

8Dt2 erfc

[
g1

2
√
D(8t1−2t2)

]
√

8πDt2
+

e−
g21

8Dt1 erfc

[
− g1(−2t1+t2)

2
√
2
√
Dt1(4t1−t2)t2

]
√

8πDt1
+
e−

g21
8Dt1 erfc

[
1
2g1
√

t2
8Dt21−2Dt1t2

]
√

8πDt1

 .

IV. ASYMPTOTIC BEHAVIOUR

The computations of the distribution of the first gap
conditioned on three and four particles in the system are

quite instructive as they allow us to analyze Eq. (58) in
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the large t and large gap g1 limit for generic n as follows.
The solution of (58) is a linear combination of solutions
arising from individual terms present in the source func-
tion S. From this one can show that the PDF of the
first gap conditioned on n particles converges to a sta-

tionary distribution P̃ (g1, t → ∞|n) = p(g1|n). While
the full PDF p(g1|n) depends on n (see also Fig. 3 in the
main text), its tail is universal. This follows from the fact
that the leading contribution to S in (58) when the gap
g1 = x1−x2 � 1 is large arises from the term in the first
line 2bP (1;x1, t)

∫ x2

−∞ dx3P (n − 1;x2, x3, t) which tends

to 2bP (1;x1, t)P (1;x2, t) at large t (since the rightmost
particle conditioned on n− 1 particles in the system be-
haves as a free diffusive particle at large times). This is
precisely the source term for the two-particle case ana-
lyzed in Eq. (44). One can show that all other terms in
S involve a larger gap between particles generated by the
same offspring walk and are thus suppressed by a factor∫∞
g1
p(g′|k)dg′ ∼ 1/g1

2, k < n. This is illustrated in Fig.

2 for the three particle case. Therefore, when g1 → ∞
the tail of the PDF of the first gap for general n converges
to that of the two-particle case, p(g1|n) ∼

(
8D
b

)
g−31 , for

all n.
A similar analysis yields the asymptotic behavior of

the k-th gap gk(t) = xk(t) − xk+1(t). In this case, we

study P (n;xk, xk+1, t), the joint PDF that there are n
particles at time t with the k-th particle at position
xk and the (k + 1)-th particle at position xk+1. This
PDF once again satisfies a diffusion equation with a
source term similar to (58), from which we can show
that the PDF of the kth gap reaches a stationary dis-

tribution P̃ (gk, t → ∞|n) = p(gk|n). In the large gap
limit, the dominant term in the source function is the
one in which the first k particles belong to one of the
offsprings generated at the first time step, and the sub-
sequent n − k particles belong to the other. This term
tends to 2bP (1;xk, t)P (1;xk+1, t) at large t, as it involves
the leftmost particle of the first process being at xk and
the rightmost particle of the other process being at xk+1.
As noticed before for g1, all other terms involve a large
gap between particles generated by the same offspring
process and are hence suppressed. This in turn leads to
the large gap stationary behavior p(gk|n) ∼

(
8D
b

)
g−3k for

all k and n. Therefore the tail of the PDFs of the gaps
are universal and are independent of n and k.

V. SIMULATION RESULTS
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FIG. 3: (Left) The marginal PDF of the gap P̃ (g1, t|2) at different times conditioned on two particles obtained from Monte Carlo
simulations (with 107 realizations). The thick lines correspond to the exact theoretical PDF (Eq. (53)). (Right) Theoretical

PDF P̃ (g1, t|2) at large times showing the convergence to the stationary behavior.
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FIG. 4: (Left) The marginal PDF of the first gap P̃ (g1, t|3) at different times conditioned on three particles obtained from
Monte Carlo simulations (with 107 realizations). The thick lines correspond to the exact theoretical PDF (Eq. (60)). (Right)

The theoretical PDF P̃ (g1, t|3) at large times showing the convergence to the stationary behavior.
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FIG. 5: (Left) The marginal PDF of the first gap P̃ (g1, t|4) at different times conditioned on four particles obtained from Monte
Carlo simulations (with 107 realizations). The thick lines correspond to the exact theoretical PDF. (Right) The theoretical

PDF P̃ (g1, t|4) at large times showing the convergence to the stationary behavior. (Numerically evaluating P̃ (g1, t|4) for very
large times produces numerical error and we have displayed only up to t = 104 here.)
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