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We study analytically the order and gap statistics of particles at time t for the one dimen-
sional branching Brownian motion, conditioned to have a fixed number of particles at t. The
dynamics of the process proceeds in continuous time where at each time step, every par-
ticle in the system either diffuses (with diffusion constant D), dies (with rate d) or splits
into two independent particles (with rate b). We derive exact results for the probability dis-
tribution function of gkðtÞ ¼ xkðtÞ � xkþ1ðtÞ, the distance between successive particles, con-
ditioned on the event that there are exactly n particles in the system at a given time t. We
show that at large times these conditional distributions become stationary
Pðgk; t !1jnÞ ¼ pðgkjnÞ. We show that they are characterized by an exponential tail
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for large gaps in the subcritical (b < d) and supercritical (b > d)

phases, and a power law tail pðgkÞ � 8 D
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k at the critical point (b ¼ d), independently
of n and k. Some of these results for the critical case were announced in a recent letter
(Ramola et al., 2014).

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Branching processes are prototypical models of systems
where new particles are generated at every time step –
these include models of evolution, epidemic spreads and
nuclear reactions amongst others [1–5]. An important
model in this class is the Branching Brownian motion
(BBM). We focus in this paper on the simple one-dimen-
sional BBM, where the process starts with a single particle
at the origin x ¼ 0 at time t ¼ 0. The dynamics proceeds in
continuous time according to the following rules. In a small
time interval Dt, each particle performs one of the three
following microscopic moves: (i) it splits into two indepen-
dent particles with probability bDt, (ii) it dies with proba-
bility dDt and (iii) with the remaining probability
1� ðbþ dÞDt it performs a Brownian motion moving by a
stochastic distance DxðtÞ ¼ gðtÞDt. Here gðtÞ is a Gaussian
white noise with zero mean and delta-correlations with
hgðtÞi ¼ 0; hgðt1Þgðt2Þi ¼ 2Ddðt1 � t2Þ ð1Þ
where D is the diffusion constant. The delta function in the
correlator (1) can be interpreted in the following sense:
when t1 – t2, the noise is uncorrelated. In contrast, when
t1 ¼ t2 ¼ t, the variance hg2ðtÞi ¼ 2D=Dt. A realization of
the dynamics of such a process is shown in Fig. 1. Depend-
ing on the parameters b and d, the average number of par-
ticles at time t in the system exhibits different asymptotic
behaviors. For b < d, the subcritical phase, the process dies
and on an average there are no particles at late times. For
b > d, the supercritical phase, the process is explosive and
the average number of particles grows exponentially with
time t. In the borderline b ¼ d case, the system is critical,
where on an average there is exactly one particle in the
system at all times. This critical case is relevant to several
physical and biological systems with stable population
distributions [4].

BBM is a paradigmatic model of branching processes
with wide applications and has been studied extensively
in both mathematics and physics literature [1,4,6–8]. In
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one dimension, the positions of the particles at a particular
time t represent a set of random variables that are natu-
rally ordered according to their positions on the line with
x1ðtÞ > x2ðtÞ > x3ðtÞ � � � (see Fig. 1). It is then interesting to
study their order statistics, where one is concerned with
the distribution of xkðtÞ, which denotes the position of
the kth rightmost particle. An equally interesting quantity
is the spacing between consecutive particles,
gkðtÞ ¼ xkðtÞ � xkþ1ðtÞ as well as the density of the particles
near the tip of the branching process [9–11]. The questions
related to the extremes in this one-dimensional BBM have
been studied extensively over the last few decades [4,7–
10,12–14]. More recently, extreme statistics in this system
have found new applications in the context of estimating
the perimeter and area of the convex hull of two-dimen-
sional epidemic spreads [5].

Indeed BBM is a useful toy model to study the broader
question of extreme value statistics (EVS) of correlated ran-
dom variables, a field that has been growing in prominence
in recent years. Several important properties sensitive to
rare events can be characterized by EVS in a wide variety
of disordered systems [15–17]. Although probability distri-
butions functions (PDFs) of the extreme values of uncorre-
lated variables are well understood [18], the computation
of extreme and near-extreme value distributions for
strongly correlated variables constitute important open
problems in this field [19,20]. Random walks and Brownian
motion have recently proved to be useful laboratories
where several exact results concerning EVS of correlated
variables can be obtained [11,20,21]. In this context BBM
represents a useful model where the relevant random vari-
ables (the particle positions at time t) are strongly corre-
lated, and yet exact results concerning the extremes can
be obtained. In a recent Letter [11] we briefly discussed
some of these results for the critical b ¼ d case. The purpose
of the present paper is twofold: (i) to provide a detailed der-
ivation of these exact results for the critical case and (ii) to
extend these results to off-critical cases b – d.

In the supercritical regime (b > d), the statistics of the
position of the rightmost particle x1ðtÞ has been studied
Fig. 1. A realization of the dynamics of branching Brownian motion with
death (left) in the supercritical regime (b > d) and (right) in the critical
regime (b ¼ d). The particles are numbered sequentially from right to left
as shown in the inset.
for a long time [7,8]. In particular, for the case d ¼ 0, the
cumulative distribution of x1ðtÞ is known to be governed
by the Fisher–Kolmogorov–Petrovskii–Piscounov (FKPP)
equation [1,22]. This equation exhibits a traveling front
solution: the average position of the rightmost particle
increases linearly with time hx1ðtÞi � vt with a constant
velocity v while the width of the front remains of Oð1Þ at
late times. Very recently, Brunet and Derrida studied (still
for d ¼ 0) the order statistics, i.e., the statistics of the posi-
tions of the second, third, etc x2ðtÞ; x3ðtÞ . . .. They found
that, while xkðtÞ � vt at late times, with the same speed v
for all k, the distributions of the gaps gkðtÞ become inde-
pendent of t for large t, while retaining a non-trivial k-
dependence [9,10]. They also computed the PDF of the first
gap g1ðtÞ numerically to very high precision and also pro-
vided an argument for the observed exponentially decay-
ing tail. Several natural questions remain outstanding.
For instance, can one calculate the gap distributions for
arbitrary k for d ¼ 0 as well as for arbitrary b and d?

As mentioned earlier, in a recent Letter, we were able to
compute the order and the gap statistics of BBM at the crit-
ical point b ¼ d at a fixed time t, by conditioning the process
to have a given number of particles at time t [11]. As we will
demonstrate in this paper, this method of conditioning
allows us to circumvent the technical difficulties arising
from the inherent non-linearities of the problem and pro-
vides exact results for arbitrary b and d. Let us briefly sum-
marize our main results. Upon conditioning the system to
have exactly n particles at time t, we derive an exact back-
ward Fokker–Planck (BFP) equation for the joint distribu-
tions of the ordered positions of the n particles at time t.
These equations can, in principle, be solved recursively for
all n and the asymptotic results at late times for any fixed
n can be extracted explicitly. We find that at large times,
and for all b and d, the PDFs of the positions xk’s behave dif-

fusively, Pðxk; t !1jnÞ ! 1ffiffiffiffiffiffiffiffi
4pDt
p exp � xk
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, with k ¼ 1;

2; . . .. Note that for b > d, this diffusive behavior is in con-
trast with the case without conditioning on the particle
number where it is ballistic. However, as in the case without
conditioning, the PDFs of the gaps gkðtÞbecome stationary in
the long time limit. Moreover we show that the stationary
gap PDF has an exponential tail in the super-critical
(b > d) and sub-critical (b < d) regimes and an algebraic tail
with exponent�3 at the critical point (b ¼ d). We argue that
these asymptotic tails are universal in the sense that they are
independent of both n (the particle number) and k (the label
of the gap). We also discuss the qualitative differences
between the conditioned and unconditioned BBM processes.

The paper is organized as follows. In Section 2, we first
compute the mean number of particles at time t after
which we show in Section 3 how to compute the statistics
of the rightmost particle using a BFP approach. In Section 4,
we generalize the BFP approach to compute the (condi-
tional) gap statistics between the two rightmost particles,
first in the two-particle sector (n ¼ 2), and then for an arbi-
trary number of particles n P 2. In Section 5, we present an
asymptotic analysis of the PDF of the first gap for any n,
which we then generalize to the kth gap. In Section 6, we
present a comparison of our analytical results with Monte
Carlo simulations, before we conclude in Section 7.
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2. Number of particles in the system

The number of particles nðtÞ at time t in the one-dimen-
sional BBM is a random variable, whose distribution can be
computed exactly for all b and d. Let Pðn; tÞ be the probabil-
ity that starting with one particle at time t ¼ 0, there are
exactly n particles at time t. One can derive a backward
evolution equation for Pðn; tÞ by considering all micro-
scopic moves that happen in the initial small time interval
Dt. In this small interval Dt, the particle either dies with
probability dDt, splits into two particles with probability
bDt and with the remaining probability 1� ðbþ dÞDt it dif-
fuses. It is easy to see then that

Pðn; t þ DtÞ ¼ ½1� ðbþ dÞDt�Pðn; tÞ

þ bDt
Xn

m¼0

Pðm; tÞPðn�m; tÞ þ dDt dn;0: ð2Þ

By taking the limit Dt ! 0, this reduces to a partial differ-
ential equation

@Pðn; tÞ
@t

¼ �ðbþ dÞPðn; tÞ þ b
Xn

m¼0

Pðm; tÞPðn�m; tÞ

þ ddn;0: ð3Þ

This Eq. (3) can be solved by a standard generating func-
tion technique. One gets the following explicit solutions:

Pð0; tÞ ¼ dðebt � edtÞ
bebt � dedt

;

Pðn � 1; tÞ ¼ ðb� dÞ2eðbþdÞt bn�1ðebt � edtÞn�1

ðbebt � dedtÞ
nþ1 : ð4Þ

The average number of particles in the system at a partic-
ular time t is then

hnðtÞi ¼
X1
n¼1

nPðn; tÞ ¼ eðb�dÞt: ð5Þ

When b > d the number of particles grows exponentially,
whereas when b < d the average number of particles
decreases to zero exponentially with time. Exactly at the
critical point b ¼ d; hnðtÞi ¼ 1 for all t.

Note that, at the critical point, Pðn; tÞ is given by

Pð0; tÞ ¼ bt
1þ bt

; Pðn � 1; tÞ ¼ ðbtÞn�1

ð1þ btÞnþ1 : ð6Þ

Hence, for large t, the probability to have n > 0 particles
decays to zero as a power law Pðn > 0; tÞ � 1=t2 while the
probability of having no particles approaches to unity also
as a power law Pð0; tÞ � 1� 1=ðbtÞ. In this critical case,
although the system becomes empty of particles almost
surely, the average number of particles remains unity at
all times. This indicates that rare events dominate the
average behavior and that large fluctuations play a rather
important role.

We conclude this section by a remark on the behavior of
the typical number of particles ntypðtÞ present in the system
at time t, when t is large. This typical number can be
estimated by analyzing the probability Pðn P 1; tÞ in Eqs.
(4) and (6) for large n and large t. In the supercritical case,
b > d, one can show that when n!1; t !1, keeping the
ratio n=eðb�dÞt fixed, Pðn; tÞ takes the scaling form (for b > d):

Pðn; tÞ � ½1� Pð0; t !1Þ�
eðb�dÞt f sup

n
eðb�dÞt

� �
; f supðyÞ

¼ b� d
d

e�
b�d

d y; ð7Þ

where 1� Pð0; t !1Þ ¼ ðb� dÞ=b. Hence the scaling form
in Eq. (7) shows that ntypðtÞ � eðb�dÞt which coincides in this
case with the average number of particles hnðtÞi given in
Eq. (5). On the other hand, at the critical point b ¼ d the sit-
uation is quite different. Indeed, in this case, we obtain
from Eq. (6) that in the limit n!1; t !1 and keeping
the ratio n=ðbtÞ fixed, one has

Pðn; tÞ � ½1� Pð0; tÞ�
bt

f crit
n
bt

� �
; f critðxÞ ¼ e�x: ð8Þ

Hence this scaling form (8) shows that the typical number
of particles grow linearly with t;ntypðtÞ � bt, at variance
with the mean number which is hnðtÞi ¼ 1 in this case
(5). Finally, in the subcritical case, d > b, one has
Pðn P 1; tÞ � ð1� Pð0; tÞÞ d�b

b ðb=dÞn, which shows that in
this case ntypðtÞ � Oð1Þ while the average value decays
exponentially hnðtÞi � e�ðd�bÞt (5). Hence the large time
behavior of ntypðtÞ can be summarized as follows

ntypðtÞ �
eðb�dÞt; b > d
bt; b ¼ d

const:; b < d;

8><
>: ð9Þ

which will be useful later.

3. Statistics of the rightmost particle

We begin by analyzing the behavior of the rightmost par-
ticle in the system at time t. For this purpose it is convenient
to introduce Cðn; x; tÞ, denoting the joint probability that
there are n particles in the system at time t, and that all the
particles are to the left of x. The probability Cð0; x; tÞ does
not have any clear meaning, but for convenience we choose
Cð0; x; tÞ ¼ Pð0; tÞ. The conditional probability that all the
particles lie to the left of x, conditioned on the fact that there
are exactly n particles at time t is given by
Qðx; tjnÞ ¼ Cðn; x; tÞ=Pðn; tÞ, where Pðn; tÞ is given in Eq. (4).
The PDF of the position of the rightmost particle is then given
by Pðx; tjnÞ ¼ @

@x Qðx; tjnÞ. By definition Qðx; tjnÞ satisfies the
boundary conditions Qðx!1; tjnÞ ¼ 1 and
Qðx!�1; tjnÞ ¼ 0. Initially, since the process starts with a
single particle at the origin, it is evident that Pðn;0Þ ¼ dn;1

and Cðn; x;0Þ ¼ dn;1hðxÞ, where hðxÞ is the Heaviside theta
function. Consequently, the initial condition for the condi-
tional probability is given by Qðx;0jnÞ ¼ hðxÞ for n > 1. For
n ¼ 0, we recall that Qðx;0j0Þ ¼ 1 by our convention.

3.1. Backward Fokker–Planck equation for Cðn; x; tÞ

In this subsection, we start by deriving a BFP equation
for the joint probability Cðn; x; tÞ. To see how Cðn; x; tÞ
evolves into Cðn; x; t þ DtÞ in a small time interval Dt, we
split the time interval ½0; t þ Dt� into two subintervals:
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½0;Dt� and ½Dt; t þ Dt�. The system first evolves from its ini-
tial condition to a new configuration at time Dt which then
acts as a new initial condition for the subsequent evolution
of duration t over the second subinterval ½Dt; t þ Dt�. We
next enumerate the probabilities of all the events that take
place in the first subinterval ½0;Dt� (see Fig. 2). In this sub-
interval ½0;Dt�, the particle initially at x ¼ 0:

(A) dies with probability dDt, leading to n ¼ 0 particles
at all subsequent times. The contribution to the
probability Cðn; x; t þ DtÞ from this term is then
dDt dn;0.

(B) splits with probability bDt, resulting in two particles
at x ¼ 0. These two particles give rise to two inde-
pendent sub-trees. Let r and n� r denote the num-
ber of particles in the left and the right sub-trees
respectively, where 0 6 r 6 n. Using the indepen-
dence of the sub-trees, the net contribution from
this event to Cðn; x; t þ DtÞ is bDt

Pn
r¼0Cðr; x; tÞ

Cðn� r; x; tÞ.
(C) diffuses with probability 1� ðbþ dÞDt, moving a dis-

tance Dx ¼ gð0ÞDt in the first time step. This effec-
tively shifts the entire process by a distance Dx. The
contribution from this term is then
1� ðbþ dÞDtð ÞhCðn; x� gð0ÞDt; tÞigð0Þ. Here, and in

the following, h. . . igð0Þ denotes an average over all pos-
sible values of the diffusive jump at the first time step.

Adding the contributions from terms (A), (B) and (C), we
arrive at

Cðn; x; t þ DtÞ ¼ 1� ðbþ dÞDtð ÞhCðn; x� gð0ÞDt; tÞigð0Þ

þ bDt
Xn

r¼0

Cðr; x; tÞCðn� r; x; tÞ þ dDt dn;0:

ð10Þ

Next, using the properties of the Brownian noise in Eq. (1)
we can Taylor expand Eq. (10) up to second order in Dt.
Taking the limit Dt ! 0 we arrive at the backward evolu-
tion equation for the cumulative probability

@Cðn; x; tÞ
@t

¼ D
@2Cðn; x; tÞ

@x2 � ðbþ dÞCðn; x; tÞ

þ b
Xn

r¼0

Cðr; x; tÞCðn� r; x; tÞ þ ddn;0: ð11Þ
Fig. 2. The backward Fokker–Planck approach: In the first time interval
½0;Dt�, the particle can (A) die (B) split into two independent particles or
(C) diffuse by a distance Dx ¼ gð0ÞDt, with probabilities dDt; bDt and
1� ðbþ dÞDt respectively. We then look at the contribution from each of
these events to the probabilities at time t þ Dt.
Using Cð0; x; tÞ ¼ Pð0; tÞwith Pð0; tÞ given in Eq. (4), Eq. (11)
reduces to

@Cðn; x; tÞ
@t

¼ D
@2Cðn; x; tÞ

@x2 � ðbþ dÞCðn; x; tÞ

þ 2bPð0; tÞCðn; x; tÞ

þ b
Xn�1

r¼1

Cðr; x; tÞCðn� r; x; tÞ þ ddn;0: ð12Þ

If one sums over the particle number n one gets the cumu-
lative probability distribution of the rightmost particle for
the unconditioned BBM: Fðx; tÞ ¼

P1
n¼0Cðn; x; tÞ. Summing

Eq. (12) over n one recovers

@Fðx; tÞ
@t

¼ D
@2Fðx; tÞ
@x2 � ðbþ dÞFðx; tÞ þ bF2ðx; tÞ þ d; ð13Þ

together with the boundary conditions Fðx! þ1; tÞ ¼ 1
and Fðx! �1; tÞ ¼ 0, for all time t. For d > b (super-crit-
ical phase) the above equation belongs to the FKPP type
of non-linear equations [1,22] which allow for a traveling
front solution at late times Fðx; tÞ ! Fðx� vtÞ with a well
defined front velocity v [7,8]. In contrast, for b ¼ d (in the
critical case), one can show that the solution of (13) is dif-
fusive at late times (the non-linearities give rise to only
sub-leading corrections). Unfortunately, for finite t, this
non-linear Eq. (13) is not exactly solvable. In contrast,
by restricting ourselves to a fixed particle number n sec-
tor (without summing over n) we obtain a set of linear
equations in Cðn; x; tÞ (12). For any given n the terms in
the right hand side of Eq. (12) involve the solution
Cðm; x; tÞ with m < n. Hence, one can solve these linear
equations recursively starting from n ¼ 1, for all t and
for all b and d. That is the trade-off in order to avoid
the non-linearities.

3.2. Late time behavior of the conditional probability Qðx; tjnÞ

Using Eq. (12) for Cðn; x; tÞ and Eq. (4) for Pðn; tÞ one can
then write the evolution equation for the conditional prob-
ability Qðx; tjnÞ ¼ Cðn; x; tÞ=Pðn; tÞ explicitly. To proceed, it
is convenient to first define

f ðtÞ ¼ 2bPð0; tÞ � ðbþ dÞ ¼ ðd� bÞ bebt þ dedt

bebt � dedt
: ð14Þ

We can then remove the linear term in Eq. (12) by making
the transformation

Cðn; x; tÞ ¼ e
R

f ðt0 Þdt0C�ðn; x; tÞ

¼ eðbþdÞt

ðbebt � dedtÞ
2 C�ðn; x; tÞ: ð15Þ

Inserting this expression into Eq. (12), we arrive at

@C�ðn; x; tÞ
@t

¼ D
@2C�ðn; x; tÞ

@x2

þ beðbþdÞt

ðbebt � dedtÞ
2

Xn�1

r¼1

C�ðr; x; tÞC�ðn� r; x; tÞ: ð16Þ

Next, using Eq. (15) and the expression for Pðn; tÞ in Eq. (4)
one gets
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Qðx; tjnÞ ¼ Cðn; x; tÞ
Pðn; tÞ ¼

1

ðb� dÞ2
bebt � dedt

bðebt � edtÞ

 !n�1

C�ðn; x; tÞ:

ð17Þ

The evolution equation for Qðx; tjnÞ can then be finally
written as

@Qðx; tjnÞ
@t

¼ D
@2Qðx; tjnÞ

@x2 þ ðb� dÞ2eðbþdÞt

ðebt � edtÞðbebt � dedtÞ

�
Xn�1

r¼1

Qðx; tjrÞQðx; tjn� rÞ � Qðx; tjnÞ½ �: ð18Þ

As we noted before, this is a linear diffusion equation for
any n that involves the solutions of r < n as source terms.
This set of equations can then be solved recursively to
obtain the exact solutions for any n. For example, inserting
n ¼ 1 in the above equation, we find that Qðx; tj1Þ obeys
the simple diffusion equation without any source for all t,
and has the following exact solution

Qðx; tj1Þ ¼ 1
2

erfc
�xffiffiffiffiffiffiffiffi
4Dt
p
	 


; ð19Þ

where erfcðxÞ ¼ 2ffiffiffi
p
p
R1

x e�u2
du is the complementary error

function. The corresponding PDF of the position of the par-
ticle conditioned on the event n ¼ 1 at time t is then

Pðx; tj1Þ ¼ @

@x
Qðx; tj1Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

4pDt
p exp � x2

4Dt

	 

: ð20Þ

We thus find that, for n ¼ 1, the solution is purely diffusive
at all times. In order to analyse the large time behavior for
general n in Eq. (18), we note that the cumulative probabil-
ity is bounded for all x and t (0 < Qðx; tjnÞ < 1). Therefore,
at large t, the source term in Eq. (18) tends to zero as
� e�jb�djt (for b – d), and � 1=ðbt2Þ (for b ¼ d). Thus, at large
times Qðx; tjnÞ obeys the simple diffusion equation for all
n P 1 and the solution behaves for large t as

Qðx; tjnÞ � 1
2

erfc
�xffiffiffiffiffiffiffiffi
4Dt
p
	 


; ð21Þ

independently of n. From this one can deduce that the PDF
of the rightmost particle is diffusive at large times. By sym-
metry, the leftmost particle also behaves diffusively, and
indeed one can show that all the particles confined between
these two extreme values behave diffusively at large times

with Pðxk; tjnÞ � 1ffiffiffiffiffiffiffiffi
4pDt
p exp � xk

2

4Dt

� �
for all 1 6 k 6 n.

Let us comment on this result which may seem coun-
ter-intuitive at first sight, especially in the super-critical
phase. As described before, in the super-critical phase
(b > d), the position of the maximum of BBM has a travel-
ing front structure, with the position of the rightmost par-
ticle increasing linearly with time x1ðtÞ � vt. The effect of
conditioning this process on the number of particles n is
thus rather drastic in the super-critical phase: it slows
down the motion of the rightmost particle from ballistic
to diffusive. This can be understood very simply. Without
conditioning, the number of particles typically grows expo-
nentially as ntypðtÞ � eðb�dÞt [see Eq. (9)] in the supercritical
regime. Upon conditioning to fix n, one picks up contribu-
tions only from atypical diffusive trajectories, out of all the
possible trajectories up to time t. This can be seen more
quantitatively on the equation for Qðx; tjnÞ in Eq. (18).
Indeed in this case the source term in (18) is of the order
of e�ðb�dÞt � n. When analyzing the conditioned process
we have neglected this term which is exponentially decay-
ing with t, for fixed n. However, to describe the uncondi-
tioned process, one should evaluate Qðx; tjntypðtÞ ¼ eðb�dÞtÞ
(9) and in this case the source terms / e�ðb�dÞt � ntypðtÞ
become of order Oð1Þ and they can not be neglected. As a
consequence the conditioned and the unconditioned pro-
cess behaves differently. On the other hand, in the critical
case b ¼ d, this source terms behave like ntypðtÞ=t2 and
given that in this case ntypðtÞ � bt (9) it can still be
neglected compared to the Laplacian term in the first line
of Eq. (18). Hence that is the reason why conditioning on
a fixed number of particles allows us to correctly describe
the typical late time behavior of the system [11] [note that
the same conclusion also holds in the subcritical case
where ntypðtÞ � Oð1Þ, see Eq. (9)].

We note that, although the individual behavior of the
particles is diffusive, they are strongly correlated. In order
to understand these correlations, we study the gaps
between the successive particles. For uncorrelated diffu-
sive particles these gaps would also display a diffusive
behavior. However in BBM, quite remarkably as we show
in the next section, the PDFs of these gaps become station-
ary at large times.

4. Gap statistics

We next consider the gap statistics for the conditioned
BBM process with n P 2 particles. Let g1ðtÞ ¼ x1ðtÞ � x2ðtÞ
denote the gap between the two rightmost particles. To
compute the PDF of g1ðtÞ, we study the joint PDF
Pðn; x1; x2; tÞ that there are exactly n particles (n P 2) at
time t, with the first particle at position x1 and the second
at position x2 < x1. We start with the simplest case n ¼ 2
which turns out to be already nontrivial.

4.1. Two-particle sector (n ¼ 2)

4.1.1. Backward Fokker–Planck equation for Pð2; x1; x2; tÞ
We first derive the equation governing the temporal

evolution of Pð2; x1; x2; tÞ using a similar BFP approach
already discussed in Section 3.1. As before, we split the
interval ½0; t þ Dt� into two subintervals ½0;Dt� and
½Dt; t þ Dt� (see Fig. 2). In the first subinterval ½0;Dt�, the
particle at x ¼ 0:

(A) dies with probability dDt, leading to no particle at
subsequent times and thus not contributing to the
probability Pð2; x1; x2; tÞ.

(B) splits into two particles with probability bDt. Here
there are two distinct cases to consider (see Fig. 3):

(i) one branch gives rise to a single particle at the

final time at position x1 and the other gives rise
to a single particle at position x2. The contribution
from this term is then 2bDtPð1; x1; tÞPð1; x2; tÞ
where Pð1; x; tÞ is the PDF of having exactly one
particle at time t at position x. The combinatorial
factor 2 comes from interchanging the two



Fig. 3.
the tw
differen
step.

84 K. Ramola et al. / Chaos, Solitons & Fractals 74 (2015) 79–88
branches. Note that Pð1; x; tÞ ¼ @xCð1; x; tÞ where
Cð1; x; tÞ ¼ Pð1; tÞQðx; tj1Þ with Pð1; tÞ given in
Eq. (4) and Qðx; tj1Þ given in Eq. (19) respectively.
This gives explicitly

Pð1; x; tÞ ¼ ðb� dÞ2 eðbþdÞt

ðbebt � dedtÞ
2

1ffiffiffiffiffiffiffiffiffiffiffiffi
4pDt
p

� exp � x2

4Dt

	 

: ð22Þ

(ii) one branch gives rise to two particles at posi-
tions x1 and x2 at the final time and the other
gives rise to no particle. The contribution from
this term is then 2bDtPð0; tÞPð2; x1; x2; tÞ.
(C) diffuses by a distance Dx ¼ gð0ÞDt with probability
1� ðbþ dÞDt. Thus for the second subinterval
½Dt; t þ Dt�, the process starts from the initial position
Dx ¼ gð0ÞDt. Hence the contribution from this term
is 1� ðbþ dÞDtð ÞPð2; x1 � gð0ÞDt; x2 � gð0ÞDt; tÞigð0Þ.

Adding the contributions from the terms (A), (B) and (C)
we arrive at

Pð2; x1; x2; t þ DtÞ ¼ 1� ðbþ dÞDtð ÞhPð2; x1

� gð0ÞDt; x2 � gð0ÞDt; tÞigð0Þ
þ 2bDtPð0; tÞPð2; x1; x2; tÞ
þ 2bDtPð1; x1; tÞPð1; x2; tÞ: ð23Þ

Expanding the above equation up to second order in Dt,
using the properties of the noise in Eq. (1) and taking the
limit Dt ! 0, we arrive at the following evolution equation
for the PDF

@

@t
Pð2; x1; x2; tÞ ¼ D

@

@x1
þ @

@x2

	 
2

Pð2; x1; x2; tÞ

þ f ðtÞPð2; x1; x2; tÞ
þ 2bPð1; x1; tÞPð1; x2; tÞ; ð24Þ

where f ðtÞ is given in Eq. (14).

4.1.2. Exact solution
Remarkably Eq. (24) can be solved exactly for all t, as we

now show. First, it is convenient to get rid of the second
term on the right hand side of Eq. (24) by the customary
transformation

Pð2; x1; x2; tÞ ¼
eðbþdÞt

ðbebt � dedtÞ
2 P�ð2; x1; x2; tÞ: ð25Þ
The contribution from the branching term in the BFP equation for
o-particle sector. The particles at x1 and x2 arise from (i) two
t offspring (ii) from the same offspring, generated at the first time
P�ð2; x1; x2; tÞ then satisfies

@

@t
P�ð2; x1; x2; tÞ ¼ D

@

@x1
þ @

@x2

	 
2

P�ð2; x1; x2; tÞ

þ 2b
ðbebt � dedtÞ

2

eðbþdÞt Pð1; x1; tÞPð1; x2; tÞ:

ð26Þ

Next we make the natural change of variables
s ¼ ðx1 þ x2Þ=2 and g1 ¼ x1 � x2 > 0 where s denotes the
center of mass and g1 the gap between the two particles.
The Jacobian of this transformation is 1. The function
P�ð2; x1; x2; tÞ can be expressed as a function of the new
coordinates s and g1. In order not to proliferate the number
of different functions, we denote this function again by
P�ð2; s; g1; tÞ and apologise for this slight abuse of notation.

Using the explicit expression for Pð1; x; tÞ from Eq. (22)
into Eq. (26), we have

@

@t
P�ð2; s; g1; tÞ ¼ D

@

@s

	 
2

P�ð2; s; g1; tÞ þ 2b

� eðbþdÞt

ðbebt � dedtÞ
2 ðb� dÞ4 1

4pDt

� exp �
2s2 þ 1

2 g2
1

4Dt

	 

: ð27Þ

This is a diffusion equation with a time-dependent source
term. We recall here that the general diffusion equation
with a time-dependent source term

@

@t
Gðx; tÞ ¼ D

@2

@x2 Gðx; tÞ þ rðx; tÞ; ð28Þ

with a given initial condition Gðx;0Þ, can be solved as

Gðx;tÞ¼
Z 1

�1

dx0ffiffiffiffiffiffiffiffiffiffiffiffi
4pDt
p exp �ðx�x0Þ2

4Dt

 !
Gðx0;0Þ

þ
Z t

0

dt0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDðt� t0Þ

p Z 1

�1
dx0exp � ðx�x0Þ2

4Dðt� t0Þ

 !
rðx0;t0Þ:

ð29Þ

Using Eq. (29) and the initial condition P�ð2; s; g1; tÞ ¼ 0, we
arrive at the following exact solution

P�ð2; s; g1; tÞ ¼
Z t

0
dt0
Z 1

�1
ds0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDðt � t0Þ

p
� exp � ðs

0 � sÞ2

4Dðt � t0Þ

 !
� 2b

� eðbþdÞt0

ðbebt0 � dedt0 Þ
2 ðb� dÞ4 1

4pDt0

� exp �
2s02 þ 1

2 g2
1

4Dt0

	 

: ð30Þ

The conditional PDF of the center of mass s and the gap g1,
given that there are exactly two particles in the system at
time t, is then given by

Pðs; g1; tj2Þ ¼
Pð2; s; g1; tÞ

Pð2; tÞ : ð31Þ
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Using Eq. (25) and the expression for Pð2; tÞ from Eq. (4) we
get

Pðs; g1; tj2Þ ¼
bebt � dedt

bðb� dÞ2ðebt � edtÞ

 !
P�ð2; s; g1; tÞ: ð32Þ

Performing the integration with respect to s0 in Eq. (30) and
using Eq. (32) we arrive at

Pðs; g1; tj2Þ ¼
ðb� dÞ2

2pD
bebt � dedt

ebt � edt

 !Z t

0
dt0

� eðbþdÞt0

ðbebt0 � dedt0 Þ
2

e�
g2

1
8Dt0�

s2
2Dð2t�t0 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t0ð2t � t0Þ
p : ð33Þ

We note that in the limit d! b this reduces to the expres-
sion derived in [11], for the gap statistics at the critical
point b ¼ d, since

ðb� dÞ2 eðbþdÞt

ðbebt � dedtÞ
2 !

1

ð1þ btÞ2
as d! b: ð34Þ

Given the exact solution of the conditional joint PDF
Pðs; g1; tj2Þ in Eq. (33) one can derive the marginal distribu-
tions of s and g1 respectively. We start with the center of
mass s. By integrating over g1 in Eq. (33), we have

Pðs; tj2Þ ¼ ðb� dÞ2 bebt � dedt

ebt � edt

 !Z t

0
dt0

� eðbþdÞt0

ðbebt0 � dedt0 Þ
2

expð� s2

2Dð2t�t0ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pDð2t � t0Þ

p : ð35Þ

The integral in (35) is dominated by the region t0 ! 0, and
therefore the marginal PDF of the center of mass behaves

diffusively � 1ffiffiffiffiffiffiffiffi
4pDt
p exp � s2

4Dt

� �
for large t. This is consistent

with the diffusive behavior of the particles seen in the pre-
vious section. Integrating over the center of mass variable s
in Eq. (33), we arrive at the marginal PDF of the gap

Pðg1; tj2Þ ¼ ðb� dÞ2 bebt � dedt

ebt � edt

 !Z t

0
dt0

� eðbþdÞt0

ðbebt0 � dedt0 Þ
2

expð� g2
1

8Dt0Þffiffiffiffiffiffiffiffiffiffiffiffiffi
2pDt0
p : ð36Þ

By taking the limit d! b in Eqs. (35) and (36) we recover
the expressions derived at the critical point b ¼ d for the
marginal PDFs of the center of mass s and the gap g1

respectively, previously obtained in Ref. [11].
For arbitrary values of b and d we find from Eq. (36) that

the gap distribution becomes stationary at large times
Pðg1; t !1j2Þ ¼ pðg1j2Þ, where the stationary gap distri-
bution is given by

pðg1j2Þ ¼ ðb� dÞ2 maxðb;dÞ
Z 1

0
dt0

eðbþdÞt0

ðbebt0 � dedt0 Þ
2

�
expð� g2

1
8Dt0Þffiffiffiffiffiffiffiffiffiffiffiffiffi

2pDt0
p : ð37Þ
Using a saddle point analysis, we can show that the sta-
tionary PDF pðg1j2Þ has the following asymptotic behavior
for g1 	 1

pðg1j2Þ �
jb�dj3=2ffiffiffiffi

2D
p

maxðb;dÞ exp �
ffiffiffiffiffiffiffiffi
jb�dj

2D

q
g1

	 

; for b – d;

8 D
b

� �
g�3

1 ; for b ¼ d:

8><
>:

ð38Þ

It is interesting to note that the expression for the PDF of
the gap in the supercritical case b > d turns out to be expo-
nential. As mentioned above, this behavior was also
obtained for the first gap g1 ¼ x1 � x2 in the unconditioned
BBM [10]. For the case D ¼ 1; b ¼ 1 and d ¼ 0, the tail was
shown to be expð�ð1þ

ffiffiffi
2
p
Þg1Þ for g1 	 1, while in the case

of the conditioned process we find from (38) that pðg1j2Þ
also decays exponentially albeit with a different rate,
namely pðg1j2Þ � expð�g1=

ffiffiffi
2
p
Þ (see the paragraph after

Eq. (21) for a discussion of the origin of the differences
between the two processes). It is interesting to note that
the conditioning of the process on n actually decreases
the correlations between the extreme points, as observing
a large gap between the two rightmost particles is more
likely in the conditioned process.

4.2. n�particle sectors with n > 2

When we condition the process to have n > 2 particles
at time t, we compute the first gap by studying the joint
PDF Pðn; x1; x2; tÞ that there are exactly n particles in the
system at time t, with the first at position x1 and the sec-
ond at position x2 < x1. Here we also use the BFP approach
to derive an evolution equation for this joint PDF. The main
difference arises in the branching term (B) at the first time
step. For this branching term, and for n > 2, there are three
distinct cases to consider (instead of two before):

(i) One branch gives rise to no particle while the other
gives rise to n particles. The contribution from this
term to the final probability is 2bDtPð0; tÞ
Pðn; x1; x2; tÞ. As noted before in Section 3, the combi-
natorial factor 2 comes from interchanging the two
branches.

(ii) One branch gives rise to 1 particle while the other
gives rise to n� 1 particles. The first two particles
from the ðn� 1Þ-particle branch and the particle
from the 1-particle branch are ordered as
x1 > x2 > x3 at the final time step, with any of them
belonging to either branch. The contribution of this
term is
2bDt

R x2
�1 dx3

P
s2S3

Pð1; xs1 ; tÞPðn� 1; xs2 ; xs3 ; tÞ, where
we remind that Pð1; x; tÞ is the PDF of having exactly
one particle at time t at position x, given in Eq. (22).
Here we denote by

P
s2SN

the sum over the permuta-
tions s of N elements with si 
 sðiÞ and we use the
convention that Pðr; xi; xj; tÞ ¼ 0 for i > j, for any
r P 2.

(iii) Finally one branch gives rise to r P 2 particles
while the other gives rise to n� r P 2. The contribu-
tion of this term is thus



t + Δt

Δt
0

︸︷︷︸

gk � 1g1 � 1 k

b) c)a)
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Fig. 4. Dominant terms contributing to the large gap behaviour for (a) the first gap g1ðtÞ and (c) the k-th gap gkðtÞ. Figure (b) shows a realization where the
large gap is generated by the particles of the same offspring process and is hence suppressed.
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bDt
Xn�2

r¼2

Z x2

�1
dx3

Z x3

�1
dx4

X
s2S4

Pðr;xs1 ;xs3 ; tÞPðn� r;xs3 ;xs3 ;tÞ:

ð39Þ

We can then derive, for any n > 2, the BFP equation
for Pðn; x1; x2; tÞ, following the same procedure as
explained in Section 4.1.1 for the case of n ¼ 2 parti-
cles and obtain:
@Pðn; x1; x2; tÞ
@t

¼ D
@

@x1
þ @

@x2

	 
2

Pðn; x1; x2; tÞ

þ f ðtÞPðn; x1; x2; tÞ þ bSðn; x1; x2; tÞ; ð40Þ

where f ðtÞ is given in Eq. (14) and the source term
Sðn; x1; x2; tÞ is obtained by collecting the different contri-
butions computed above:

Sðn; x1; x2; tÞ ¼
Z x2

�1
dx3 2

X
s2S3

Pð1; xs1 ; tÞPðn� 1; xs2 ; xs3 ; tÞ
"

þ
Xn�2

r¼2

Z x3

�1
dx4

X
s2S4

Pðr; xs1 ; xs2 ; tÞPðn� r; xs3 ; xs4 ; tÞ
#
; ð41Þ

where Pð1; x; tÞ is given in Eq. (22). We note that while x1

and x2 stand for the positions of the first and second
The marginal PDF of the first gap g1 ¼ x1 � x2 conditioned on Left two
d from Monte Carlo simulations. The black lines correspond to the exac

was not given here explicitly as it is rather cumbersome). Here b ¼ 0:5;
ions. In the Insets we plot the theoretical PDFs showing the stationary
otic behaviour given in Eq. (38).
particle respectively, x3 and x4 are not necessarily the posi-
tions of the third and fourth ones.

The BFP equation satisfied by Pðn; x1; x2; tÞ (40) and (41)
is a linear diffusion equation for any n that involves the
solutions for Pðk; x1; x2; tÞ for k < n. Hence, as noted above
in Section 3, this set of equations can be solved recursively
to obtain the exact solutions for any n. We have computed
these expressions for n ¼ 3 and 4, but do not present them
here as the expressions are rather cumbersome, being
expressible as a series of nested integrals. One can show
that for any n, the PDF of the first gap g1 ¼ x1 � x2 becomes
stationary at large times, Pðg1; t !1jnÞ ! pðg1jnÞ, which
we study below in the large g1 limit.
5. Asymptotic behavior

Although, the exact expression of the gap distribution
Pðg1; tjnÞ is a bit cumbersome for arbitrary large values of
n, one can analyze its large t and large g1 limit, from Eqs.
(40) and (41) as follows. The solution of (40) is a linear
combination of solutions of individual terms in the source
function S in (41). From this, it can be shown that the PDF
of the first gap conditioned on n particles converges to a
stationary distribution Pðg1; t !1jnÞ ¼ pðg1jnÞ. While the
particles Pðg1; tj2Þ and Right three particles Pðg1; tj3Þ, at different times
t theoretical PDFs (given in Eq. (36) for two particles, the three particle
d ¼ 0:45 and D ¼ 1. These data have been obtained by averaging over 107

distribution at a late time t ¼ 106, along with the predicted large gap
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full PDF pðg1jnÞ in general depends on n, its tail is indepen-
dent of n. This can be seen from the fact that the leading
contribution to S in (41) when the gap g1 ¼ x1 � x2 	 1
is large arises from the term in the first line of (41) [see
Fig. 4(a)]

2bPð1; x1; tÞ
Z x2

�1
dx3Pðn� 1; x2; x3; tÞ

¼ 2bPð1; x1; tÞPðn� 1; x2; tÞ; ð42Þ

where Pðn� 1; x2; tÞ ¼ @x2 Cðn� 1; x2; tÞ (we recall that
Cðn� 1; x2; tÞ denotes the joint probability that there are
n� 1 particles in the system at time t, and that all the par-
ticles are to the left of x2). Since the rightmost particle con-
ditioned on n� 1 particles in the system behaves as a free
diffusive particle at large times Pðn� 1; x2; tÞ � Pð1; x2; tÞ,
see Eqs. (17) and (21) like in the n ¼ 1 - particle case in
Eq. (22), we finally obtain that for large t

2bPð1; x1; tÞ
Z x2

�1
dx3Pðn� 1; x2; x3; tÞ

� 2bPð1; x1; tÞPð1; x2; tÞ; ð43Þ

which is precisely the source term for the two-particle case
analyzed in Eq. (24). This is an advantage of the BFP
approach: the two branches arising at the first time step
are independent of each other at subsequent times. On
the other hand, as we have shown for the two-particle
case, the particles from the same branch are strongly cor-
related at large times. Using this fact, one can show that
since all the other terms in S in (41) involve a larger gap
between particles generated by the same branch [see
Fig. 4(b)], they are suppressed by a factor

R1
g1

pðg0jkÞdg0;
k < n which is exponentially small in the supercritical
regime and falls as a power-law in the critical regime.
Therefore, one has that for large g1; pðg1jnÞ � pðg1j2Þ inde-
pendently of n P 2, with the asymptotic behaviors given in
Eq. (38).

Similarly the kth gap gkðtÞ ¼ xkðtÞ � xkþ1ðtÞ, can be ana-
lyzed by studying the joint PDF that there are n particles at
time t with the kth particle being at position xk and the
ðkþ 1Þth particle at position xkþ1. This PDF once again sat-
isfies a diffusion equation with a source term similar to
(41), from which we can show that the PDF of the kth
gap reaches a stationary distribution Pðgk; t !1jnÞ ¼
pðgkjnÞ. In the large gap limit, the dominant term in the
source function is the one where the first k particles belong
to one of the branches generated at the first time step, and
the subsequent n� k particles belong to the other [see
Fig. 4 c)]. This term tends to 2bPð1; xk; tÞPð1; xkþ1; tÞ at large
t, as it involves the leftmost particle of the first branch
being at xk and the rightmost particle of the other branch
being at xkþ1. As noticed before for g1, all other terms
involve a large gap between particles generated by the
same branch and yield subleading contributions when
gk !1. This implies that the tail of the PDFs of the gaps
are universal and are independent of n and k: the large gk

behavior of pðgkjnÞ is thus given by Eq. (38) with g1

replaced by gk, independently of n. We conclude this
section by mentioning that the picture that emerges form
our calculation (see Fig. 4) is qualitatively similar to the
one of a ‘‘clustered’’ Poisson process discussed recently,
for the supercritical case d ¼ 0, in the mathematics litera-
ture [12–14].
6. Monte Carlo simulations

Finally, we have performed Monte Carlo simulations of
the one-dimensional BBM for different values of the
parameters b and d. In Fig. 5 we plot the marginal PDF of
the gap conditioned on a fixed number n of particles (here
n ¼ 2 and n ¼ 3). We find a very good agreement between
our theoretical predictions of the gap PDFs and the
distributions extracted from the simulations.
7. Conclusion

To conclude, we have obtained exact analytical results
for the gap statistics of the extreme particles of BBM con-
ditioned on the number of particles in the system for the
general case when b – d. We derived backward Fokker–
Planck equations governing the distributions of the posi-
tions of these extreme particles. The conditioning of the
PDFs on the number of particles in the system allowed us
to express these evolution equations as a system of linear
diffusion equations with source terms, which we could
then solve recursively. We have also obtained exact results
for the gap statistics, which can be obtained from the joint
PDF involving the position of two particles. We emphasize
that, in the critical and subcritical cases, the conditioned
and unconditioned processes lead to the same asymptotic
results for the gap and order statistics. The same is not true
in the supercritical case. It will be interesting to extend our
analysis to the question of k-point correlation functions,
with k > 2. In this case one can use a similar procedure
to analyze the PDF Pðx1; x2; x3; . . . :; tjnÞ that given there
are exactly n particles in the system at time t, they are at
positions x1; x2; x3 . . .. The solutions can in principle be
obtained in the recursive manner as outlined in our paper.
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