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We study the order statistics of one-dimensional branching Brownian motion in which particles either
diffuse (with diffusion constant D), die (with rate d), or split into two particles (with rate b). At the critical
point b ¼ d, which we focus on, we show that at large time t the particles are collectively bunched together.
We find indeed that there are two length scales in the system: (i) the diffusive length scale ∼

ffiffiffiffiffiffi
Dt

p
, which

controls the collective fluctuations of the whole bunch, and (ii) the length scale of the gap between the
bunched particles ∼

ffiffiffiffiffiffiffiffiffi
D=b

p
. We compute the probability distribution function ~Pðgk; tjnÞ of the kth gap

gk ¼ xk − xkþ1 between the kth and (kþ 1)th particles given that the system contains exactly n > k
particles at time t. We show that at large t, it converges to a stationary distribution ~Pðgk; t → ∞jnÞ ¼
pðgkjnÞ with an algebraic tail pðgkjnÞ ∼ 8ðD=bÞg−3k , for gk ≫ 1, independent of k and n. We verify our
predictions with Monte Carlo simulations.
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The statistics of the global maximum of a set of random
variables finds applications in several fields, including
physics, engineering, finance, and geology [1], and the
study of such extreme value statistics (EVS) has been
growing in prominence in recent years [2–7]. In many real-
world examples where EVS is important, the maximum is
not independent of the rest of the set, and there are strong
correlations between near-extreme values. Examples can be
found in meteorology where extreme temperatures are
usually part of a heat or cold wave [8] and in earthquakes
and financial crashes where extreme fluctuations are
accompanied by foreshocks and aftershocks [9–15].
Near-extreme statistics also play a vital role in the physics
of disordered systems where energy levels near the ground
state become important at low but finite temperature [4]. In
this context, the distribution of the kth maximum xk of an
ordered set fx1 > x2 > x3…g (order statistics [16]) and the
gap between successive maxima gk ¼ xk − xkþ1 provides
valuable information about the statistics near the extreme
value. Such near-extreme distributions have recently been
of interest in statistics [17] and physics [18–21]. Although
the order and gap statistics of independent identically
distributed variables are fully understood [16], very few
exact analytical results exist for strongly correlated random
variables. In this context, random walks and Brownian
motion offer a fertile arena where near-extreme distribu-
tions for correlated variables can be computed analytically
[19–21].
Another interesting system where order statistics plays

an important role is the branching Brownian motion
(BBM). In BBM, a single particle starts initially at the
origin. Subsequently, in a small time interval dt, the particle
splits into two independent offsprings with probability bdt
and dies with probability d dt, and with the remaining
probability [1 − ðbþ dÞdt], it diffuses with diffusion

constant D. A typical realization of this process is shown
in Fig. 1. BBM is a prototypical model of evolution but has
also been extensively used as a simple model for reaction-
diffusion systems, disordered systems, nuclear reactions,
cosmic ray showers, and epidemic spreads, among others
[22–38]. In one dimension, the positions of the existing
particles at time t constitute a set of strongly correlated
variables that are naturally ordered according to their
positions on the line with x1ðtÞ > x2ðtÞ > x3ðtÞ…. The
particles are labeled sequentially from right to left as shown
in Fig. 1. One-dimensional BBM then provides a natural
setting to study the order and the gap statistics for strongly
correlated variables. Note that the positions xiðtÞ in one
dimension do not necessarily correspond to a physical
distance, but may represent for instance the degree of

x

t

x1x2x3x4

FIG. 1 (color online). A realization of the dynamics of BBM
with death (left) in the supercritical regime (b > d) and (right) the
critical regime (b ¼ d). The particles are numbered sequentially
from right to left, as shown in the inset.
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mutation of a trait [36] or the energy levels in a disordered
system [22,23].
The number of particles nðtÞ present at time t in this

process is a random variable with different behavior
depending on the relative magnitude of the rates of birth
b and death d. When b < d (subcritical phase), the process
dies eventually, and on an average, there are no particles at
large times. In contrast, for b > d (supercritical phase), the
process is explosive, and the average number of particles
grows exponentially with time. In the borderline b ¼ d
(critical) case, the probability Pðn; tÞ of having n particles
at time t, starting with a single particle initially, has a well-
known expression [39] (a simple derivation is provided in
the Supplemental Material [40]),

Pð0; tÞ ¼ bt
1þ bt

; Pðn ≥ 1; tÞ ¼ ðbtÞn−1
ð1þ btÞnþ1

: (1)

The probability that there are no particles tends to 1 as
1 − 1=ðbtÞ, while the probability that there are n ≥ 1
particles tends to 0 as 1=ðbtÞ2. The average number of
particles is independent of time with hnðtÞi ¼ P∞

n¼1 n×
Pðn; tÞ ¼ 1. There are thus strong fluctuations at the critical
point, which causes most of the realizations of this process
to have no particles at large times.
In the supercritical phase, in particular for d ¼ 0, the

statistics of the kth rightmost particle xkðtÞ have been studied
extensively in mathematics and physics literature with direct
relevance to polymer [32] and spin-glass physics [33]. For
example, the position of the rightmost particle x1ðtÞ ∼ vt
typically increases linearly with t, and its cumulative distri-
bution satisfies a nonlinear Fisher-Kolmogorov-Petrovky-
Piscounov equation [24,41] with a traveling front solution
with velocity v [26,27]. The statistics of this rightmost
particle, in the supercritical phase, also appear in numerous
other applications in mathematics [42,43] and physics
[22,23,37]. More recently, the statistics of the gaps between
successive particles have also been studied in the supercriti-
cal phase [22,23], and the average gap between the kth and
(kþ 1)th particle was shown to tend to a k-dependent
constant, independent of time t, at large t. The stationary
probability distribution function (PDF) of the first gap was
also computed numerically, and an analytical argument was
given to explain its exponential tail [22,23]. However, an
exact analytical computation of the stationary PDFs of these
gaps in the supercritical phase still remains an open problem.
Much less is known about the order statistics at the

critical point (b ¼ d), which is relevant to several systems,
including population dynamics, epidemic spreads, nuclear
reactions, etc. [37,44–46]. In this Letter, we show that, in
contrast to the supercritical case, the order and the gap
statistics can be computed exactly for the critical case
b ¼ d. In the critical case where hnðtÞi ¼ 1 at all times, to
make sense of the gaps between particles, it is necessary
to condition the process to have exactly nðtÞ ¼ n particles

at time t, with their ordered positions denoted by
x1ðtÞ > � � � xkðtÞ � � � > xnðtÞ. We show that a typical tra-
jectory of the critical process is characterized by two length
scales at late times: (i) each particle hjxkðtÞji ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dt=π

p
for

all 1 ≤ k ≤ n, implying an effective bunching of the
particles into a single cluster that diffuses as a whole,
and (ii) within this bunch, the gap gkðtÞ ¼ xkðtÞ − xkþ1ðtÞ
between successive particles tends to a time-independent
random variable of ∼Oð1Þ. We compute analytically the
PDF of this gap (conditioned on n particles) and show
that it becomes stationary at late times ~Pðgk ¼ z; t →
∞jnÞ → pðzjnÞ independent of k. Moreover, quite remark-
ably, pðzjnÞ has a universal algebraic tail, pðzjnÞ∼
8ðD=bÞ=z3, independent of k and n.
Statistics of the rightmost particle.—We first analyze the

behavior of the rightmost particle at time t. A convenient
quantity is the joint probability that there are n ≥ 1 particles
at time t, with all of them lying to the left of x: Qðn;x;tÞ¼
Prob.½nðtÞ¼n;xnðtÞ<xn−1ðtÞ<…<x1ðtÞ<x�. It evolves
via a backward Fokker-Planck (BFP) equation, which can
be derived by splitting the time interval [0, tþ Δt] into [0,
Δt] and [Δt, tþ Δt] and considering all events that take
place in the first small interval [0, Δt]. In this small interval,
the single particle at the origin can (i) with a probability bΔt
split into two independent particles, which give rise to r and
n − r particles at the final time, respectively, (ii) die with the
probability dΔt and therefore not contribute to the proba-
bility at subsequent times, or (iii) diffuse by a small amount
Δx with probability 1 − ðbþ dÞΔt, effectively shifting the
entire process by Δx. Summing these contributions, taking
the Δt → 0 limit and setting b ¼ d, we get (see the
Supplemental Material [40])

∂Qðn; x; tÞ
∂t ¼ D

∂2Qðn; x; tÞ
∂x2 − 2bQðn; x; tÞ

þ 2bPð0; tÞQðn; x; tÞ

þ b
Xn−1
r¼1

Qðr; x; tÞQðn − r; x; tÞ; (2)

starting from the initial condition Qðn;x;0Þ¼δn;1 for all x>
0 and satisfying the boundary conditions: Qðn;−∞;tÞ¼
0 and Qðn;∞; tÞ ¼ Pðn; tÞ. Next, we consider the condi-
tional probability Qðx; tjnÞ ¼ Qðn; x; tÞ=Pðn; tÞ, i.e., the
cumulative probability of the rightmost particle given n
particles at time t. Using (2) and the explicit expression of
Pðn; tÞ in (1), we find that Qðx; tjnÞ evolves via

∂Qðx; tjnÞ
∂t þ n − 1

tð1þ btÞQðx; tjnÞ

¼ D
∂2Qðx; tjnÞ

∂x2 þ 1

tð1þ btÞ
Xn−1
r¼1

Qðx; tjrÞQðx; tjn − rÞ:

(3)
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This is a linear equation for Qðx; tjnÞ for a given n that
involves, as source terms, the solutionsQðx; tjkÞwith k < n.
Hence, it can be solved recursively for any n, starting with
n ¼ 1. For n ¼ 1, one obtains an explicit solution (see the
Supplemental Material [40]),Qðx; tj1Þ ¼ 1

2
erfcð−x= ffiffiffiffiffiffiffiffi

4Dt
p Þ,

where erfcðxÞ¼ð2= ffiffiffi
π

p ÞR∞
x e−u

2

du is the complementary
error function. Consequently, the PDF of x1ðtÞ conditioned
on there being one particle at time t, Pðx1;tj1Þ¼∂x1Q×
ðx1;tj1Þ¼ð1= ffiffiffiffiffiffiffiffiffiffiffi

4πDt
p Þexpð−x21=4DtÞ, is a simple Gaussian,

exhibiting free diffusion. For later purposes, we note that
Pð1;x;tÞ¼∂xQð1;x;tÞ¼Pð1;tÞ∂xQðx;tj1Þ; i.e., the proba-
bility density ofhavingoneparticle at positionx at time t reads

Pð1; x; tÞ ¼ 1

ð1þ btÞ2
1ffiffiffiffiffiffiffiffiffiffiffi
4πDt

p e−x
2=4Dt: (4)

Finally, feeding the one particle solutionQðx; tj1Þ into (3) for
n ¼ 2, one can also obtain Qðx; tj2Þ (see the Supplemental
Material [40]) and recursively Qðx; tjnÞ for higher n.
For general n > 1, one can estimate easily the late-time

asymptotic solution. Since Qðx; tjnÞ is bounded as
0 < Qðx; tjnÞ < 1, Eq. (3) reduces, for large t, to a simple
diffusion equation, which does not contain n explicitly,
implying Qðx; tjnÞ ∼Qðx; tj1Þ. Hence, the PDF of the
rightmost particle conditioned on there being n ≥ 1 par-
ticles at time t behaves as Pðx1; tjnÞ ≈ ð1= ffiffiffiffiffiffiffiffiffiffiffi

4πDt
p Þ ×

exp ð−x21=4DtÞ for large t. By symmetry, the leftmost
particle xn is also governed by the same distribution.
This illustrates an important feature of BBM at criticality:
the rightmost and leftmost particles behave as free
diffusing particles at large t. The rest of the particles are
confined between these two extreme values [x1ðtÞ >
� � � xkðtÞ � � � > xnðtÞ] and hence also behave diffusively,
hjxkji ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dt=π

p
, independent of k and n for large t,

leading to the bunching of the particles. The gap between
the particles gkðtÞ ¼ xkðtÞ − xkþ1ðtÞ thus probes the sub-
leading large t behavior of the particle positions xkðtÞ,
which we consider next.
Gap statistics.—We start with the first gap g1ðtÞ ¼

x1ðtÞ − x2ðtÞ between the two rightmost particles con-
ditioned on there being n ≥ 2 particles at time t. To compute
this gap, it is convenient to study the joint PDFPðn; x1; x2; tÞ
that there are n particles at time t with the first particle at
position x1 and the second at position x2 < x1. We first
analyze the simplest case n ¼ 2 and argue later that the
behavior of g1 for n ¼ 2 is actually quite generic and holds
for higher n as well. Using a similar BFP approach outlined
before, we find the following evolution equation (for detailed
derivation, see the Supplemental Material [40]):

∂Pð2; x1; x2; tÞ
∂t ¼ D

� ∂
∂x1 þ

∂
∂x2

�
2

Pð2; x1; x2; tÞ

−
2b

1þ bt
Pð2; x1; x2; tÞ

þ 2bPð1; x1; tÞPð1; x2; tÞ; (5)

where Pð1; x; tÞ is given in (4). This linear equation for
Pð2; x1; x2; tÞ can be solved explicitly [40]. Consequently,
the conditional probability Pðx1; x2; tj2Þ ¼ Pð2; x1; x2; tÞ=
Pð2; tÞ [with Pð2; tÞ ¼ bt=ð1þ btÞ3 given in (1)], denoting
the joint PDF of x1 and x2 given n ¼ 2 particles, can also be
obtained explicitly. The solution is best expressed in terms of
the variables, s ¼ ðx1 þ x2Þ=2 (center of mass) and g1 ¼
x1 − x2 (gap): Pðx1; x2; tj2Þ → ~Pðs; g1; tj2Þ and reads [40]

~Pðs; g1; tj2Þ ¼
�
1þ bt
2πDt

�Z
t

0

dt0

ð1þ bt0Þ2

×
e−ðg21=8Dt0Þ−ðs2=2Dð2t−t0ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t0ð2t − t0Þp : (6)

It is easy to check that the marginal PDF of the center of
mass

R∞
0

~Pðs;g1;tj2Þdg1 behaves diffusively ∼ð1=
ffiffiffiffiffiffiffiffiffiffiffi
4πDt

p Þ×
exp ð−s2=4DtÞ for large t. Similarly, one can obtain the
marginal PDF of the gap ~Pðg1; tj2Þ ¼

R∞
−∞

~Pðs; g1; tj2Þds at
any t

~Pðg1; tj2Þ ¼
�
1þ bt
bt

�Z
t

0

bdt0

ð1þ bt0Þ2
expð− g2

1

8Dt0Þffiffiffiffiffiffiffiffiffiffiffiffi
2πDt0

p : (7)

At large times, ~Pðg1; tj2Þ converges to a stationary distri-
bution ~Pðg1; t → ∞j2Þ ¼ pðg1j2Þ (Fig. 2), which can be
computed explicitly. It can be expressed as pðg1j2Þ ¼
ð4 ffiffiffiffiffiffiffiffiffi

D=b
p Þ−1f½g1=ð4

ffiffiffiffiffiffiffiffiffi
D=b

p Þ� with

fðxÞ ¼ −4xþ
ffiffiffiffiffiffi
2π

p
e2x

2ð1þ 4x2Þerfcð
ffiffiffi
2

p
xÞ: (8)

This distribution (8) has a very interesting relation to the
PDF of the (scaled) kth gap between extreme points visited
by a single random walker found in Ref. [19] [the scaling
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FIG. 2 (color online). Exact gap PDF conditioned on two
particles [Eq. (7)] at different times, showing the approach to the
stationary behavior at large times. The solid line indicates the
expected power law decay for t → ∞. Here D ¼ 1 and b ¼ 1=2
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function found there, see Eq. (1) of [19], is exactly
−f0ðxÞ= ffiffiffiffiffiffi

2π
p

]. It behaves asymptotically as

pðg1j2Þ ∼
8<
:

ffiffiffiffiffi
πb
8D

q
; g1 → 0;

ð8Db Þg−31 ; g1 → ∞:
(9)

This function pðg1j2Þ describes the typical fluctuations of
the gap g1, which are of order

ffiffiffiffiffiffiffiffiffi
D=b

p
. However, because of

the algebraic tail, only the first moment of the gap is
dominated by the typical fluctuations, hg1i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πD=b

p
.

The higher moments instead get contributions from the time-
dependent far tail of the PDF in (7): hg21i ∼ lnðtÞ and hgm1 i ∼
tðm=2Þ−1 for m > 2. In Fig. 2, we plot ~Pðg1; tj2Þ at different
times, showing the approach to the stationary distribution
with a power law tail at large times.
The computation for the first gap g1 for n ¼ 2 outlined

above can be generalized to the case when n > 2. Once
again using the BFP approach, we find that the joint PDF
Pðn; x1; x2; tÞ obeys

∂Pðn; x1; x2; tÞ
∂t ¼ D

� ∂
∂x1 þ

∂
∂x2

�
2

Pðn; x1; x2; tÞ

−
2b

1þ bt
Pðn; x1; x2; tÞ þ bSðn; x1; x2; tÞ:

(10)

Here Sðn; x1; x2; tÞ is a source term that arises from the
branching at the first-time step. It can be computed explicitly
in terms of spatial integrals involving Pðk;x1;x2;tÞ with
k < n—the resulting expression being however a bit cum-
bersome (see the Supplemental Material [40]). Hence,
Eq. (10) can in principle be solved recursively to obtain
the exact distribution of the first gap g1 ¼ x1 − x2 for general
n. We have solved these equations exactly up to n ¼ 4 [40].
These computations are instructive to analyze Eq. (10) in
the large t and large g1 limit for generic n. Omitting details
[40], we find that indeed for general n, the PDF of the
first gap tends at late times to a stationary distribution
~Pðg1; t → ∞jnÞ ¼ pðg1jnÞ. While the full stationary PDF
pðg1jnÞ depends on n (see Fig. 3), its tail for large g1 turns
out to be universal, pðg1jnÞ ∼ ð8D=bÞg−31 , for all n. The
asymptotic tail of the PDF of the kth gap conditioned on n
particles can be similarly estimated by writing down the
evolution equation for Pðn; xk; xkþ1; tÞ, the joint PDF of
having n particles at time t with the kth particle at xk and
(kþ 1)th particle at xkþ1. Analyzing this equation in a
similar way (see the Supplemental Material [40]), one
concludes (i) ~Pðgk; t → ∞jnÞ ¼ pðgkjnÞ (stationary distri-
bution) and (ii) for large gk, pðgkjnÞ ∼ ð8D=bÞg−3k for all k
and n.
Monte Carlo simulations.—We have directly simulated

the critical BBM process, and we have computed the PDFs

of the gap. To obtain better statistics, we compute the
time-integrated PDF Sðgk; tjnÞ ¼ ð1=tÞ R t

0
~Pðgk; t0jnÞdt0,

which has the same stationary behavior as ~Pðgk; tjnÞ,
Sðgk; t → ∞jnÞ ¼ pðgkjnÞ. In Fig. 3, we plot Sðg1; tjnÞ,
corresponding to the first gap, for different values of n ¼
1;…; 8 and t ¼ 104. The different curves show an approach
to the same asymptotic, large g1, behavior (note that the
approach to the stationary state gets slower as n increases).
In the inset of Fig. 3, we show a plot of Sðgk; tjnÞ for
n ¼ 10 and t ¼ 104 for different values of k ¼ 1;…; 5.
This also shows a convergence to the same large gk
behavior ∼ð8D=bÞg−3k . Numerical results for short times
(up to n ¼ 4), not shown here (see the Supplemental
Material [40]), show a perfect agreement with the solution
of Eq. (10).
Conclusion.—In this Letter, we obtained exact results for

the gap distribution of the critical BBM in one dimension.
We circumvented the problem of nonlinearities by con-
ditioning the process to have a fixed particle number. This
kind of conditioning is actually quite general and may
prove useful in other generic problems involving birth,
death, and branching. We showed that the statistics of the
near-extreme points display a quite rich behavior charac-
terized by a stationary gap distribution with a universal
algebraic tail. It will be interesting to extend this method to
exactly compute the gap statistics in the supercritical case.
Finally, our method can be easily extended to branching
processes where diffusion takes place in higher dimensions
with the radial distance undergoing a Bessel process. In this
case, one can order the particles by their radial distance
from the origin and study their order and gap statistics.
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