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We show that critical exponents of the transition to columnar order in a mixture of 2 × 1 dimers and
2 × 2 hard squares on the square lattice depends on the composition of the mixture in exactly the manner
predicted by the theory of Ashkin-Teller criticality, including in the hard-square limit. This result settles the
question regarding the nature of the transition in the hard-square lattice gas. It also provides the first
example of a polydisperse system whose critical properties depend on composition. Our ideas also lead to
some interesting predictions for a class of frustrated quantum magnets that exhibit columnar ordering of the
bond energies at low temperature.
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Introduction.—In materials that exhibit a continuous
transition from a low-density fluid to an ordered high-
density crystalline state with spontaneous symmetry break-
ing, critical properties in the vicinity of the transition are
generally independent of microscopic details such as
chemical composition and the precise form of the inter-
actions. Indeed, in the standard theory of such critical
phenomena, these properties are generally expected to
depend only on the symmetries of the ordered state.
This universality of critical properties makes it possible
to understand such behaviors in terms of simple models.
Lattice-gas models of hard-core particles, with different
sizes and shapes of the excluded-volume region around
each particle, provide many paradigmatic examples of
such continuous transitions from a low-density fluid to a
high-density ordered state [1–9].
One such simple lattice-gas model of 2 × 2 hard squares

on the square lattice, has long been of special interest and
some controversy. Here, the crystalline state has a sliding
instability that leads to long-range columnar (stripe) order
in the high-density phase [10–18]. General symmetry
arguments [19,20] suggest that the transition to this
columnar ordered phase should provide an example of
“Ashkin-Teller” (AT) critical behavior [21–38]. Such
Ashkin-Teller transitions are interesting exceptions to
universality, since the correlation length for columnar order
is expected to grow with a power-law exponent ν that
depends on microscopic details. In light of this, it is
surprising that several large-scale Monte Carlo simulations
[15–17] found critical properties that are very close to those
of a two-dimensional Ising model. Some of these [15]
favored an Ising critical point, while others identified small
deviations from Ising behavior [16,17].
In this Letter, we show that critical exponents of the

transition to columnar order in a more general mixture of
2 × 1 dimers and 2 × 2 hard squares on the square lattice

[Fig 1(a)] depends on the composition of the mixture in
exactly the manner predicted by the theory of Ashkin-Teller
criticality, including in the hard-square limit. This result
settles the question regarding the nature of the transition in
the hard-square lattice gas. It also provides the first example
of a polydisperse system whose critical properties depend
on composition. Our ideas also lead to some interesting
predictions for a class of frustrated quantum magnets that
exhibit columnar ordering of the bond energies at low
temperature.
The original hard-square lattice gas corresponds to the

boundary line VS in the phase diagram [Fig. 1(b)] of this
more general model, while line VD is the well-studied
monomer-dimer model [39–46]. For the vacancy-free
mixture along line DS [Fig. 1(b)], we show that the
power-law columnar order present in the dimer limit D
is enhanced by adding hard squares. This eventually leads

FIG. 1 (color online). (a) Part of a low-density configuration of
2 × 1 tiles (dimers) and 2 × 2 tiles (hard squares) on the square
lattice, also showing values of the columnar order parameter field
ψð~rÞ [see Eq. (2)]. (b) Schematic phase diagram of Zdsv. ρs; ρd,
and ρv are the densities of squares, dimers, and vacancies,
respectively, with ρs þ ρd þ ρv ¼ 1. Monte Carlo results along
the cuts I, II, and III are discussed in the text. (c) Columnar
ordered high-density configuration, with stripes running in the
vertical direction.
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to a Kosterlitz-Thouless (KT) phase transition from this
power-law ordered phase to a hard-squares-rich phase with
long-range columnar order [Fig. 1(c)]. Noting that the
power-law ordered phase and the KT point are both
characterized by an emergent U(1) symmetry, we show
that correlations of the two-sublattice order parameter of
hard squares decay in this regime with the same power-law
exponent as those of the nematic order parameter. With
vacancies allowed, we establish that the phase boundary
[Fig. 1(b)] between this columnar ordered phase and the
low-density fluid is in the Ashkin-Teller (AT) universality
class with a fixed anomalous exponent η ¼ 1=4 for the
columnar order parameter, and a continuously varying
correlation length exponent ν. We also demonstrate that
the anomalous exponent η2 for nematic order obeys an
Ashkin-Teller relation η2 ¼ 1 − 1=ð2νÞ along the phase
boundary, including at the hard-square transition, thus
settling the original question of critical properties at the
hard-square transition. These results are made possible by
our identification of a detailed correspondence between the
microscopic hard-square and dimer variables measured in
our Monte Carlo simulations and the XY (Ising) order-
parameter fields of a long-wavelength description of KT
(AT) criticality. Some of our results on the hard-square
lattice gas were summarized earlier in the doctoral thesis of
K. Ramola [47] at the TIFR.
Model.—Our analysis begins by defining a lattice gas

[Fig. 1(a)] of hard squares that occupy the four elementary
plaquettes of a square lattice, dimers that occupy two
plaquettes, and vacant single plaquettes (vacancies or
monomers). We consider a L × L square lattice with
periodic boundary conditions and associate activities
zs; zd, and zv with each square, dimer, and vacancy,
respectively. The grand partition function of the system
is then given by

Zdsv ¼
X

Cdsv

zNs
s zNd

d zNv
v : ð1Þ

Here, the sum is over all allowed configurations Cdsv that
respect the hard-core constraints [Fig. 1(a)], and Ns, Nd,
and Nv, the total numbers of squares, dimers, and vacan-
cies, obey the constraint 4Ns þ 2Nd þ Nv ¼ L2, allowing
us to parametrize results in terms of two independent
parameters: v ¼ zvz

−1=4
s and w ¼ zd=

ffiffiffiffi
zs

p
.

Line DS.—At v ¼ 0, Zdsv reduces to Zds, the partition
function of a vacancy-free mixture of squares and dimers.
In the zs → 0 limit, Zds further reduces to Zdimers, the
partition function of the fully packed dimer model. Zdimers
is characterized by a power-law tendency to columnar order
manifested in the connected correlation function of hori-
zontal (vertical) dimers, which decays as ð−1Þl=l2 for large
separation l along the x (y) axis [42]. For small but nonzero
w−1, Zds involves configurations with a small density of
squares. Regarding each square as a length-four loop and
each dimer as a length-two loop on the dual lattice allows

us to use the recursive procedure of Ref. [48] to map Zds
to an interacting dimer model with k-dimer interactions
(k ¼ 2; 3;…). The leading interaction is a two-body
attraction V2 of strength log½1þ 1=ð2w2Þ� between two
adjacent dimers whose long sides touch fully. As seen in
earlier work [35–37], this interaction enhances the power-
law columnar order present in the dimer limit, with power-
law exponent ηðwÞ decreasing from ηðw ¼ ∞Þ ¼ 2 as V2

increases in strength. Furthermore, the net effect of the
k > 2 interaction terms also favors columnar ordering.

Therefore, for w less than a critical value wð0Þ
c , we expect a

phase with long-range columnar order. In this columnar
state, the symmetry of π=2 rotations is broken and the unit
cell is doubled in the direction perpendicular to the stripes
that form [Fig. 1(c)].
This fourfold symmetry breaking is conveniently char-

acterized in terms of a complex order parameter ψð~rÞ
defined on plaquettes ~r in terms of microscopic variables
as follows: ψð~rÞ vanishes at ~r if plaquette ~r is vacant.
Otherwise, it takes on the values depicted in Fig. 1(a).
These values are specified based on the coordinate
~R≡ ðm; nÞ of the bottom, left corner of the tile covering
~r as follows:

ψ1 ¼ ð−1Þm; ψ2 ¼ −ið−1Þn;
ψ3 ¼ ½ð−1Þm − ið−1Þn�=

ffiffiffi
2

p
:

ð2Þ

With this definition, hψi takes on values �a;�ia in the
four symmetry-related columnar-ordered states (the mag-
nitude a > 0 depends on the composition of the mixture),
while hψ�ð~rÞψð0Þi falls off as 1=rηðwÞ for large r in the
power-law columnar-ordered phase.

To understand the nature of the transition at wð0Þ
c along

DS [Fig. 1(b)], we use the fact that Zds admits a height
representation; i.e., the microscopic configurations are
uniquely specified in terms of a single-valued scalar height

Hð~RÞ defined on lattice sites ~R as follows: Set ηmn ≡
ð−1Þmþn and the height at the originHð ~OÞ ¼ 0. To construct

the height field Hð~RÞ, traverse any sequence of links of the

square lattice to go from ~O to ~R≡ ðm; nÞ. When traversing
a vertical link from (m; n) to (m; nþ 1) [horizontal link
from (mþ 1; n) to (m; n)], H increases by 3ηmn=4 if this
link is fully covered by a dimer, by ηmn=4 if fully covered
by a square, and by −ηmn=4 otherwise. When there are no
squares, this reduces to the well-known height representa-
tion for the fully packed dimer model [37,49–56].
In the w > wð0Þ

c power-law ordered phase, long-
wavelength fluctuations of the height field are well
described by the effective action [37,49–52,54,56]:

Seff ¼
Z

Λ
d2x

�
πgð∇hÞ2 þ

X

n¼4;8;12…

un cosð2πnhÞ
�
: ð3Þ
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Here h is a coarse-grained version of the microscopic
height field Hð~RÞ, the values of the stiffness g and n-fold
anisotropy terms un at the coarse-graining scale Λ are
phenomenological parameters, and the form of the cosine
terms in the action are fixed [37,54,56] by the trans-
formation properties of h under lattice symmetries of the
original partition function.
The utility of Seff lies in two observations: First, since

e2πihð~rÞ transforms [37,54,56] under lattice symmetries in
the same way as ψð~rÞ, we expect long-distance properties
of correlators of ψð~rÞ in Zdsv to correspond to those of
e2πihð~rÞ in the coarse-grained theory Seff. Second, Seff with
all un set to zero represents a line of critical fixed points
parametrized by a variable stiffness g. All allowed cosine
terms un are irrelevant perturbations of this fixed line for
g < 4 [24]. Along this fixed line [24], he2πi½hð~rÞ−hð0Þ�i falls
off as 1=r1=g. This implies power-law columnar order with
exponent η ¼ g−1, since correlations of ψð~rÞ and e2πihð~rÞ
have the same long-distance behavior. Therefore, we may
identify the w → ∞ limit of Zds with the point [37] g ¼ 1=2
on this fixed line, consistent with ηð∞Þ ¼ 2. Since we have
already argued that ηðwÞ reduces as w−1 is increased from
0, we expect that the corresponding value of g increases on
this fixed line until it hits g ¼ 4, corresponding to η ¼ 1=4.
At this point, u4 becomes marginally relevant, driving a
Kosterlitz-Thouless (KT) transition to a fourfold sym-
metry-breaking state with long range order for e2πihð~rÞ,
i.e., a columnar ordered state with nonzero hψi.
This irrelevance of all cosine terms in the power-law

ordered phase implies that the phase of ΨL ≡P
rψð~rÞ for

large L will be uniformly distributed in (0; 2π) throughout
the power-law ordered phase and at the KT point, reflecting
the presence of an emergent U(1) symmetry. From their
microscopic expressions, we note that Re½ψ2ð~rÞ� measures
nematic order in terms of orientations of dimers, while
Im½ψ2ð~rÞ� is the two-sublattice order parameter of hard
squares. This U(1) symmetry implies that ηs, the anomalous
exponent governing the power-law correlations of
Im½ψ2ð~rÞ�, equals η2, the corresponding exponent for
Re½ψ2ð~rÞ�. The Gaussian nature of height fluctuations
further ensures that both η2 and ηs equal 4η throughout
this power-law phase and at the KT point.
The AT phase boundary.—The KT transition at

(w ¼ wð0Þ
c ; v ¼ 0) represents the beginning of an Ashkin-

Teller critical line in the phase diagram of Zdsv [Fig. 1(b)],
at whose other end (w ¼ 0; v ¼ v�c) lies the density-driven
transition of the hard-square lattice gas. To establish this,
we first note that it is enough to keep a nonzero u4 and
set all other un in Seff to zero in the vicinity of this KT
transition at g ¼ 4 [24]. Thus, the v ¼ 0 KT transition can
be thought of as a transition to long-range order in a vortex-
free XY model with fourfold anisotropy. Next, we note that
an isolated vacancy on plaquette ~r ¼ ðmþ 1=2; nþ 1=2Þ
causes the phase of the XY order parameter ψð~rÞ to wind

by 2π × ð−1Þmþn along a circuit that encloses the vacant
plaquette once. On the vacant plaquette itself, ψ ¼ 0, as
befits the core of a vortex in an XY order parameter. Thus,
a nonzero density of vacancies in Zdsv corresponds to
perturbing this vortex-free, fourfold anisotropic XY model
with a nonzero density of vortices and antivortices. As is
well known from the work of Kadanoff and others on such
XY models with fourfold anisotropy [24–28,30,31,35–37],
vorticity and fourfold anisotropy “balance” each other
along a line of fixed points that starts at this vortex-free
KT point. This fixed line describes the continuously
varying critical properties of the Ashkin-Teller universality
class [21–38], i.e., the critical behavior of two Ising models
coupled via their energy densities. For Zdsv, this implies

that the (w ¼ wð0Þ
c ; v ¼ 0) KT transition represents the start

of an AT critical line that separates a square-rich columnar-
ordered phase from a low-density fluid phase [Fig. 1(b)].
The density-driven transition at (w ¼ 0; v ¼ v�c) in the hard-
square lattice gas thus represents the other end of this
AT line. The two real scalar fields σ and τ of this alternate
Ashkin-Teller description are defined in terms of the XY
order parameter ψ [defined in Fig. 1(a)] by the equation

ψð~rÞ≡ σð~rÞ þ τð~rÞ
2

þ i
σð~rÞ − τð~rÞ

2
: ð4Þ

From their expressions in terms of microscopic variables,
it is clear that lattice symmetries only guarantee

hσð~r1Þτð~r2Þi ¼ 0; hσð~rÞσð0Þi ¼ hτð~rÞτð0Þi: ð5Þ
In particular, hσ2ð~rÞτ2ð0Þi is not constrained to vanish even
in the pure hard-square limit, and there is no symmetry
reason to expect that the Ising fields σ and τ are asymp-
totically decoupled.
Numerics.—These ideas, in conjunction with our knowl-

edge [24–28,30,31,35–37] of the long-wavelength physics
of the Ashkin-Teller universality class, lead to three key
predictions that can be tested via numerical simulations: All
along the AT phase boundary, hψ�ð~rÞψð0Þi is predicted to
fall off as 1=r1=4, while hRe½ψ2ð~rÞ�Re½ψ2ð0Þ�i is expected
to decay as 1=rη2ðvÞ, where η2ðvÞ varies continuously,
starting from the v ¼ 0 value η2ðv ¼ 0Þ ¼ 1. Thus, η2
is a natural coordinate in terms of which one can specify
the position along the AT phase boundary. Moreover,
the correlation-length exponent ν is related to η2 via an
Ashkin-Teller relation:

η2 ¼ 1 − 1=ð2νÞ: ð6Þ
In the power-law ordered phase at full packing,

our earlier results imply, via finite-size scaling, that
CðLÞ ¼ hjΨLj2i=L2 scales as L2−ηðwÞ, while RðLÞ ¼
hfP~rRe½ψ2ð~rÞ�g2i=L2 and IðLÞ ¼ hfP~rIm½ψ2ð~rÞ�g2i=
L2 scale as L2−4ηðwÞ. In the vicinity of the AT phase
boundary, finite-size scaling implies that CðLÞ and RðLÞ

PRL 114, 190601 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
15 MAY 2015

190601-3



are expected to satisfy the scaling forms L7=4fCðδL1=νÞ and
L2−η2ðvÞfRðδL1=νÞ respectively, where δ denotes the
deviation from criticality and the f are finite-size scaling
functions. Close to the density-driven hard-square transi-
tion, it is more convenient to measure η2 using an alternate
nematic order parameter Tð~rÞ, which keeps track of the
orientations of vacancy pairs and dimers adjacent to hard
squares: Tð~rÞ ¼ 0 when ~r is not covered by a hard square.
Otherwise, Tð~rÞ≡ THð~rÞ − TVð~rÞ, where THð~rÞ [TVð~rÞ]
equals one-quarter the total number of horizontal (vertical)
vacancy pairs or dimers immediately adjoining the hard
square that covers ~r. Tð~rÞ transforms in the same way as
Re½ψ2ð~rÞ�, and hTð~rÞTð0Þi is predicted to also decay as
1=rη2 at criticality. By finite-size scaling, this implies that
N ðLÞ≡ h½P~rTð~rÞ�2i=L2 is expected to have the scaling
form L2−η2fN ðδL1=νÞ in the vicinity of the hard-square
transition.
To test these predictions, we have performed

Monte Carlo simulations of Zdsv on L × L periodic lattices
(with L up to 1024) using a variation [57] of an algorithm
[58] that generates, in a single move, an equilibrium
configuration of an entire row (or column), given the
configuration of the rest of the system. Our method does
not suffer from jamming even at full packing, and can be
generalized to a large class of similar problems. More
details are provided in the Supplemental Material [57]. For

w > wð0Þ
c ≈ 0.198ð2Þ along DS, we find clear evidence of a

v ¼ 0 power-law ordered phase, in which CðLÞ=L2 decays
as 1=LηðwÞ, while RðLÞ=L2 and IðLÞ=L2 both decay as

1=L4ηðwÞ, with ηðwð0Þ
c Þ ¼ 1=4 (Fig. 2). For the hard-square

lattice gas, we estimate that the transition point is located at
v�c ¼ 0.3180ð3Þ. Our data for CðLÞ is well fit by η ¼ 1=4,
and ν� ≈ 0.92ð3Þ, consistent with some of the earlier
studies [16,17], whileN ðLÞ diverges as L2−η�

2 at criticality,
with η�2 ≈ 0.46ð3Þ (Fig. 3), consistent with the Ashkin-
Teller relation, providing conclusive evidence of the AT

nature of the hard-square transition, and emphasizing that
the hard-square transition lies beyond the decoupled Ising
point [Fig. 1(b)] on the AT phase boundary. Additionally,
at an intermediate point [Fig. 1(b)] on the phase boundary,
our data for CðLÞ is fit well by η ¼ 1=4 and ν ≈ 1.70ð5Þ,
while RðLÞ grows as L2−η2 at criticality, with η2 ≈ 0.70ð5Þ
(Fig. 4), consistent with the Ashkin-Teller relation. This
provides the first test of this relation in a microscopic lattice
model with continuously varying exponents.
Outlook.—Given that columnar ordering is ubiquitous in

a wide variety of strongly correlated systems [59–64], the
ideas discussed here are of immediate relevance in a variety
of other contexts. For instance, the emergent U(1) sym-
metry at full packing is closely related to the U(1)
symmetry that is expected to emerge in the zero temper-
ature limit [65,66] of the thermal AT transition [59] to
columnar valence-bond solid (VBS) order in a class of
frustrated square-lattice antiferromagnets that have been

FIG. 2 (color online). CðLÞ=L2 ∼ L−ηðwÞ with variable exponent
ηðwÞ in the power-law ordered phase at full packing. Insets:
RðLÞ=L2 and IðLÞ=L2 both scale as L−4ηðwÞ with the
same ηðwÞ.

FIG. 3 (color online). Scaling collapse of CðLÞ=L7=4 for various
L at the hard-square transition yields the estimate ν� ¼ 0.92ð3Þ
and v�c ¼ 0.31799ð30Þ. Inset: N ðLÞ=L2−η�

2 is a constant for
v ¼ v�c with η�2 ≈ 0.46ð3Þ.

FIG. 4 (color online). Scaling collapse of CðLÞ=L7=4 for various
L along a cut that crosses the AT boundary at an intermediate
point wc ¼ 0.1600ð1Þ, vc ¼ 0.0623ð1Þ yields the estimate
ν ¼ 1.70ð5Þ. Inset: Scaling collapse of RðLÞ=L2−η2 yields the
estimate η2 ≈ 0.70ð5Þ.
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the focus of many recent studies [67–77]. The ideas
developed here predict that this emergent U(1) symmetry
constrains the behavior of certain subdominant orders at
this “deconfined” quantum critical point [65,66]. More
precisely, with ψð~rÞ now representing the complex VBS
order parameter, we predict that correlations of Re½ψ2ð~rÞ�,
the valence-bond nematic order parameter, decay with
power-law exponent ηVBN that equals the power-law decay
exponent for correlations of Im½ψ2ð~rÞ�, the wave vector
(π; π) component of the next-nearest-neighbor bond energy,
at this quantum critical point. Additionally, we predict that
ηVBN and ν, the correlation length exponent for VBS order
parameter correlations, are related all along the AT phase
boundary via the Ashkin-Teller relation discussed here.
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