
Scaling Theory for the Frictionless Unjamming Transition

Kabir Ramola* and Bulbul Chakraborty†

Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
(Received 22 September 2016; revised manuscript received 24 January 2017; published 27 March 2017)

We develop a scaling theory of the unjamming transition of soft frictionless disks in two dimensions by
defining local areas, which can be uniquely assigned to each contact. These serve to define local order
parameters, whose distribution exhibits divergences as the unjamming transition is approached. We derive
scaling forms for these divergences from a mean-field approach that treats the local areas as noninteracting
entities, and demonstrate that these results agree remarkably well with numerical simulations. We find that
the asymptotic behavior of the scaling functions arises from the geometrical structure of the packing while
the overall scaling with the compression energy depends on the force law. We use the scaling forms of the
distributions to determine the scaling of the total grain area AG and the total number of contacts NC.
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Introduction.—The jamming of soft particles has been
used as a paradigmatic model of granular [1–9] and glassy
systems [10–12], active matter [13], and biological tissues
[14]. Frictionless soft disks and spheres serve as a first
approximation to many theoretical models and have been
extensively investigated over the last decade [15–27]. The
unjamming transition of soft spheres exhibits properties
reminiscent of critical points in equilibrium systems.
Observations include power laws [16], a scaling form
for the energy analogous to free energy and resulting
relationships between scaling exponents [26], scaling
collapse of dynamical quantities such as viscosity [28],
and indications of diverging length scales [21]. Many
scaling properties of soft particles near the jamming
transition have been analyzed in detail [29,30], and
finite-size scaling studies seem to suggest a mixed-order
transition with two critical exponents [18,21].
Despite considerable effort towards a unifying theory, a

clear description of unjamming is still lacking, and the
origin of various power laws in this system have remained
somewhat mysterious. Theories so far have focused on the
behavior of global quantities such as energy, packing
fraction, pressure, stresses, and the total contact numbers.
This is in contrast to the norm in studying critical points
where a local order parameter and its distribution within the
system is of primary importance. In this Letter we highlight
the emergence of diverging contributions to distributions of
local quantities, and show how the underlying disorder of
the contact network naturally lead to these divergences.
This in turn leads to nontrivial power laws involving global
quantities such as the excess contact number and the areas
occupied by grains.
Our treatment relies on assigning local grain areas to

triangular units uniquely associated with individual con-
tacts, which play the role of “quasiparticles.” We use
properties of the underlying distribution of interparticle
distances and angles to derive a probability distribution of

these areas, and compare these predictions to results of
numerical simulations. As will be clear from our analysis,
the appearance of triangular units as the basic objects in the
scaling theory highlights the importance of three-body
terms, as opposed to two-body terms such as interparticle
distances that have been considered in the literature.
We focus specifically on the unjamming transition of soft

disks; i.e., we approach the transition point from mechan-
ically stable (jammed) packings with decreasing energies
(EG → 0þ). In such jammed states, the disks organize into
complicated “random” structures which are hard to char-
acterize owing to the complexity of the nonconvex curved
shapes formed by voids. In order to avoid this problem we
construct polygonal tilings that partition space into areas
occupied by grains and areas occupied by the voids (see
Fig. 1). This construction [27] bears similarities to the
“quadron” framework [31–33].
We then assign the polygonal grain areas to triangular

units αc (normalized by the size of each disk), uniquely
associated with each contact c. This defines a reliable local
order parameter for the unjamming transition [27]. The
probability distribution of these areas displays divergences
at well-defined values of α that become sharper as the
transition is approached. We identify these as arising from
specific structures within the jammed state. The distribution
of areas is best expressed as

pðαÞ ¼ pregðαÞ þ pDOðαÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
pðα;>3Þ

þ pOðαÞ|fflffl{zfflffl}
pðα;3Þ

; ð1Þ

where pDO and pO are classified as “disordered” and
“ordered” divergences, respectively. Disordered divergen-
ces arise from cycles (see Fig. 1) with four or more disks in
contact (zv > 3, labeled as > 3 for brevity), and the
“ordered” ones arise within cycles formed by three disks
(zv ¼ 3, labeled as 3). preg represents the regular part of
the distribution that does not have a diverging energy
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dependence. The main result of this Letter is the derivation
and verification through numerical simulations of a scaling
form for pDO (Fig. 2), which displays a divergence at
α ¼ 1=2,

pDOðαÞ ¼ EG
−1=2μPDO

� 1
2
− α

EG
1=μ

�
; ð2Þ

where μ characterizes the interparticle potential (μ ¼ 2 for
harmonic potentials). The scaling function possesses the
following asymptotic behavior:

PDOðxÞ ∼
�
x3=2; x → 0;

x−1=2; x → ∞:
ð3Þ

Similarly, the “ordered” divergence has a scaling form

pOðαÞ ¼ EG
−1=μPO

� ffiffi
3

p
4
− α

EG
1=μ

�
; ð4Þ

which is integrable in the EG → 0þ limit. The scaling
functions do not depend on the interaction potential.
The divergences in pðαÞ are reminiscent of van Hove

singularities in the vibrational density of states in crystals
[34] which are broadened by thermal disorder. The diver-
gences in pðαÞ are broadened at finite EG, becoming
infinitely sharp only as EG → 0þ. These singular distribu-
tions are in sharp contrast to the broadening of order

parameter distributions approaching a thermal critical point.
Wewill show that the power laws describing the evolution of
global quantities approaching unjamming are a consequence
of the singularities of pDOðαÞ. In particular, the total number
of contacts (NC), with ΔNC ¼ NCðEGÞ − NCð0Þ, scales as

ΔNC ∼ E1=2μ
G ; ð5Þ

a form observed in several studies of jamming [16,19,26,
27,35]. The scaling of the total grain area AG, with
ΔAG ¼ AGðEGÞ − AGð0Þ, follows the scaling of ΔNC.
Energy ensemble and local areas.—We perform our

analysis in a fixed energy-volume ensemble ðEG; VÞ [27] of
jammed states of soft frictionless disks in two dimensions.
The microstates of this ensemble are specified by grain
positions f~rgg and radii fσgg that yield a force balanced
state at a given energy EG. We keep the volume of the total
space fixed (Lx ¼ Ly ¼ 1). We consider disks interacting
via a repulsive potential

V½f ~rg; σgg� ¼
X
g≠g0

1

μ

�
1 −

j~rg;g0 j
σg;g0

�
μ

Θ
�
1 −

j~rg;g0 j
σg;g0

�
; ð6Þ

with μ > 1, ~rg;g0 ¼ ~rg0 − ~rg, σg;g0 ¼ σg þ σg0 , and the energy
of a microstate is EG ¼ P

gV½f ~rg; σgg�.
Each jammed state of frictionless disks is characterized

by a system spanning contact network which naturally
partitions the space into convex minimum cycles (or faces)
of zv sides each (see Fig. 1). The system can then be
parametrized in terms of the interparticle distance vectors

FIG. 2. Scaling collapse of the distribution of areas pðα; > 3Þ
of the zv > 3 cycles at different energies. The plot shows
distributions for NG ¼ 4096 disks interacting via harmonic
potentials (μ ¼ 2). x → 0 corresponds to disks with contact
angles close to π=2. The scaling is consistent with Eq. (2).
The limiting behaviors of the distribution are provided in Eq. (3).
Inset: Comparison between the distributions obtained from the
theory (bold lines) and numerical simulations demonstrating very
good agreement.

FIG. 1. A section of a jammed configuration of soft frictionless
disks. The centers of the grains with radii fσgg are located at
positions f~rgg. The contact points between grains are located at
positions f~rcg, with contact vectors ~rg;c ¼ ~rc − ~rg. The distance
vectors ~rg;g0 ¼ ~rg0 − ~rg form a network of faces (minimum cycles)
with zv sides each. The polygonal tiling associated with the
packing partitions the space into areas occupied by grains (white)
and areas occupied by voids (blue). The triangle formed by the
points ð~rg; ~rc; ~rc0 Þ (shaded area) is uniquely assigned to the
contact c and has an associated area a≡ ag;c, with a normalized
area αc ¼ ag;c=σ2g.
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f~rig;g0 g, where the index i labels the vectors within each

cycle. The loop constraints around each face
P

i~r
i
g;g0 ¼ 0,

account for the overcounting of the degrees of freedom. As
we show [36], these constraints provide the crucial corre-
lations that determine the internal structures and in turn the
scaling behavior near the unjamming transition. The
positions of the contacts are represented by f~rcg with
~rc ¼ ~rg þ ½σg=ðσg þ σ0gÞ�ð~rg0 − ~rgÞ, where c is the contact
between grains g and g0, and contact vectors ~rg;c ¼ ~rc − ~rg.
Each contact is counted twice, once for each grain (see
Fig. 1). Following the network representation introduced in
[27], we define local and global order parameters, respec-
tively, as the areas

ag;c ¼
1

2
ð~rg;c × ~rg;c0 Þ and AG ¼

XNC

c¼1

ag;c; ð7Þ

where ~rg;c and ~rg;c0 are adjacent contact vectors (see Fig. 1)
and the convention is that the area bounded by ðc; c0Þ is
uniquely assigned to the contact c. These individual areas,
ag;c, which play the role of a local packing fraction in our
description can vary between 0 and 1

2
σg

2 where σg is the
radius of grain g.
Distribution of areas.—We begin by deriving the scaling

behavior of the distribution of areas based on some simplify-
ing assumptions, and then compare the derived results to
ones observed in numerical simulations. We assume that
(i) the underlying system is disordered and has reproducible
local distributions, (ii) the distribution of contact vectors is
independent of their orientation, and (iii) there are no
correlations between the contact triangles beyond those
required by the loop constraints [36]. The comparison to
numerical simulations demonstrates that this mean-field
theory provides an accurate description of the scaling forms.
In order to account for thevarying sizes of the grains between
configurations at a given EG, we work with the normalized
area, αc ¼ ag;c=σg2, which is bounded between ½0; 1

2
�.

Similarly, we normalize the contact vectors by the size of
the disks, with j~rg;cj → j~rg;cj=σg (to avoid a proliferation of
symbols) now being bounded between [0, 1].
In a disordered jammed state, the overlaps between disks

Δrg;c, with j~rg;cj ¼ 1 − Δrg;c, vary between contacts and
can be treated as random variables with a reproducible
distribution pðΔrg;cÞ depending on EG. Using EG ¼
ð1=NGÞ

PNC
i¼1ðΔrg;cÞμ [Eq. (6)], naturally leads to the

following scaling form for the distribution of overlaps:

pðΔrg;cÞ ¼
1

E1=μ
G

Pr

�
Δrg;c
E1=μ
G

�
: ð8Þ

Although the contact vectors, ~rg;c, have a complicated joint
distribution, we focus on pð~r1; ~r2Þ, which is the joint

probability of occurrence of contact vectors ~r1, ~r2 at two
contiguous edges of a minimum cycle, bounding a given
area α. The probability of each individual area is then

pðαÞ ¼
Z

~dr1

Z
~dr2pð~r1; ~r2Þδ

�
1

2
j~r1jj~r2j sin θ − α

�
; ð9Þ

where θ is the relative angle between the two vectors. We
can next express the joint distribution as

pð~r1; ~r2Þ ¼ pðj~r1jÞpðj~r2jÞρðθÞ; ð10Þ

with pð~r1Þ¼
R
d2~r2pð~r1;~r2Þ¼ ð1=2πÞpðj~r1jÞ. In Eq. (10),

we have extracted the overall scaling with energy into the
first two terms involving the magnitudes, encoding the
correlations in ρðθÞ. As detailed in [36], we treat these
correlations within a mean-field framework that incorpo-
rates the loop constraints on the contact vectors exactly. A
systematic diagrammatic expansion [36] shows that ρðθÞ,
and consequently pð~r1; ~r2Þ, has different behaviors within
cycles with zv > 3 and zv ¼ 3. Importantly, cycles with
zv > 3 contribute a finite amount to ρðθÞ at θ ¼ π=2
whereas zv ¼ 3 do not.
Scaling forms.—From Eq. (9), it is clear that if the

lengths of the contact vectors are held fixed, the vanishing
slope of the sine function leads to a singularity in pðαÞ at
θ ¼ π=2 (analogous to van Hove singularities arising from
vanishing gradients). As EG → 0þ, the fluctuations inΔrg;c
decrease [Eq. (8)], leading to a sharpening divergence. To
proceed, we split the area distribution for zv > 3 into a
divergent part pDO arising from angles close to π=2 and a
regular part preg that arises from the rest,

pðα; > 3Þ ¼ pregðαÞ þ pDOðαÞ: ð11Þ

Without loss of generality, we assume that ρðθ; > 3Þ near
θ ¼ π=2 contributing to pDOðαÞ can be represented as a
uniform distribution, ρπ=2 in the range ½π=2 − E; π=2þ E�,
the corrections are of higher order in E. Then, integrating
Eq. (1) over the full range of α leads to the normalization

Z
1=2

0

pregðαÞdα ¼ 1 −
Z

1=2

0

pOðαÞdα − 2Eρπ=2: ð12Þ

Since pOðαÞ is integrable [Eq. (4)], the only energy
dependence of pregðαÞ arises from the width E. To derive
pDOðαÞ, we change variables fθ → sin θg, giving

ρðsin θ; > 3Þ ¼ ρπ=2ð1 − sin2θÞ−1=2
����θ − π

2

���� < E: ð13Þ

Next, performing the integration over sin θ in Eq. (9) using
the above expression leads to

PRL 118, 138001 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

31 MARCH 2017

138001-3



pDOðαÞ ¼ ρπ=2

Z
1

0

dr1

Z
1

0

dr2
pðr1Þpðr2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21r

2
2 − 4α2

p Gðr1; r2; αÞ;

ð14Þ

where Gðr1; r2; αÞ is a product of theta functions that
ensures sin ðπ=2 − EÞ < 2α=r1r2 < 1. Although the inte-
gral in Eq. (14) does not have a simple closed-form answer
for general pðrÞ, it is clear that pDOðαÞ has a singularity as
α → 1=2 and as r1 → 1 and r2 → 1, and it is straightfor-
ward to extract the scaling behavior announced in Eq. (2).
In order to compute the scaling function, we replace the
distribution of the contact vectors in Eq. (8) with a uniform
distribution, allowing us to perform the integration exactly.
As shown in [36], the scaling form announced in Eq. (3)
follows. From this analysis, it is evident that the exponents
1=2 and 3=2 appearing in the scaling function [Eq. (3)]
arise from the purely geometric nature of the divergence at
θ≃ π=2, whereas the scaling with EG is a consequence of
the scaling of the distribution of contact lengths and is
controlled by the force law. As shown in [36], the
distribution of angles for the zv ¼ 3 cycles are centered
around a finite value θ ¼ arcsinð ffiffiffi

3
p

=2Þ. This leads to an
integrable divergence in the distribution of areas from
Eq. (9) as EG → 0þ, and the scaling form announced in
Eq. (4) follows. The contribution from these ordered
structures to the disordered divergence at θ ¼ π=2 is
therefore exponentially suppressed.
Numerical simulations.—In order to test the predictions

made by our theory, we perform numerical simulations for
a system of bidispersed disks with diameter ratio 1∶1.4
interacting via harmonic potentials (μ ¼ 2). Configurations
are produced using a variant of the O’Hern protocol [16].
The energies simulated range from EG ¼ 10−15 to 10−3,
with the number of disks ranging up to NG ¼ 8192. A
scaling collapse of the distributions according to the scaling
form in Eq. (2) is illustrated in Fig. 2 along with the two
limiting behaviors announced in Eq. (3). The inset of Fig. 2
illustrates the remarkable agreement between the theoreti-
cal distributions and the ones obtained from numerical
simulations.
Scaling of global quantities.—We can use the scaling

with EG of pðαÞ to derive global scaling properties of
the system as the unjamming transition is approached.
Since the microscopic areas are uniquely assigned to a
contact, the incremental global area covered by grains
scales as ΔAG ∼ ΔNC. To connect pðαÞ to the number of
contacts NC, we define gðαÞ, the density of states of
normalized areas, which we split in a manner similar to
pðαÞ in Eq. (1), as

gðαÞ ¼ NCpðαÞ ¼ NCpDOðαÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼gDOðαÞ

þ NCpregðαÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼gregðαÞ

þ NCpOðαÞ|fflfflfflfflffl{zfflfflfflfflffl}
¼gOðαÞ

:

ð15Þ

The regular part gregðαÞ represents the density of areas away
from the divergences and is independent of EG. However,
pregðαÞ has an energy dependence from the normalization
[Eq. (12)]. To extract this dependence, we need to fix E in a
self-consistent manner. The height of the peak of pDOðαÞ
scales as E−1=2μ

G , while the width scales asE1=μ
G [Eq. (2)]. The

contribution from pDOðαÞ to the normalization in Eq. (12)
therefore scales as E1=2μ

G , leading to

2Eρπ=2 ∼ E1=2μ
G : ð16Þ

Then, using Eq. (15) corresponding to the regular part and
the normalization in Eqs. (12) and (16), we obtain

NCðEGÞ ¼
R 1=2
0 gregðαÞdαR 1=2
0 pregðαÞdα

≈ NCð0Þ þ NC;1=2μE
1=2μ
G þ � � � ;

ð17Þ
which is the scaling relation mentioned in Eq. (5). In the
inset of Fig. 3 we show the scaling of ΔAG with energy,
which displays a scaling consistent with ΔAG ∼ ΔNC and
Eq. (5). Two new predictions also emerge from a more
detailed consideration of divergences in the area distributions
[37]. Defining n3 and n>3 as the total number of contacts in
cycles with zv ¼ 3 and zv > 3, respectively, the excess
number of contacts in different cycles [Δn≥3 ¼ n≥3ðEGÞ−
n≥3ð0Þ] scale as

Δn3 ∼ E1=2μ
G ; Δn>3 ∼OðE1=μ

G Þ: ð18Þ
Defining hαi3 and hαi>3 as the normalized areas per contact
in the different cycles, Δhαi≥3 ¼ hαi≥3ðEGÞ − hαi≥3ð0Þ
scales with energy as

FIG. 3. Scaling of global quantities with energy for the same
system as Fig. 2: (i) the excess number of contacts in the zv ¼ 3
cycles [Δn3 ¼ n3ðEGÞ − n3ð0Þ� and (ii) the excess normalized
area per contact of the zv > 3 cycles [Δhαi>3 ¼ hαi>3ðEGÞ−
hαi>3ð0Þ]. The scaling is consistent with predictions in Eqs. (18)
and (19). Inset: Scaling of excess grain area ΔAG ¼ AGðEGÞ −
AGð0Þ displaying a scaling consistent with ΔAG ∼ ΔNC and
Eq. (5).
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Δhαi3 ∼OðE1=μ
G Þ; Δhαi>3 ∼ E1=2μ

G : ð19Þ

The observed scaling of these global quantities for harmonic
potentials is compared with predictions in Fig. 3.
Discussion.—We identified local units of areas associ-

ated with contacts as an order parameter associated with the
unjamming transition. The marginal state at unjamming is
characterized by singularities in the distribution of these
local areas. The primary scaling in the system arises from
contact vectors with relative angles close to π=2, which lead
to a high susceptibility of these contact areas to changes in
the compression energy. This large susceptibility, which is
a signature of the marginal state, is reminiscent of van Hove
singularities that render crystals “fragile” and particularly
susceptible to structural transitions. The dependence of
exponents on the interaction potential arises from the
scaling of the overlaps, and is a well-known feature of
jamming that distinguishes it from usual critical phenom-
ena. By comparing with numerical simulations, we showed
that predictions based on the distributions of local areas
reproduces the scaling properties of several global variables
remarkably well (Fig. 3). Our mean-field description treats
the contact triangles as noninteracting entities. Computing
the contributions from the correlations between these
individual units is nontrivial, and numerical results indicate
corrections to the global exponents derived in this Letter
[27]. In future, we plan to explore these non-mean-field
effects on the unjamming transition.
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