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In this supplementary document, we describe in detail several key aspects of the theoretical
framework and analysis of numerical and experimental data. In Section 1, we describe the methods
used to generate the data used in this letter. In Section 2, we outline the derivation of the Gauss’s law
constraint on the Cauchy Stress tensor starting from the constraints of force and torque balance on
every grain and discuss the mapping of grain-level properties to the continuum theory. In Section 3,
we present results for the correlations of the electric displacement tensor D̂, in a polarizable medium
characterized by Λ̂. Further in Section 4, we present experimental data for stress correlations from
individual configurations. Finally, Section 5 describes the numerical results for the 2D system at
finite temperature.

S1. METHODS

The main quantity of interest in this study, for a given packing is the stress tensor field in Fourier space given by

σ̂p (q) =

Np
G∑

g=1

σ̂p
g exp

(
iq · r p

g

)
. (S1)

Here, ‘p’ denotes a particular realization or packing of Np
G grains, while g denotes a particular grain in the packing

located at rpg. σ̂p
g represents the force moment tensor for the grain g, given by

σ̂p
g =

ng
c∑

c=1

r g
c ⊗ fgc . (S2)

Here r g
c denotes the position of the contact c from the center of the grain g and fgc denotes the inter-particle force at

the contact.

S1.1. Numerical Methods

We generate jammed packings of frictionless spheres interacting through one-sided spring potentials in two and three
dimensions. Our implementation follows the standard O’Hern protocol [1–3], with energy minimization performed
using two procedures (i) conjugate gradient minimization, and (ii) a FIRE [4, 5] minimization implementation in
LAMMPS [6]. We have verified that these differences in protocol do not modify our results.

We simulate a 50:50 mixture of grains with diameter ratio 1:1.4. In our simulations, the system lengths are held
fixed at Lx = Ly = 1 in 2D and Lx = Ly = Lz = 1 in 3D. We impose periodic boundary conditions in each direction,
setting a lower cutoff between points in Fourier space qmin = 2π. We choose an upper cutoff qmax = π/dmin so as to
not consider stress fluctuations occurring at length scales shorter than dmin, the diameter of the smallest grain in the
packing. We have presented data for system sizes N = 512, 1024, 2048, 4096, 8192 in 2D, averaged over atleast 100
configurations for each system size. The results obtained for different system sizes have been collapsed (see Fig. 1 of
the main text) using the system size N and qmax as scaling parameters. This shows that the data presented is not
significantly affected by finite size effects. All the 2D packings have a pressure per grain P ∈ [0.016, 0.017] and packing
fraction φ ∈ [0.878, 0.882]. In 3D, the data for N = 27000 is presented in Fig. 2 of the main text, the data have been
averaged over 350 configurations. The range of packing fractions for these configurations is φ ∈ [0.686, 0.689], with a
pressure per grain P ∈ [0.0136, 0.0147].
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S1.2. Experimental Methods

The experimental results were produced from the analyses of isotropically jammed packings and pure-sheared
packings, which were both prepared using a biaxial apparatus whose details can be found in Wang Et al. 2018 [7].
This apparatus mainly consists of a rectangular frame mounted on top of a powder-lubricated horizontal glass plate.
Each pair of parallel walls of the rectangular frame can move symmetrically with a motion precision of 0.1 mm so that
the center of mass of the frame remains fixed. To apply isotropic compression, the two pairs of walls are programed
to move inwards symmetrically. To apply pure shear, one pair of walls moves inwards, and the other pair of walls
moves outwards, such that the area of the rectangle is kept fixed. The motion of walls is sufficiently slow to guarantee
that the deformation is quasi-static. About 1.5 m above the apparatus, there is an array of 2×2 high-resolution (100
pixel/cm) cameras that are aligned and synchronized.

To prepare an isotropically jammed packing, we first filled the rectangular area with a 50:50 mixture of 2680 bi-
dispersed photoelastic disks (Vishay PSM-4), with diameters of 1.4 cm and 1.0 cm, to create the various unjammed
random initial configurations. Next, we applied isotropic compression to the disks to achieve a definite packing fraction
φ, which is the ratio between the area of disks and that of the rectangle. To minimize the potential inhomogeneity of
force chains in the jammed packing, we constantly applied mechanical vibrations before the φ exceeded the jamming
point φJ ≈ 84.0% of frictionless particles. The final isotropically jammed packing is confined in a square domain
of 67.2 cm × 67.2 cm. Here, φ ≈ 84.4%, the mean coordination number is around 4.1, the pressure is around 12
N/m, and the corresponding dimensionless pressure is 2×10−4. Once the isotropically jammed packing was prepared,
we then applied pure shear of strain 1.5% to the packing to produce the pure-sheared packing. For both types of
packings, two different images were recorded. Disk positions were obtained using the normal image, recorded without
polarizers. Contact forces were analyzed from the force-chain image, recorded with polarizers, using the force-inverse
algorithm [8].

S2. MAPPING OF GRANULAR MEDIA TO CONTINUUM VECTOR CHARGE TENSOR GAUGE
THEORY

FIG. S1: A section of a jammed configuration of soft frictionless disks in 2D. The centers of the grains are located at positions
rg. The contact points between grains are located at positions rc. The triangle formed by the points rg, rg′ , rc (shaded area)
is uniquely assigned to the contact c and has an associated area ag,c.

The VCT Gauss’s law (Eq. (2) in the main text), is widely accepted as the coarse-grained description of stresses
in athermal solids in mechanical equilibrium [9, 10]. Here, we demonstrate the emergence of this Gauss’s law from
local constraints of mechanical equilibrium, for the specific example of disordered granular solids. The arguments can
be easily generalized to other amorphous packings at zero temperature. Granular materials consist of an assembly
of grains that interact with each other via contact forces, as shown in Fig. S1. In a granular solid, each grain is in
mechanical equilibrium and thus, satisfy the constraints of force and torque balance. The constraints of force and
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torque balance on a grain g, with no “body forces” can be written as:∑
c∈g

fg,c = 0,

∑
c∈g

rg,c × fg,c = 0 , (S3)

respectively. Here, fg,c is the contact force, and rg,c the vector joining the center of grain g to the contact c (Fig. S1).
This places dN + d(d − 1)N nontrivial constraints on the N grains that are part of the contact network. A grain is
said to be a part of the contact network if it has more than one contact and grains which are not part of the contact
network are defined to be “rattlers”. In our representation, the rattlers become part of voids. Given a set of fg,c and
rg,c, one can define a stress tensor for a grain with area Ag:

σ̂g = (1/Ag)
∑
c∈g

rg,c ⊗ fg,c . (S4)

The coarse-grained stress tensor field, D̂(r) is obtained by summing σ̂g over all grains included in a coarse-graining
volume, Ωr, centered at r:

D̂(r) =
1

Ωr

∑
g∈Ωr

Agσ̂g . (S5)

The symmetry of σ̂g is easy to establish by writing every contact force as the sum of a normal force, which is along
the contact vector rg,c, and a tangential force perpendicular to it. The normal part leads to a symmetric contribution
to σ̂g. Using the torque-balance equation, Eq. (S3), the contribution from the tangential forces sum up to zero. To
establish the divergence free condition, we follow the approach outlined in Degiuli, E. and McElwaine, J. 2011 [11] by
first subdividing σ̂g into contributions from each contact. As seen from Fig. S1, we can associate a triangle of area ag,c
with each contact, and Ag =

∑
c∈g ag,c. Adopting a convention that we traverse around a grain in a counterclockwise

direction, we associate with contact c, the triangle that is defined by c and the contact c′ that follows it. We can then
write: Agσ̂g =

∑
c∈g ag,cσ̂c, where σ̂c is yet to be defined. Comparing to Eq. (S4), we see that ag,cσ̂c = rg,c ⊗ fg,c,

therefore σ̂c = rg,c ⊗ fg,c/ag,c. The signed area ag,c is given by ag,c = (1/2)rg,c × (rc′ − rc). The divergence theorem
is:
∫
V
∂iσij =

∫
∂V

niσij , where n̂ is the unit normal to ∂V , which can be written as as
∫
V
∇ · σ̂ =

∫
∂V

(dr× σ̂)j . We
can apply the discrete version of this theorem to σ̂g to get:

Ag(∇ · σ̂)g =
∑
c∈g

σ̂c × (rc′ − rc) =
∑
c∈g

fg,c = fext . (S6)

In the absence of external forces, σ̂g is divergence free. This grain-level condition leads to a similar condition on D̂(r):

Ωr∇ · D̂(r) =
∑

c∈∂Ω fc, where the sum is over the contact forces on the boundary of Ω, which is still discrete.
To map to the continuum theory, we posit that disorder averaging over all discrete networks that occur under given

external conditions leads to

∂i(D̂(r))ij = (fext)j .

We expect this mapping to be accurate if the coarse-graining volume Ω is much larger than a typical grain volume.
The excellent correspondence between disorder-averaged D̂ correlations measured in granular packings and theoretical
predictions, shown in the main text justifies the above mapping. In Section 3 of this Supplementary Information, we
present experimental measurements of D̂ correlations in individual configurations to show that self-averaging is a very
good approximation for internal stresses in granular media.

S3. STRESS-STRESS CORRELATIONS IN POLARIZABLE MEDIA

In this section we present expressions for the correlations of the D̂ tensor, analogous to the expressions for the
Ê correlations in vacuum (Eq. (7) in the main text). The starting point is Eq. (5) in the main text: Gauss’s law

and the magnetostatic condition for a polarizable medium characterized by the rank-4 tensor, Λ̂. In the vacuum
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theory [12], the strategy is to project out the divergence mode from the completely isotropic rank-4 tensor, using the
magnetostatic condition. This condition in q- space, for a polarizable medium is given by

Dij(q) = (Λ̂−1Â)ij(q); Aij(q) ≡ q⊗ φ , (S7)

where φ is the electrostatic gauge potential, as discussed in the main text. Since Λ̂ has to obey the symmetry ij → ji,
it is simpler to write the components of D̂ as a vector of length 3 in 2D: (Dxx, Dyy, Dxy), and a vector of length 6

in 3D. The rank-4 tensor can be then expressed as a 3× 3 (2D) and a 6× 6 (3D) matrix [13]. Furthermore, if Λ̂ is a

symmetric matrix in this representation, then the D̂ − D̂ correlations can be obtained from the Ê − Ê correlations
by a transformation of the metric: q→ q̄(Λ̂). Such a transformation is reminiscent of the emergence of birefringence
in quantum spin ice in the presence of an applied electric field [14]. For the more general situation that can occur
in granular media the matrix is not symmetric, and a cleaner approach is to use the dual formalism in which the
potential is obtained by solving Gauss’s law [15]. In this dual formalism, potentials in 2D and 3D appear differently:
a scalar in 2D and a second-rank symmetric tensor in 3D. The expression for the correlations of the potentials can
be worked out explicitly, and from that the D̂ − D̂ correlations can be obtained in a straightforward manner. In 2D,
∂iDij = 0 is solved by introducing a potential [15–19], ψ : Dij = εiaεjb∂a∂bψ. The potential in 3D is a symmetric
tensor, ψij : Dij = εiabεjcd∂a∂cψbd

Here, we present the explicit construction of the correlations of Dij in 2D [16–18]. The magnetostatic condition im-

plies that Λ̂ acts as a stiffness tensor in a Gaussian theory. Using the q-space representation: Dij(q) = εiaεjbqaqbψ(q),
The correlations 〈ψ(q)ψ(−q)〉 can be computed, and give:

〈ψ(q)ψ(−q)〉 = [Aij(q)ΛijklAkl(−q)]−1,

Aij = q2δij − qiqj . (S8)

The correlations of Dij then follow as:

〈Dij(q)Dkl(−q)〉 = εiaεjbεkcεldqaqbqcqd〈ψ(q)ψ(−q)〉.

For the special case of Λ̂ being a diagonal tensor with components λi, i = xx , yy , xy, the correlations simplify to:

Cxxxx (q) = 〈Dxx (q)Dxx (−q)〉 =
q4
y

λxxq4
y + λyyq4

x + 2λxyq2
xq

2
y

,

Cxyxy (q) = 〈Dxy (q)Dxy (−q)〉 =
q2
xq

2
y

λxxq4
y + λyyq4

x + 2λxyq2
xq

2
y

,

Cyyyy (q) = 〈Dyy (q)Dyy (−q)〉 =
q4
x

λxxq4
y + λyyq4

x + 2λxyq2
xq

2
y

, (S9)

Cxxxy (q) = 〈Dxx (q)Dxy (−q)〉 = −
qxq

3
y

λxxq4
y + λyyq4

x + 2λxyq2
xq

2
y

,

Cxxyy (q) = 〈Dxx (q)Dyy (−q)〉 =
q2
xq

2
y

λxxq4
y + λyyq4

x + 2λxyq2
xq

2
y

,

Cxyyy (q) = 〈Dxy (q)Dyy (−q)〉 = − qyq
3
x

λxxq4
y + λyyq4

x + 2λxyq2
xq

2
y

.

The experimental and numerical measurements of correlations in 2D, shown in Fig. 1 of the main text and in Fig.
S2 of the supplementary, have been fit to the above forms. To analyze the correlations in isotropically compressed
3D packings, we assume that Λ̂ is the identity tensor and use Eq. (7) of the main text, which gives the correlations
in vacuum with an overall stiffness constant, λ.

S4. FORCE CHAINS AND STRESS CORRELATIONS

A striking consequence of the anisotropic correlations in q-space is evident if we analyze the correlations of the
normal stresses, Dxx and Dyy in real space. The Fourier Transform of Cxxxx in isotropic systems, with Λ̂ = λ1
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FIG. S2: Comparisons in Fourier space between the theoretical predictions (black line) with Λ = 1, and the
numerical and the experimental results (symbols) of the stress-stress correlations in 2D, isotropically jammed
systems. a, Photo-elastic images, in which each grain is shaded according to the magnitude of its normal stress, exhibit clear
filamentary structures that are normally referred to as force chains. b, Theoretical predictions of Cxxxx(q, θ) and Cxyxy(q, θ),
which are independent of q, and the corresponding angular functions Cxxxx(θ) and Cxyxy(θ). c, Numerical data of the
frictionless jammed packings within the range of pressure P ∈ [0.016, 0.017]. The results of the five different system sizes
N = 512, 1024, 2048, 4096, 8192 are shown in the angular plots. d, Experimental data from frictional packings within the range
of pressure P ∈ [1.5 × 10−4, 2.9 × 10−4]. All correlation functions are normalized by their peak values of Cxxxx(θ). The
units of q are 2π/L, where L is the system size: L ≈ 100dmin in simulations, L = 40dmin in experiments. Here dmin is the
diameter of the small particle. Both the numerical and experimental data start to deviate from the theoretical predictions
around q ≥ 2π/4dmin, indicating the breakdown of the continuum limit.

illustrates the point:

Cxxxx(rx, ry) =
3

2λr2
x

for rx � ry,

Cxxxx(rx, ry) = − 1

2λr2
y

for ry � rx. (S10)

The reverse is true for Cyyyy. The consequence of this feature is that the transverse correlations become negatively
correlated. The photo-elastic images from 2D experiments, shown in the main text and in Figs. S3 and S4, are a
striking visual representation of this stark difference between longitudinal and transverse correlations, which in turn is a
manifestation of the conservation of “charge-angular-momentum”, and the resulting sub-dimensional propagation [20].
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The U(1) gauge theory with vector charges, therefore, clarifies the meaning of force-chains within a continuum,
disorder-averaged theory.

S4.1. Additional Analysis of Experiments

In this subsection, we present results of stress correlations from individual configurations in the sheared experimental
packings to illustrate how well self-averaging works in these jammed packings. We note that our systems are deep in
the jammed region: we do not address the possible breakdown of self-averaging close to the unjamming transition.

FIG. S3: Experimental measurements of correlations in Fourier space, for a single packing in the ensemble of packings, used to
generate the averaged correlations shown in the main text (Fig. 3). The features observed in these averaged correlations, are
seen to emerge in a single packing, demonstrating the self-averaging property of the stress in these packings that are deep in
the jammed regime.
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FIG. S4: Experimental measurements of correlations in Fourier space, for a second packing created under the same external
conditions as in Fig. S3

S5. FINITE TEMPERATURE RESULTS
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FIG. S5: Comparisons in Fourier space between stress correlations at zero (Top) and finite (Bottom) temperatures . The
columns a, b, c, and d show the results for correlation functions Cxxxx, Cxyxy, Cxxxy and Cxxyy respectively. The packings
used have an average compression energy per grain Ecompression ≈ 10−4 and the finite temperature results have an average
thermal energy per grain Ethermal ≈ 3.9× 10−4.

Pinch point singularities are one of the salient features of the VCT correlation functions. These singularities
originate from the strict constraints of mechanical equilibrium imposed on athermal systems. For a system at finite
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temperature however, these constraints can be violated and hence we expect the pinch point singularities to disappear
at finite temperatures. Thus, the presence of a pinch point singularity is a hallmark of an athermal system. The
numerically generated stress correlations from a 2D system at finite temperature is shown in Fig. S5 and it can be
clearly seen that the pinch point singularity has vanished at this temperature (Ethermal/Ecompression = 3.9).

The numerical simulations were carried out in LAMMPS and the finite temperature was imposed through a Nosé
-Hoover thermostat. The protocol is to start with a valid athermal T = 0 configuration, generated following the
procedure described in the Numerical Methods Section and then perform finite temperature dynamics to compute
the stress correlations at a non-zero temperature. This procedure is then repeated over multiple initial athermal
configurations and ensemble averaged to obtain the finite temperature stress correlations. The results displayed are
obtained for packings of 8192 disks with an average pressure per grain P ∈ [0.016, 0.017]. The results shown have been
averaged over 50 starting athermal configurations in 2D with 50 finite temperature configurations sampled during the
finite temperature molecular dynamics run, for each of the 50 starting configurations.
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