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The mechanical response of naturally abundant amorphous solids such as gels, jammed grains, and
biological tissues are not described by the conventional paradigm of broken symmetry that defines
crystalline elasticity. In contrast, the response of such athermal solids are governed by local conditions of
mechanical equilibrium, i.e., force and torque balance of its constituents. Here we show that these
constraints have the mathematical structure of a generalized electromagnetism, where the electrostatic limit
successfully captures the anisotropic elasticity of amorphous solids. The emergence of elasticity from local
mechanical constraints offers a new paradigm for systems with no broken symmetry, analogous to
emergent gauge theories of quantum spin liquids. Specifically, our Uð1Þ rank-2 symmetric tensor gauge
theory of elasticity translates to the electromagnetism of fractonic phases of matter with the stress mapped
to electric displacement and forces to vector charges. We corroborate our theoretical results with numerical
simulations of soft frictionless disks in both two and three dimensions, and experiments on frictional disks
in two dimensions. We also present experimental evidence indicating that force chains in granular media
are subdimensional excitations of amorphous elasticity similar to fractons.
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Introduction.—Solids that emerge in strongly non-
equilibrium processes such as jamming [1–4] or gelation
[5,6], are characterized by strong stress heterogeneities,
often referred to as force chains. They are rigid in that they
can sustain external shear, yet they are often fragile [2,3].
Analogous to classical elasticity theory [7], it is plausible to
ask whether a long wavelength field theoretic description
exists for the mechanical response of such athermal solids
and if so, what are its characteristics and universal features,
and what would be the appropriate variables that can
account for the underlying kinetic constraints in the
emergent field theory? Any attempt to construct such a
field theory must answer (a) how to obtain the stress field,
and (b) how to incorporate microscopic information about
the structural disorder, accounting for the mechanical
constraints into a continuum formulation. This second
problem, in particular, has a close resemblance with
kinetically constrained models such as hard-core dimer
models on lattices where the hard-core constraint of each
site being part of one and only one dimer naturally allows
for an emergent gauge theory description at low energy and
long wavelengths [8–10].
In this Letter, we develop a theory of stress transmission

in disordered granular solids, both with and without
friction, where the local constraints of mechanical equi-
librium are paramount, i.e., every grain satisfies the con-
straints of force and torque balance. These local constraints

imply that the grain-level stress tensor σ̂g is symmetric
[11,12] and satisfies

ð∇ · σ̂Þg ¼
X
c∈g

fg;c ¼ fextg : ð1Þ

Here, ∇ is a discrete divergence operator defined over
the underlying contact network, as detailed in the
Supplemental Material [13], fg;c are the contact forces
acting on grain g at contact c and fextg is the total external
force acting on the grain. Upon coarse-graining [24],
Eq. (1) gives rise to the continuum condition of mechanical
equilibrium:

∂iσijðrÞ ¼ fjðrÞ; ð2Þ
where σijðrÞ and fjðrÞ are the stress and external force
density at the point r, respectively.
Stress equation and tensorial electromagnetism.—

Eq. (2), along with the symmetry of the stress tensor
encapsulates the local constraints of mechanical equilib-
rium. Further, Eq. (2) can be casted as the exact analog of
Gauss’s law,

∂iEij ¼ ρj; ð3Þ
in a generalized electromagnetism of Uð1Þ symmetric
rank-2 tensor electric fields Eij ¼ Eji and vector charges

PHYSICAL REVIEW LETTERS 125, 118002 (2020)

0031-9007=20=125(11)=118002(6) 118002-1 © 2020 American Physical Society

https://orcid.org/0000-0001-9801-5072
https://orcid.org/0000-0002-9451-6838
https://orcid.org/0000-0002-3589-8207
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.125.118002&domain=pdf&date_stamp=2020-09-10
https://doi.org/10.1103/PhysRevLett.125.118002
https://doi.org/10.1103/PhysRevLett.125.118002
https://doi.org/10.1103/PhysRevLett.125.118002
https://doi.org/10.1103/PhysRevLett.125.118002


ρi with i ¼ 1;…; d in d spatial dimensions, the so-called
vector charge theory (VCT) of electromagnetism. The
resultant generalized Maxwell equations automatically
conserve the total charge (

R
drρ ¼ 0) and the dipole

moment [
R
drðr × ρÞ ¼ 0] [25,26].

The correspondence between Eqs. (2) and (3), along with
the conserved quantities makes VCTa natural starting point
for deriving the correct continuum theory of the mechanical

response of granular solids by formally mapping Eij↔
?
σij

and vector charges to unbalanced forces, i.e., ρ↔
?
f . This

approach is similar to the problem of frustrated magnets
and/or dimer models, where due to nontrivial local
energetic or kinetic constraints, the individual spins or
dimers cease to be the right degrees of freedom and hence
fail to describe the low energy theory, which in turn is often
described by emergent gauge fields that naturally capture
the constraints [8–10,27]. Similarly, the displacement of the
individual grains from the reference crystalline positions—
the mainstay of the theory of elasticity of crystalline solids
[28]—cease to be the right variables in the absence of
broken translation symmetry. However, the long-range
stress correlations generated by Newton’s laws of force
and torque balance are described correctly by the emergent
electromagnetism.
As an immediate consequence of this mapping, we note

that the two conservation laws lead to subdimensional
propagation of charges—a feature of recently discussed
fractonic phases of matter [25] as well as topological
defects in elastic solids [29]. In the present context, it also
provides a natural explanation for the visually striking
“force chains” (see Fig. 3) observed in photoelastic images
of granular solids [30], as our analysis will demonstrate.
It is well known [31] that Eq. (2) does not provide

enough equations to solve for the field σij, since there are
only d equations for the dðdþ 1Þ=2 components of a
symmetric tensor in d dimensions [25]. These missing
equations are provided within VCT, by invoking the
complete set of Maxwell’s equations required to uniquely
specify Eij. In particular, the generalized Faraday’s law:
ð∂Bij=∂tÞ ¼ −ϵiabϵjcd∂a∂cEbd, where Bij ¼ Bji is the
tensor magnetic field of VCT, leads to the generalized
irrotational condition ϵiabϵjcd∂a∂cEbd ¼ 0 in the ele-
ctrostatic limit. This condition provides the missing
equations, and leads to the potential formulation: Eij ¼
1
2
ð∂iϕj þ ∂jϕiÞ, where ϕi is the electrostatic potential

which can be used to obtain Eij for any charge configu-
ration [25].
Granular solid as a generalized dielectric medium.—

The above gauge theory formulation containing all the
basic ingredients, requires an extension—akin to that of
dielectric media—to capture the complexity of the granular
mechanics. This is easily seen by noting the twin crucial
characteristics of granular media: (i) it is only defined under
external pressure (as a packing of grains with purely

repulsive interactions will fall apart in the absence of
boundary forces), and (ii) it can support internal stresses.
This translates, within VCT, to an assembly being subject
to well defined boundary charges developing internal
charge dipoles, akin to the response of a polarizable
medium (dielectric). Alternatively stated, although a
granular solid under external compression is free of
“charges” since every grain satisfies force and torque
balance, “bound charges” exist as pairs of equal and
opposite forces at every contact of the disordered granular
network. Hence, we rewrite Eq. (3) as

∂iEij ¼ ρfreej þ ρboundj ; ð4Þ
where ρfreej arises from any body-force such as gravity and
ρboundj are the bound charges arising from the force dipoles
and can be accounted for using a tensorial dipole moment
Pij such that

∂iPij ¼ −ρboundj : ð5Þ
A complete derivation of these relations, and a detailed
discussion of the structure of the theory will be presented in
a future paper. The structure of Pij is influenced by various
microscopic details of the system such as the features of the
underlying contact network and the nature of contact forces
which, for example, can be purely repulsive or both
repulsive and attractive and frictionless or frictional.
To construct a continuum theory, we assert that Pij is

related to Eij through a fourth-rank polarizability tensor,
χijkl, as in linear dielectrics: Pij ¼ χijklEkl. Straightforward
generalization of electrostatics in dielectric medium
follows. We define a “displacement” tensor,

Dij ¼ ðδikδjl þ χijklÞEkl ¼ ðΛ−1ÞijklEkl; ð6Þ
which satisfies

∂iDij ¼ ρfreej ; ϵiabϵjcd∂a∂cðΛDÞbd ¼ 0: ð7Þ

The inverse dielectric tensor Λ satisfies Λijkl ¼ Λjikl ¼
Λijlk ¼ Λjilk. Since the inherent stresses in a granular solid
satisfy the first relation in Eq. (7) as a direct consequence of
force balance, we interpret Dij as the Cauchy stress tensor
measured from contact forces and contact vectors inside the
material, i.e., Dij ↔ σij in Eq. (7).
Equation (7), which is our main theoretical result, can be

compared to anisotropic elasticity [32]:

∂iσij ¼ 0; ϵiabϵjcd∂a∂cUbd ¼ 0;

σij ¼ ðΞÞ−1ijklUkl: ð8Þ

where Uij is the macroscopic strain tensor. In Eq. (8),
Ξ̂½↔ Λ appearing in Eq:ð7Þ� is the inverse of the elastic
modulus tensor. Identifying Eij ↔ Uij, and Dij ↔ σij,
demonstrates that an elasticity theory capturing the stress
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responses in granular solids [32–34] emerges from VCT. A
gauge potential, ϕ replaces the displacement field in
elasticity theory. We would like to reiterate that unlike
the displacement field in elasticity, the gauge potential ϕ is
not a physical observable. Therefore, VCT provides the
“missing” compatibility equations that allow us to solve the
granular stress response problem without invoking a
displacement field. Thus, although D̂ and Ê have a
correspondence with σ̂ and Û, the elasticity emerges from
local constraints and not from broken symmetry. This
stress-only description does not refer to a stress-free state
or displacement fields. Moreover, the effective elastic
modulus Λ̂ is not constrained by symmetries imposed by
a free-energy and will depend on protocols.
We note that the missing equation in two dimensions had

been obtained for the particular contact geometry of hard-
particle frictional jammed states [24] by introducing a
geometry-related symmetric tensor. The relation of this
network-specific description to VCT needs to be explored
further. However, the potential formulation [24] is identical
to the dual representation of VCT in two dimensions [13,35].
Experiments and numerical results.—We have compared

the predictions for stress-stress correlations obtained from
Eq. (7) to experimental and numerical data, and extracted Λ̂
for frictionless and frictional granular solids prepared under
different protocols. A hallmark of the VCT in free space
[Eq. (3)], both in two and three dimensions, is the
appearance of pinch point singularities in the Fourier
transforms of Eij correlators [36]:

Cfree
ijklðqÞ≡ hEijðqÞEklð−qÞi ∝

ðδikδjl þ δilδjkÞ
2

þ qiqjqkql
q4

−
1

2

�
δikqjql
q2

þ δjkqiql
q2

þ δilqjqk
q2

þ δjlqiqk
q2

�
: ð9Þ

Equation (9) is obtained by imposing the Gauss’s law
constraint, ∂iEij ¼ 0, on Eq. (3), and assuming that all
states are equiprobable [36], i.e., the Edwards measure
[11]. Earlier granular field theories [37–39] based on this
measure used a dual formulation of VCT [24,35] where the
emergence of elasticity is not evident. Since Cfree

ijklðqÞ is
independent of jqj, it is straightforward to show that the
correlations in real space decay as 1=rd. A more stringent
test of the theory, therefore is the pinch-point structure of
the correlation functions.
For granular solids, we computed the correlators

CijklðqÞ ¼ hDijðqÞDklð−qÞi using Eq. (7), and tested the
predictions in ensembles of 2D and 3D isotropically
compressed soft particles (numerically), and in ensembles
of 2D packings of frictional grains (experimentally). Pinch
point singularities are clearly exhibited in both two dimen-
sions (Figs. 1 and 3) and three dimensions (Fig. 2). We have
determined Λ̂ through detailed comparisons between

theory and measurements of Cijkl (Figs. 1–3). Figure 1
demonstrates that for packings created under isotropic
compression, Λ̂ ¼ λ1, with 1 being the identity tensor.
Additional tests of the theory are presented in the
Supplemental Material [13].
To illustrate the sensitivity of the Λ̂ tensor to protocol

(stress ensemble) we generated sheared packings of the
same grains used in the isotropic compression. Under the
experimental conditions of pure shear, with principle stress
along x and y, a diagonal form with different values of λii
provides an excellent description of the experimental
observations (Fig. 3). We find that λii, satisfy a set of
bounds imposed by the constraint of positivity of normal
forces in granular media [37,39].
A consequence of the pinch point singularities is that in

real space, hDijðqÞDijð−qÞi is negative in transverse
directions and positive along longitudinal directions, as
shown in the Supplemental Material [13]. It is this property
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FIG. 1. Comparisons in Fourier space between the theoretical
predictions (solid black line) and the disorder-averaged angular
dependent stress-stress correlations CxxxyðθÞ and CxxyyðθÞ in the
numerical: (a) and the experimental results (red symbols): (b), for
isotropically jammed systems. The range of pressure for the
numerical data is P ∈ ½0.016; 0.017� and the results are displayed
for five different system sizes N ¼ 512, 1024, 2048, 4096, 8192.
The experimental data is from frictional packings with a
range of pressure P ∈ ½1.5 × 10−4; 2.9 × 10−4�. All correlation
functions are normalized by the peak value of CxxxxðθÞ. Here,
Cijkl ≡ hσijσkli.
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(a) (b) (c) (d)

FIG. 2. Comparisons in Fourier space between theoretical predictions (top) and numerical results (bottom) from jammed packings of
frictionless spheres in three dimensions. The figures display the radially averaged correlation functions (a) Cxxxxðθ;ϕÞ, (b) Cxyxyðθ;ϕÞ,
(c) Cxxxzðθ;ϕÞ and (d) Cxyyzðθ;ϕÞ, respectively. The coordinates (Hx, Hy) represent a Hammer projection of the ðθ;ϕÞ shell onto the
plane. The results are presented for system size N ¼ 27000, and have been averaged over 350 configurations. The range of packing
fractions for these configurations is ϕ ∈ ½0.686; 0.689� and the range of pressure per grain is P ∈ ½0.0136; 0.0147�. Results for the Λ̂
tensor have not been presented due to the small effective system size: 30 × 30 × 30. The blank regions at the poles ϕ at θ ¼ 0 and θ ¼ π
in the numerical results is due to the difficulty in sampling these points.

FIG. 3. Comparisons in Fourier space between the experimental results (red symbols) in sheared frictional packings and the
theoretical predictions (black line). (a) Photoelastic images produced from a sheared packing. (b) Contour plots of the stress-stress
correlation functions: Cxxxxðq; θÞ (top), Cyyyyðq; θÞ (middle) and Cxyxyðq; θÞ (bottom). (c) Corresponding angular plots. (d) Angular
plots of CxxxyðθÞ (top), CxxyyðθÞ (middle), and CxyyyðθÞ (bottom). All correlations are normalized by the peak value of CxxxxðθÞ. The Λ̂
tensor obtained from the fit is diagonal with λ11 ¼ 1, λ22 ¼ 4.5, and λ33 ¼ 1.46. The ratio of the boundary stress components defining
the shear is Σxx=Σyy ¼ 1.94, which satisfies the positivity bound [37,39] ðλ22=λ11Þ ≥ ðΣxx=ΣyyÞ2.
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that is strikingly demonstrated in photoelastic images of
force chains in Fig. 3 and Figs. S2–S4 in the Supplemental
Material [13].
Summary and outlook.—To summarize, we have

demonstrated that the elasticity of athermal amorphous
solids is described by an exact analog of the electrostatics
of a fractonic Uð1Þ gauge theory [25] in polarizable media.
Although our analysis focused on granular solids, it marks
a paradigm shift in our understanding of amorphous
elasticity for a much broader class of solids such as jammed
suspensions [4], disordered crystals [40] and colloidal
gels [6] with no broken symmetry but strictly enforced
local constraints of force and torque balance. A key to the
above approach is the lack of a reference configuration
rendering ϕ to be unobservable. In a crystal, this is no
longer true. Further, the crystal can survive in a zero-stress
condition. Based on these observations, our preliminary
considerations suggest that the crystalline elasticity due to
broken symmetry modifies the nature of the media,
possibly involving a Higgs mechanism, i.e., a crystal is
a momentum condensate [41]. In such a scenario, the
plasmon excitations of the tensor electromagnetism would
appear as optical phonons. However, the emergence of
gapless acoustic phonons currently remains unclear.
The theory can be extended to stress correlations in

thermal amorphous solids such as low-temperature glass
formers [42–44]. As in frustrated magnets [8], thermal
fluctuations lead to a length scale characterizing the
distance between particles at which force and torque
balance are violated, and wash out the pinch-point
singularity [13]. This low-temperature extension does not
include the physics of the glass transition, which addresses
the onset of rigidity in supercooled liquids. The theory we
have presented assumes that all disordered networks that
satisfy the constraints of mechanical equilibrium are
equiprobable. If and why the glass transition generates
this ensemble is an important question that we have not
addressed.
A fully dynamical theory of amorphous materials can be

constructed by extending the “electrostatics” to “electro-
dynamics” through the identification of the analog of a
magnetic field, and including unbalanced forces as charged
excitations [26].
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