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The theory of mechanical response and stress transmission in disordered, jammed solids poses several open
questions of how nonperiodic networks—apparently indistinguishable from a snapshot of a fluid—sustain shear.
We present a stress-only theory of emergent elasticity for a nonthermal amorphous assembly of grains in a
jammed solid, where each grain is subjected to mechanical constraints of force and torque balance. These
grain-level constraints lead to the Gauss’s law of an emergent U (1) tensor electromagnetism, which then
accounts for the mechanical response of such solids. This formulation of amorphous elasticity has several
immediate consequences. The mechanical response maps exactly to the static, dielectric response of this tensorial
electromagnetism with the polarizability of the medium mapping to emergent elastic moduli. External forces act
as vector electric charges, whereas the tensorial magnetic fields are sourced by momentum density. The dynamics
in the electric and magnetic sectors naturally translate into the dynamics of the rigid jammed network and ballistic
particle motion, respectively. The theoretical predictions for both stress-stress correlations and responses are
borne out by the results of numerical simulations of frictionless granular packings in the static limit of the theory
in both 2D and 3D.

DOI: 10.1103/PhysRevE.106.065004

I. INTRODUCTION

A collection of non-Brownian particles often form jammed
solids if the imposed pressure or shear stress exceeds a thresh-
old. Examples abound in nature and industry: sand piles [1,2],
shear-jammed grains [3] or dense suspensions [4], and gels
[5]. The solidity of these systems emerges from the imposed
stress itself: the rigid structure is created in response to stress
and therefore there is no unique zero-stress reference solid
network [6,7]. It is the mechanical response to additional
stress that determines whether the system is rigid or not.
Under these circumstances, one may conclude that both of
the fundamental ideas of the theory of crystalline elasticity—
the existence of a strain tensor defined with reference to a
unique stress-free spontaneously broken-symmetry configu-
ration, and a free energy relating stress to strain—need to be
revisited and may have to be abandoned [7,8].

Curiously however, the mechanical properties of jammed
solids bear many similarities to the crystalline elasticity [2,8–
11]. For example, the response of a granular pile [2,8] or
that of frictionless jammed packings [11,12] to point forces,
can be described in terms of effective elastic moduli and
elastic Green’s functions. However, these elastic moduli do
not necessarily satisfy the usual symmetry requirements [8]
and depend on preparation protocols [8,11]. Stress-stress cor-
relations also exhibit power-law decays as expected for elastic
media [9,10]. This poses a puzzle since, e.g., the theory of
crystalline elasticity is based on the existence of a periodic
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reference structure—emerging from spontaneously broken
translation symmetry in crystals—which then defines a strain
field via systematic coarse-graining [13,14]. While the stress
field is well defined in jammed solids, the lack of a unique
reference configuration makes the definition of the strain field
and the associated free energy much less apparent. This puzzle
and associated issues gave birth to the quest for a stress-only
continuum theory of the elasticity of jammed solids [7]. In
frictionless systems, these are the minima in a complex energy
landscape, the exploration of which has led to a concentrated
effort to understand plasticity in amorphous solids [15–18]
based on notions of nonaffine displacements.

At the heart of the mechanical response of jammed solids
is the athermal, non-Brownian nature of these assemblies
consisting of configurations at mechanical equilibrium imple-
mented locally: Each grain is in a state of force and torque
balance as shown in Fig. 1. These local constraints lead to a
nontrivial contact network that is in force and torque balance
[19]. The emergence of such disordered structures from local
constraints of mechanical equilibrium is challenging to incor-
porate in any continuum theory. In the naive continuum limit,
force and torque balance do not provide enough equations to
uniquely determine the stress distribution [7]. Stated differ-
ently, since it is not possible to define a strain field with respect
to a unique stress-free state, the well-known compatibility
relations of linear elasticity theory are missing, and the linear
response coefficients of crystalline elasticity stemming from
proportionality between stress and strain—the so-called elas-
tic moduli—are not well defined [14]. Although we focus on
jammed solids in this paper, similar stress-bearing structures
in other nonthermal solids such as gels also emerge from a
complicated interplay of external and internal stresses [5].
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FIG. 1. A schematic depiction of a packing of grains (discs) in
two dimensions (2D): Each grain is in mechanical equilibrium and
satisfies the microscopic constraints of force and torque balance that
leads to a nontrivial contact network. A large packing consists of
many local structures, which can be coarse grained (say over the red
box with volume �r) to produce a continuous stress field. Grains
with all contacts in �r are identified as bulk grains (green), whereas
grains with a partial overlap with �r are identified as boundary grains
(yellow). Each contact has two contributions to the coarse-grained
stress tensor σ (r) [detailed in Eq. (4)]. The white (violet) contact
links contribute to the (anti)symmetric part of the total stress tensor.

A new framework has been put forward [20] to supply the
missing equations to obtain the much cherished stress-only
description of granular elasticity. Central to this framework
is a gauge theoretic structure that arises from—(1) the lack
of the well defined and unique zero-stress reference con-
figuration and (2) the local mechanical equilibrium of each
grain in an athermal solid that serves as a Gauss’s law for a
tensor electric field. In this mapping, the forces act as electric
charges of the so called vector charge theory (VCT) [21] of
the tensor electromagnetism that naturally incorporates the
conditions of force and torque balance [20]. Determining the
stress distribution in an amorphous solid then maps to the pro-
blem of solving electrostatics in the presence of a dielectric
in the VCT. This stress-only framework is completely de-
void of any reliance on a reference structure or displacement
fields, which should not have any measurable consequences
in amorphous solids. In particular we showed in Ref. [20],
that the stress-stress correlations are exactly characterized by
the electrostatic problem of the VCT, where the granular solid
represents the VCT dielectric. The mapping was successfully
demonstrated by comparing the numerically obtained stress
correlations from jammed ensembles of frictionless disks (in
2D and 3D) as well as experimentally measured correlations
from frictional photoelastic disks (in 2D), with those predicted
by the VCT for a linear dielectric medium.

In this paper, building on the observations of Ref. [20],
we uncover the complete structure of the gauge-theoretic

framework, whose static limit describes the elasticity of
granular solids. The gauge theory provides a compatibility
condition for the stress without referring to displacement
fields that form a strain tensor. Instead, the different random
contact networks that arise from the underlying force balance
constraints, give rise to force dipoles that on average consti-
tute the VCT dielectric medium, and account for the observed
ensemble averaged stress correlations. A direct fallout of this
field theoretic structure is the connection between the correla-
tions and response, explaining the emergent elastic behavior
of jammed granular solids, as we explicitly demonstrate here.
Although the ensemble average over static configurations pro-
vides an “equilibrium” description, the VCT framework can
also be naturally extended to incorporate dynamics, as we
describe in detail.

The structure of this amorphous elasticity theory is remark-
ably similar to classical elasticity theory except for the crucial
distinction that there is no strain tensor. The elastic moduli
that appear in this theory are not material properties, but
emerge from the imposed stress. We demonstrate that these
elastic moduli can be obtained from measurements of stress-
stress correlations and stress response to localized perturbing
forces. This provides a powerful alternative to strain-based
measurements of elastic moduli in amorphous solids [22,23]
and predicts natural dynamical extensions. Further, this may
also provide a natural mechanism for generating the nonlocal
mechanics and rheology of granular materials [24,25]. Given
the broad scope of this paper and the diversity of results
presented, we begin with a concise summary of the salient
ideas, results and their implications.

II. THE ROADMAP

A. Emergent gauge theories

Gauge-theoretic notions such as parallel transport have
been widely applied to the study of defects and plasticity in
both crystalline [26,27] and amorphous solids [28,29]. How-
ever, the framework of amorphous elasticity that we present in
this paper is based on strict local constraints, with no assump-
tions about the underlying geometry of the contact network.
To motivate this, we begin with a short summary of well-
established models in strongly correlated condensed matter
systems where local energetic constrains result in low-energy
emergent U (1) electromagnetism.

Our understanding of correlated phases of condensed
matter is replete with examples, where due to energetic con-
straints, the original degrees of freedom cease to be valid
fields at low energies and necessitates a description in terms
of new effective degrees of freedom. This emergence of new
degrees of freedom, while applicable to collective modes such
as phonons and spin-waves in a broken symmetry system
[13,30], leads to, at first glance, a startling yet qualitatively
new outcome, when the energetic constraints are local. This
situation often arises in “frustrated” systems with competing
interactions—both classical and quantum. The most pertinent
examples for the present work are the “water” ice crystals
(hexagonal phase of ice) [31–34] or their spin analogues—the
classical spin ice [34–38].

065004-2



TENSOR ELECTROMAGNETISM AND EMERGENT … PHYSICAL REVIEW E 106, 065004 (2022)

FIG. 2. Emergent electromagnetism in hexagonal phase of
water-ice and spin ice: (a) In the hexagonal phase of ice-crystals each
O2− ion has four H1+ ion (proton) along the O-O bonds with two
being near and two being far that gives rise to the six possible con-
figuration one of which is shown, in accordance with Bernal-Fowler
ice rules [39] or 2-in-2-out rules in terms of the displacement of the
proton from the mid-point of the O-O bond shown in arrows. (b) The
arrows are mapped to an emergent magnetic field b, such that
the ice rules implement its zero divergence, ∇ · b = 0. The low-
energy description is in terms of an emergent magnetostatics which
does not depend on any specific configuration of the protons (see text
for details).

In particular, for water ice as shown in Fig. 2, the O2−
ions inside the water ice crystal form a diamond lattice,
with each of them bonded to four H1+ ions (protons)—
two covalently and two via hydrogen bonding—leading to
4C2 = 6 possible hydrogen configuration around each oxy-
gen obeying the 2-near-2-far Bernal-Fowler “ice rules” [39].
In terms of the displacement vectors of the hydrogen atom
about the O-O bond mid-points, the above ice rules translate
into the 2-in-2-out configurations which is exactly realized in
a class of rare-earth pyrochlore magnets aptly named spin-
ice, where these displacement vectors are magnetic moments
[34,35,40,41]. For both these systems, as was shown by Paul-
ing (in context of water ice), the total number of states that
satisfy the ice rules grows exponentially in system size leading
to an extensive residual entropy [33,40].

The low-energy long-wavelength theory of such proton
disorder in water ice or spin configuration in spin ice is
quite different from phonons or spin-waves as there is no
single reference configuration about which the low-energy
excitations can be defined. Neither does each proton or spin
independently survive as a valid low-energy degree of free-
dom since inverting the position of one proton or flipping
one spin immediately violates the ice rules and hence is
energetically penalized. However, the total displacement of
hydrogen (calculated from any particular oxygen) in case of
water ice or the total magnetic moment per tetrahedron for
spin ice can be set equal to zero. Considering an imaginary
closed surface enclosing each oxygen/tetrahedra the ice rules
on the four displacement vectors or spins naturally translate
into a Gauss’s law, ∇ · b = 0, for an emergent magnetic field,
b which is proportional to the displacement vector or spin
moment [42]. The long-wavelength theory at low energy then
takes the form of magnetostatics and can successfully account

for the dipolar spin correlations [42], characterized by pinch
points as observed in experiments [43,44].

Crucial to the discussion in this paper, are the following
two aspects of the emergent magnetostatics described above.
(i) The mapping does not depend on any particular reference
spin and proton configuration among all those that are allowed
by ice-rules. Instead, any one configuration can be taken as
the reference and the observables are averaged over all such
ice configurations. It is in this sense that the reference config-
uration does not have any measurable consequence in terms
of spin correlations. In the language of the emergent mag-
netostatics, the above structure of nonobservability translates
into two ice-configurations being related by a gauge trans-
formation of the emergent electromagnetism which is quite
different from the case of spin-waves or phonons. (ii) The
mapping to magnetostatics immediately allows us to write a
coarse-grained long-wavelength free energy in terms of the
emergent magnetic field b, that automatically accounts for the
local constraints, the ice rules, and hence serves as a valid
long-wavelength theory.

B. Emergent elasticity

The above considerations can be generalized to the prob-
lem of elasticity of jammed solids, which is the focus of
this paper. The difference with crystalline elasticity, as we
briefly summarize in Sec. III, is rooted in the lack of a unique
reference configuration [7] defined by broken symmetry. In-
stead, the force and torque balance constraints on each grain
[Eq. (1a)] lead to a Gauss’s law. In the rest of this paper, elabo-
rating on the ideas presented in Ref. [20], we demonstrate that
an elegant framework for elasticity of jammed solids can be
obtained in terms of this Gauss’s law, which corresponds to
that of a class of U (1) gauge theories involving symmetric,
rank-2 tensors—the VCT [21] (also see Appendix A). The
VCT Maxwell’s equations provide the requisite missing con-
stitutive relations, giving rise to emergent elasticity that fully
captures the mechanical response of jammed solids. Similar
to the case of water ice or spin ice, VCT does not depend on
any reference configuration owing to the gauge redundancy,
whose implications we explore in detail. Within this emergent
electromagnetism, the mechanical response leads to emergent
elastic moduli, that remarkably have a completely different
origin—the underlying disordered network—than, for exam-
ple, spontaneous translation symmetry breaking in crystalline
elastic solids. We refer to this full gauge-theoretic framework
for granular solids, as the Vector Charge Theory of Granular
mechanics and dynamics (VCTG). We note that while there
are various kinds of tensor electromagnetism known in litera-
ture [21], unless specified, we use it here interchangeably with
VCT.

C. Short summary of our results

The rest of this paper is organized as follows. In Sec. III, we
provide a short summary of the classical theory of crystalline
elasticity followed by the challenges encountered in apply-
ing this classical framework to athermal, disordered solids
which we refer to as “jammed solids.” In Sec. IV, we pro-
vide a step-by-step construction of the central equations of
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TABLE I. The dictionary of the Vector Charge Theory (VCT)—Vector Charge Theory of Granular Mechanics (VCTG) mapping.
Equation (28) and the discussion following it emphasises the difference between VCTG and classical elasticity theory.

Vector Charge Theory (VCT) Emergent Elasticity (VCTG)

Vacuum Formulation (only free charges present)
Electric Field tensor: Ei j Stress Tensor σi j

Electric charge: ρi Force on grain fi

Gauss’s Law: ∂iEi j = ρ j ∂iσi j = f j

Charge conservation Force balance
Charge angular momentum conservation Torque balance
Magnetic charge: ρ̃i Momentum density πi

Magnetic Gauss’s law: ∂iBi j = ρ̃ j ∂iBi j = π j

Faraday’s Law: ∂a∂c(εiabε jcd Ebd ) = −J̃i j − ∂t Bi j ∂a∂c(εiabε jcdσbd ) = − ji j − ∂t Bi j

Ampere’s law: ∂a∂c(εiabε jcd Bbd ) = Ji j + ∂t Ei j ∂a∂c(εiabε jcd Bbd ) = Ji j + ∂tσi j

Magnetic charge conservation: ∂t ρ̃ j + ∂i J̃i j = 0 Momentum Conservation: ∂tπ j + ∂i ji j = 0
Magnetic current: J̃i j ji j = εiabε jcd∂a∂cσ

singular
bd

Dielectric Formulation (both free and bound charges are present)
Bound charges are those created in response to external charges Contact forces are created in response to imposed external forces
ρ = ρfree + ρbound f = f external + f contact

Dipole Moment: a tensor Pik = ρidk At every contact (σc )ik = ( fc )i(rc )k

∂iPi j = −(ρ j )bound ∂i(σc )i j = −( fcontact ) j

Polarizable elements: molecules, etc. Contacts between grains: unpolarized contacts are ones where the
grain shapes are not distorted (no force at that contact)

Electric Displacement Field tensor: Di j = Ei j + Pi j Stress Tensor σi j = Ei j + (σc )i j ; Ei j = 1
2 (∂iϕ j + ∂ jϕi ).

ϕi is a gauge potential that plays the role of ui the displacement
vector in crystals.

Gauss’s Law: ∂iDi j = ρfree
j ∂iσi j = f external

j

VCTG, starting from the application of Newton’s laws to an
assembly of particles in mechanical equilibrium. The force
and torque balance equations are then naturally interpreted
[20] in terms of the two conservation laws of the VCT—the
charge [Eq. (A9)] and charge-angular momentum [Eq. (A10)],
respectively. In Secs. IV A and IV B, we present the mapping
of the electrostatic limit of a VCT dielectric to the VCTG
theory of the elastic response of jammed solids. The details
of the mapping, summarized in Table I, provide the requisite
dictionary. Crucially, we show that this emergent elasticity
theory has the same structure as classical elasticity but with
the physical displacement field replaced by a gauge potential,
i.e., a stress-only formulation that does not rely on the concept
of strain. The contact forces, created by external forces such
as gravity in a sandpile, play the role of “bound charges”, and
therefore, naturally, the elastic moduli entering the emergent
elasticity theory map to the rank-4 polarizability tensor of the
VCT dielectric.

In Sec. V, we derive the stress-stress correlations,
〈〈σi jσkl〉〉, the average over an ensemble of jammed configu-
rations, starting with the Landau-Ginzburg action Eq. (30) for
the static limit of the VCTG. The final results are summarized
in Eqs. (41) and (50) for two dimensions (2D) and three di-
mensions (3D), respectively (explicit forms in the language of
the VCT dielectric are given in Appendix A). A characteristic
feature of the stress correlations is their singular behavior in
momentum space in the zero momentum limit, i.e., |q| → 0.
The singularity shows up in the characteristic “pinch point” in
the angular dependence of the correlation functions, as shown
in Figs. 3 and 5 for 2D and Figs. 6 and 7 for 3D. In real space,
these translate to positive, long-ranged power-law correlations

in the longitudinal direction and rapidly decaying correlations
in the transverse direction, as shown in Figs. 3 and 5 for 2D.
It is this longitudinal correlation that appears dramatically as
“force-chains” in granular media [20,45]. Further, we analyze
the stress response to weak external forces (with net sum zero)
on a jammed granular assembly (such as shown in Fig. 8).
In Sec. VI, we present detailed comparisons between theo-
retical predictions and numerical results of stress correlations
and response in both 2D and 3D jammed, frictionless solids.
This section also demonstrates how to compute the emergent
elastic moduli from these measurements.

Finally, we take up the issue of the dynamics of the gran-
ular solid and delve deeper into the gauge structure of the
theory and its meaning in the context of amorphous solids
in Sec. VII. We make predictions about dynamics, assum-
ing that the analog of Ampere’s law exists in VCTG and
mapping the magnetic charge to momentum density. We also
discuss inertial vs noninertial dynamics and the roles played
by the electric and magnetic sectors of the theory for these
two different classes. Following the dynamics discussion, we
address the mechanical interpretation of the gauge structure
underlying VCTG, and the connection to strain tensors and
displacement fields. Various technical details and additional
information are provided in different appendices.

III. ELASTICITY OF SOLIDS
AND THE GRANULAR PROBLEM

We begin with a brief summary of the classical theory
of elasticity [13,14]—one of the most well established field
theories in physics, since the challenges faced in constructing
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a theory of granular mechanics are best understood by con-
trasting such solids with crystals. The theory of elasticity of
crystalline solids emerges from the spontaneous breaking of
translation symmetry and associated rigidity [13,14,30] that
establishes relationships between the stress (σ̂ ) and strain (γ̂ )
tensors:

∂iσi j = f external
j , (1a)

γi j = 1

2
(∂iu j + ∂ jui ) ⇒ εiabε jcd∂a∂cγbd = 0, (1b)

σi j = Ki jklγkl . (1c)

Equation (1a) follows from momentum conservation and re-
lates the stress of a volume element at rest to external forces,
fi, via Newton’s law. The response of the particles in a crystal
are assumed to be affine, which leads to Eq. (1b) relating the
macroscopic strain tensor to the displacement field, u, mea-
sured from the unique crystalline reference structure. The fact
that the strain is derivable from a displacement field then leads
to the elastic compatibility relation [14] implied in Eq. (1b).
The constitutive relation of linear elasticity is then derived
from a free energy, F , through the relation σi j = ∂F

∂ui j
, leading

to Eq. (1c) with Ki jkl being the elastic moduli.
Equations (1) provide more than enough equations to solve

for the d (d + 1)/2 independent components of the d × d ,
symmetric stress tensor for any imposed external force. The
consequences are well known: (a) the elastic moduli are
purely material properties (with the total number of indepen-
dent moduli being fixed by the space-group of the crystal
[46]), (b) stress-stress correlations exhibit power-law decay,
(c) the response to any external force is completely deter-
mined by the elastic Green’s function obtained from Eqs. (1a)
and (1b), and (d) there is a nonvanishing sound speed, related
to the elastic moduli.

The above discussion reinforces the well-established fact
that it is the emergence of long-range order and the associ-
ated rigidity [30] of crystals that distinguishes its mechanical
response from fluids, which are disordered. Unlike elastic
solids, fluids cannot sustain a shear stress and flow in response
to it.

A. Challenges of athermal elasticity and various approaches

Applying the above paradigm of crystalline elasticity to
athermal disordered solids [see Fig. 1 for an example of a 2D
jammed packing of soft disks] is fraught with difficulties [1,7].
To begin with, there is no obvious broken symmetry and hence
no unique reference structure about which displacements can
be defined. Alternatively stated, each mechanically balanced
jammed configuration is equally eligible as a reference config-
uration. This allows for a redundancy, in the definition of dis-
placements that the coarse-grained observables are expected
to be insensitive to. Further, there is no free-energy functional
since these solids are not in thermal equilibrium. Therefore, a
rigorous basis for a stress-strain constitutive relation is lack-
ing. For granular materials, there are additional difficulties
because of the frictional and/or purely compressive nature
of inter-particle interactions—the configurations are only well
defined in presence of external boundary forces [8].

Intriguingly, however, observations of stress response in
jammed solids, including frictional, granular solids indicate
that the response is elastic over some range of imposed shear
although plasticity inevitably sets in at some critical yield
stress. In the elastic regime, the elastic moduli appear to
be dependent on preparation protocols used to create the
jammed states, and they do not necessarily obey the sym-
metries that emerge from a free-energy function in thermal
solids. A well-known example is the response of a sandpile to
a point force, where it is well established that the preparation
conditions can qualitatively change the response [1,2,7,8].
Theoretical [47,48] and numerical studies [9] have shown
that the stress-stress correlations of amorphous solids exhibit
the same power-law decay as in elasticity theory while the
stress correlations in granular media are characterized by a
pinch-point singularity in Fourier space [47,49].

The puzzle of elasticity of jammed solids is rooted in the
question of how nonperiodic networks, which are apparently
indistinguishable from a snapshot of a fluid can sustain shear?
The resolution to this puzzle lies in special properties of the
rigid network that are uncovered through the use of tools of
rigidity percolation [50,51] and Maxwell counting [52]. Dis-
ordered networks require special properties to possess states
of self-stress that are necessary to support external loads. The
only loads that a disordered network can support, are the ones
that have some overlap with these states of self-stress [52].
It is thus plausible to ask if coarse-grained field theoretic
descriptions exist that can account for the nontrivial properties
of jammed networks and also account for their mechanical
responses [1]. Many questions naturally follow. If such a de-
scription exists, then what is the nature and universal features
of such a field theory and what are the appropriate variables
that one should use to derive such field theories that account
for the underlying kinetic constraints placed by the network?
It appears, that any attempt to construct such a field theoretic
framework for the mechanical properties of jammed solids
must essentially answer: (a) how to obtain the stress state
within a continuum formulation and (b) how to incorporate
information about the structural disorder at the microscopic
scale into a continuum formulation, correctly accounting for
the kinetic constraints. It is due to this imposition of kinetic
constraints that the theory of elasticity of jammed solids is
related to that of spin-ice and other frustrated systems [53,54],
as discussed in Sec. II.

IV. REFORMULATION OF THE THEORY OF
MECHANICAL RESPONSE OF JAMMED SOLIDS

We now construct a theory of the stress response of
jammed solids in terms of a mapping to a generalized
theory of electromagnetism involving vector charges. This
section provides details of the structure introduced in Ref. [20]
and extends it to dynamics. We use granular solids as the
paradigmatic example but, as will be clear from our discus-
sions, the considerations are much more general—e.g., the
arguments can be easily generalized to gels or other amor-
phous solids at zero temperature.

In a jammed solid, every grain is in mechanical equilibrium
and thus satisfies the following constraints of force and torque
balance (see Fig. 1). In the presence of a body force, f , such
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as gravity, grain g, satisfies∑
c∈g

f g,c = f ,
∑
c∈g

rg,c × f g,c = 0, (2)

respectively. Here, f g,c is the contact force on the grain, rg,c is
the vector joining the center of grain g to the contact c (Fig. 1),
and the sum is over all contacts belonging to g. The force-
moment tensor for a contact is

σ̂g,c = rg,c ⊗ f g,c. (3)

Note that because f g,c is defined as the force on the grain,
the above definition of stress is negative to the conventional
definition [14] and follow the conventions used in granular
mechanics [1]. A coarse-grained stress tensor field, σ̂ (r) is
obtained by summing σ̂g,c over all the contact points, g, c,
included in a coarse-graining volume �r , centered at r:

σ̂ (r) = 1

�r

∑
g,c∈�r

rg,c ⊗ f g,c. (4)

This stress tensor is not symmetric for grains with frictional
interactions [55]. However, since grains are in force and
torque balance, the grain-level stress tensor σ̂g ∝ ∑

c∈g rg,c ⊗
f g,c is symmetric. Therefore, the antisymmetric contribution
to σ̂ (r) arises only from contacts at the boundary (see Fig. 1).
The implications of this will become clearer as we investigate
conservation principles of the emergent gauge theory.

The local constraints, upon coarse-graining, lead to
Eq. (1a) for the stress tensor. The torque balance condition en-
sures that the stress defined in the bulk of �(r) (for example,
counting only the green “bulk” grains of Fig. 1) is a symmetric
tensor: σi j = σ ji. The symmetric property and Eq. (1a) leads
to a mapping of the force and torque balance conditions to
charge and charge-angular momentum conservation in VCT
with Eq. (1a) mapping to the electric Gauss’s law (see Ap-
pendix A).

The question we now address is whether the dynamical
generalization of Eq. (1a), Newton’s second law,

∂iσi j = f j − ∂tπ j, (5)

can be mapped to the Maxwell’s equations of VCT. In Eq. (5),
π denotes the momentum density. Note that the relative signs
are different from usual definition [26] due to the opposite
convention for the stress defined in Eq. (3). Also, Eq. (1a)
does not uniquely fix the stress field, since

σi j → σi j + ξi j (6)

is also a valid solution where the field ξi j has zero divergence,
i.e., ∂iξi j = 0. The space of the solution for the zero diver-
gence field ξi j is large and in case of crystalline elasticity
this can be related to a general function of strain [14,56]. We
exploit this freedom [Eq. (6)] for the dynamical case of Eq. (5)
to define

∂iξi j + ∂tπ j = 0, (7)

which reduces to a zero divergence condition for the static
case while the stress continues to obey Eq. (1a). Any mapping
of the dynamics to VCT Maxwell’s equations, needs the ana-
log of a magnetic field, in addition to an electric field. As we
show below, a mathematically consistent set of equations that

reproduce three of the VCT Maxwell’s equations can be con-
structed by using the ξ field, and a symmetric tensor field
Bi j = Bji such that

∂iBi j = π j . (8)

We can then rewrite Eq. (7) as

∂i(ξi j + ∂t Bi j ) = 0. (9)

One solution can be obtained by setting

ξi j + ∂t Bi j = 0. (10)

Any function ξi j that satisfies the above equation is valid.
By drawing a parallel with crystalline elasticity [14], we can
choose ξi j to be of the form

ξi j = ∂a∂c(εiabε jcdσbd ), (11)

such that Eq. (10) now can be written as

εiabε jcd∂a∂cσbd + ∂t Bi j = 0. (12)

At first glance, the choice of ξi j in Eq. (11) seems to be
in contradiction with Eq. (7) since the divergence of ξi j ap-
pears to be identically zero. From our extensive knowledge
of topological defects in effective field theories with a UV
cutoff [57] scale, however, we know that fields such as σi j

can have singular contributions. Taking these singular con-
tributions into account, Eq. (7) has the connotation of the
conservation of the magnetic charge, whose density is given
by the momentum density and whose current is related to the
singular contributions of the stress field:

J̃i j = εiabε jcd∂a∂cσ
singular
bd . (13)

Equations (1a), (8), and (12) directly map to three of the
Maxwell’s equations of VCT: Eqs. (1a) and (8) are the electric
and magnetic Gauss’s laws, respectively, and Eq. (12) is Fara-
day’s law (see Appendix A). The analog of Ampere’s law is
missing and its origin is not clear in our current understanding.
Yet, appealing to the complete gauge structure, we postulate
the existence of such a fourth equation—Ampere’s law,

εiabε jcd∂a∂cBbd = ∂tσi j + Ji j, (14)

where Ji j is the total electric current that ensures the conserva-
tion of electric charge (force-balance), we have the full set of
“Maxwell’s equations.” In Sec. VII below, we revisit the entire
question of dynamics in granular solids in context of VCTG
and discuss a consequence of the full Maxwell structure—
the emergent photons—for the dynamics of jammed granular
solids.

It is important to note that the well-known fact that the
jammed solid has uniform density and conserves particle
number leads to the zero divergence of momentum den-
sity, ∂iπi = 0 via the usual continuity equation. This, along
with the magnetic Gauss’s law [Eq. (8)] leads to ∂i∂ jBi j = 0
whence the magnetic field can be written as a double curl of a
locally defined tensor gauge potential (see Appendix A), ex-
cept at the magnetic charge, similar to usual electromagnetism
[58].

The above mapping of mechanical properties to VCT is
what we refer to as VCTG. In passing we note that in 2D,
Eq. (1a) with f j = 0 can be mapped to the Faraday’s equation
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for a version of tensor gauge theories with scalar charges [26].
This mapping has been used to study defects in crystals with
the scalar charges representing disclinations and differs from
our VCTG fundamentally because their formulation explic-
itly uses the strain field, well-defined in crystalline structures
unlike the present case of jammed amorphous solids.

In this paper we focus primarily on the study of the static
limit of VCTG in two and three dimensions to show that it
describes the elastic response of jammed solids. We briefly re-
turn to the issue of Ampere’s law and its possible implications
for the dynamical response of jammed solids in Sec. VII.

A. The electrostatic limit

From the discussion above, elasticity of jammed solids
appears to be directly related to the electrostatic limit of the
Maxwell’s equation of VCT, if we follow the tentative map-
ping in which the force in Eq. (1a) maps to the vector electric
charge and the coarse-grained stress maps to the electric field
due to this charge:

fi
?−→ ρi, σi j

?−→ Ei j . (15)

The static limit of Eqs. (5) and (12) then are in exact anal-
ogy with Eqs. (A14) of the vector charge theory. With this
mapping to electrostatics, the stress tensor satisfies ∂iσi j = f j

and εiabε jcd∂a∂cσbd = 0. As already summarized in our earlier
paper [20], the two conservation laws of the VCT [Eqs. (A9)
and (A10)] directly correspond to the conditions of force and
torque balance in the bulk of the granular material, i.e.,∫

d3r ρi(r) = 0,

∫
d3r εi jkr jρk (r) = 0. (16)

The issue of conservation at the boundary, however, is a bit
more subtle, and is related to how granular networks develop
in response to external stresses—a topic that we now turn to.

B. The VCT Dielectric

A crucial difference, which we already alluded to in the
introduction as well as in Ref. [20], is that a granular solid
is well defined only in presence of rigid boundary conditions
where external force (external charge) is applied. Further, in
the presence of friction between the grains, the boundary also
supports a nonzero external torque. The mechanical response
in the bulk therefore, depends on the details of these boundary
forces and torques. In other words, it is the boundary forces
and charges that give rise to nonzero stress and electric field
inside the bulk. It is therefore desirable to formalise the above
electromagnetic mapping by including the external boundary
charges—a situation similar to that of electromagnetism in the
presence of a dielectric medium. Therefore, we now turn to the
dielectric formulation of the VCT.

Following standard electrostatics [58], we divide charges
in a dielectric into

ρi = ρfree
i + ρbound

i , (17)

such that the Gauss’s law is now written as

∂iEi j = ρfree
i + ρbound

i . (18)

The tensor dipole moment of such a charge distribution
(see Appendix A) is given by

Pjk =
∫

d3 r′ r′
k ρ j (r′). (19)

It is immediately clear that the antisymmetric part of
the net dipole moment is nothing but the charge-angular
momentum—the total torque in granular elasticity, i.e.,

PA
jk = Pjk − Pk j

2
= 1

2

∫
d3r (ρ jrk − ρkr j ) = 1

2
εi jkTi, (20)

where Ti is the torque. The torque balance, in addition to
the force, in mechanical equilibrium thus has a natural in-
terpretation within VCT. Notably however, the antisymmetric
part is not only conserved, but, is a purely a boundary term
as is clear from Eq. (A12). This result provides a natural
explanation for the hyper-uniformity of torque fluctuations
observed in Ref. [59]. For frictionless grains, however, the
torque is identically zero.

The multipole expansion within VCT, discussed in Ap-
pendix A, leads to

ρbound
i = −∂ jPi j (r), (21)

where Pi j (r) is the dipole moment density. Eq. (18) can now
be rewritten as

∂iDi j = ρfree
j , with Di j = Ei j + Pi j, (22)

where Di j is the tensor electric displacement field. For a linear
dielectric, similar to Ref. [20], the polarizability is propor-
tional to the electric field,

Pi j = χi jkl Ekl , (23)

where χ is the polarizability tensor. Using Eq. (23), the elec-
tric displacement tensor can be rewritten as

Di j = (δi jkl + χi jkl )Ekl ≡ (−1)i jkl Ekl , (24)

with −1 being a rank-4 dielectric tensor. Since Ei j is sym-
metric, χi jkl is given by a linear combination of symmetric
and antisymmetric parts in the indices i and j as

χA
i jkl = χi jkl − χ jikl , χS

i jkl = χi jkl + χ jikl . (25)

This leads to symmetric and antisymmetric contributions to
Pi j :

PA
i j = χA

i jkl Ekl , PS
i j = χS

i jkl Ekl . (26)

These antisymmetric contributions imply that, for frictional
grains, a boundary force can lead to a finite antisymmetric
polarization, i.e., the boundary torque, which may lead to
shearing of the boundary layer [60,61].

Therefore, the field equations of the VCT for a linear
dielectric in the static limit are given by Eqs. (22) and (24)
along with

Ei j = 1
2 (∂iϕ j + ∂ jϕi ) ⇒ εiabε jcd∂a∂cEbd = 0. (27)

Comparing the structure of the above gauge theory with that
of crystalline elasticity presented in Eq. (1) [14], shows a clear
correspondence between VCT and the theory of elasticity:

D̂ ↔ σ̂ , Ê ↔ γ̂ , −1
i jkl ↔ Ki jkl . (28)
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The important distinction with classical elasticity is the re-
placement of the strain tensor by Ê along with the fact that
the displacement fields are replaced by gauge potentials (ϕ)
and hence do not have any observable consequence. This
formulation, therefore, addresses the lack of a canonical def-
inition of a strain tensor γ̂ , arising from the fact that there
is no unique reference state about which we can define dis-
placement fields u. Further, we note that because of the
antisymmetric contribution to Pi j , the electric displacement
field, and hence the stress tensor is not necessarily symmet-
ric but can have an antisymmetric boundary contribution.
This stress-only elasticity formulations is what we refer to as
VCTG. Indeed, in frictional granular materials, the possibility
of an antisymmetric contribution to the stress tensor has been
widely recognized and is often addressed via the theoretical
framework of Cosserat elasticity [62]. The VCTG formulation
clearly identifies the antisymmetric boundary contribution to
σ̂ as arising from the dipole moment tensor P̂. To summarize
the above discussion, we have shown that mapping to a U (1)
gauge theory with vector charges, provides a fully consistent
“stress-only elasticity” framework for jammed solids captured
by the equations:

∂iσi j = f external
j ,

Ei j = 1
2 (∂iϕ j + ∂ jϕi ) ⇒ εiabε jcd∂a∂cEbd = 0,

σi j = (δi jkl + χi jkl )Ekl ≡ −1
i jkl Ekl . (29)

A detailed glossary of the mapping of various quantities
of interest in VCTG, a stress-only formulation of granular
elasticity, to its counterparts in VCT is given in Table I.

The VCTG framework unifies existing theories that use
stress-based, gauge potentials [47,48,63,64] under one com-
mon umbrella. The structure of the theory is completely
parallel to that of elasticity theory with two crucial differ-
ences: (i) the analog of the strain tensor is constructed from
gauge potentials and not from physical displacement fields
that refer to a preferred stress-free structure, and (ii) the elastic
modulus tensor emerges from the properties of the networks
that are created by boundary stresses and thus depend both
on preparation protocols and material properties (force laws).
Experimental protocols that involve boundary strains can be
handled within our theory by translating these to boundary
forces that are created by these strains. In this context, it is
intriguing to note that the phenomenon of shear thickening is
suspensions is much better characterized by imposed stresses
than by imposed shear rates [4]. In Sec. VI, we discuss numer-
ical studies of jammed frictionless granular solids that test the
predictions of the theory presented above.

V. STRESS CORRELATIONS, PINCH POINTS,
AND “EMERGENT” ELASTIC MODULI

Having outlined the mapping of the mechanical response
of granular solids to the VCT, we now calculate observables
that can be directly compared with experiments and numeri-
cal simulations of jammed solids. To obtain the stress-stress
correlations for an arbitrary ̂, we begin with the Landau-
Ginzburg action that gives rise to the field equations of the

VCTG given in Eq. (29):

S =
∫

dd r
1

2g
σi j (r)Ei j (r), (30)

supplemented with the Gauss’s law in Eq. (22). In the above
equation we have explicitly used σi j instead of Di j for famil-
iarity, keeping in mind the mapping in Eq. (28).

This action formulation is based on the assumption that
all configurations that have the same stress state, and satisfy
the kinetic constraints of force and torque balance are equally
likely. This equiprobability ansatz is the basis of the Edwards
stress ensemble [64–66]. In a more general context, this ansatz
is an extension of the theories of frustrated magnets and hard-
core dimer models, where, in the absence of any imposed bias,
all states in the degenerate low-energy manifold are taken
to be equally likely [53,54]. Jammed solids with no body
forces such as gravity correspond to the charge free sector of
VCTG. In this limit Eq. (22) reduces to ∂iσi j = 0, subject to
the boundary conditions, which can produce a nonzero stress
field in the system.

Similar to conventional electromagnetism, the electrostatic
potentials can be constructed in two ways, either by imposing
the zero divergence condition or the zero (double) curl condi-
tion. The latter leads to the ϕ potentials [Eq. (29)], and is more
suited to the calculation of the stress response. However, the
stress-stress correlations are more conveniently computed by
using potentials that solve the zero divergence condition, by
expressing the stress tensor in terms of the following poten-
tials [67]:

�σi j =
{
εiaε jb∂a∂bψ, d = 2,

εiabε jcd∂a∂cψbd , d = 3.
(31)

Here �σi j ≡ σi j − 〈〈σi j〉〉 represents the fluctuation of the
stress tensor with respect to the mean value of each packing.
In the context of elasticity theory, this potential formulation
is akin to the well-known Airy stress function [13] in d = 2
and Beltrami stress function [68] in d = 3. The potential for-
mulation using ψab as defined above is dual to the potential
formulation using ϕa, defined in Eq. (29). In Appendix A,
we present the stress-stress correlations derived using the
ϕa-potential which are identical to those derived using the ψ

formulation, as expected.
In performing specific computations, it is convenient to

represent the d (d + 1)/2 components of the tensors σi j and
Ei j as vectors, |�〉, and |E〉, respectively, using the stan-
dard Voigt representation using the bulk symmetry: σi j = σ ji,
Ei j = Eji. We have used calligraphic symbols for the objects
in Voigt notation [see Eqs. (36) and (42) for explicit forms
in d = 2 and 3, respectively] to indicate that the components
of these vectors transform differently—e.g., the components
|�〉 transform as components of a rank-2 Cartesian tensor.
Also, for notational simplification, we express the polarization
tensor i jkl , defined in Eq. (24), in the Voigt notation as ̂:

|E〉 = ̂|�〉. (32)

Using this notation, and setting g = 1, the action in Eq. (30)
can be written as

S =
∫

dd r 〈� | R̂ | E〉, (33)
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where R̂ is a d (d+1)
2 × d (d+1)

2 diagonal matrix given by

Rii =
{

1 for i = 1, . . . , d,

2 for i = (d + 1), . . . , d (d+1)
2 .

(34)

Due to the translation invariance of the system, the com-
putation of the correlations is simplified in Fourier space.
Representing the action [Eq. (33)] in terms of the Fourier
transformed fields |�̃(q)〉, we get

S =
∫

d2q〈�̃(q) | R̂̂ | �̃(−q)〉. (35)

Below, we derive the correlations using the above Landau-
Ginzburg action in both 2D and 3D and then compare them
with our numerical calculations (see Sec. VI). The correla-
tions between the components of the stress tensor 〈〈σi jσkl〉〉
have six symmetry related combinations in 2D, and 21 differ-
ent combinations in 3D. We consider the two cases separately.

A. Two dimensions

In 2D, the components of the stress tensor can be expressed
in Voigt notation as

|��〉 =
⎡
⎣�σxx

�σyy

�σxy

⎤
⎦. (36)

Therefore, in Fourier space, in terms of the scalar potential,
ψ , via Eq. (31), we have

|��̃(q)〉 = |A(q)〉ψ̃ (q) , |A(q)〉 =
⎡
⎣ q2

y

q2
x

−qxqy

⎤
⎦, (37)

where the ψ̃ is the scalar potential ψ in Fourier space. The
partition function is given by

Z =
∫

[Dψ̃] e−S[ψ̃], (38)

where from Eq. (35), we have

S =
∫

d2q 〈A(q) | R̂̂ |A(−q)〉ψ̃ (q)ψ̃ (−q). (39)

This immediately leads to

〈〈ψ̃ (q)ψ̃ (−q)〉〉 = 〈A(q) | R̂̂ |A(−q)〉−1. (40)

Using Eq. (37), we obtain the gauge-invariant stress
correlators:

〈〈��̃(q)i��̃(−q) j〉〉 = A(q)iA(−q) j〈〈ψ̃ (q)ψ̃ (−q)〉〉.
(41)

The correlations between the fluctuations of the components
of the stress tensor 〈〈�σi j�σkl〉〉 is obtained using Eq. (36).
The explicit forms for these correlations for a specific form
of ̂−1 given in Eq. (55) (see the discussion below and in
the next section about this form), are given in Eq. (A27).
Notably, these correlations depend only on a particular ratio,
K2D, of the elements of ̂−1. This theoretical prediction that
all correlations scale in the same way provides a robust test
of the theory, which we test via numerical simulations in the
next section.

An important feature of these correlations is their indepen-
dence of q ≡ |q|. They are only dependent on the angular
variable θ . This is clearly seen from Eqs. (37), (40), (41),
and the explicit forms given in Eq. (A27). For example,
〈〈�σxx�σxx〉〉 ∝ sin4 θ depends only on the polar angle θ .
Hence, the correlations display singular behavior as one ap-
proaches q → 0 producing a pinch point at q = 0 [69] (see
Figs. 3 and 5 where this “pinch-point” structure is clearly
visible). Such pinch-point behavior has previously been iden-
tified in the literature [16,45,47,49,64] as a salient feature
of the stress correlations of granular systems. The current
formulation shows that these features emerge purely from the
requirement of gauge invariance, and even more importantly,
VCTG allows us to compute the explicit angular distributions
for any ̂−1, as shown in Appendix A.

B. Three dimensions

In 3D, the components of the stress tensor can be expressed
in Voigt notation as

|��〉 =

⎡
⎢⎢⎢⎢⎢⎣

�σxx

�σyy

�σzz

�σxy

�σxz

�σyz

⎤
⎥⎥⎥⎥⎥⎦. (42)

Using Eq. (31), the action can be expressed in terms of the
potential ψab. The gauge redundancy of the theory implies that
the stress tensor is invariant under

ψab → ψab + ∂aλb + ∂bλa, ∀ a, b = x, y, z, (43)

where λa is a three-component vector field that generates the
gauge transformation. We can use this freedom to choose a
gauge to set either the three diagonal components or the three
off-diagonal components of ψ̂ to zero. In classical elasticity
theory, these two choices correspond to the Maxwell stress
function [70] (off-diagonal), and Morera stress function [70]
(diagonal). Here we choose the “Morera” form:

ψ̂ =
⎡
⎣ 0 ψxy ψxz

ψxy 0 ψyz

ψxz ψyz 0

⎤
⎦, (44)

which in the Voigt notation is

|ψ ′〉 =
⎡
⎣ψxy

ψxz

ψyz

⎤
⎦. (45)

In Fourier space, analogous to Eq. (37), we have

|��̃(q)〉 = A(q)|ψ̃ ′(q)〉, (46)

and the transformation matrix in Fourier space is given by

A(q) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 −2qyqz

0 −2qxqz 0
−2qxqy 0 0

−q2
z qyqz qxqz

qyqz −q2
y qxqy

qxqz qxqy −q2
x

⎤
⎥⎥⎥⎥⎥⎥⎦. (47)
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The corresponding 3D Landau-Ginzburg action [Eq. (35)] is

S =
∫

d3q

〈
ψ̃ ′(q) |A(q)T R̂ ̂A(−q)︸ ︷︷ ︸

B̂(q)

| ψ̃ ′(−q)

〉
. (48)

We note that the matrix B̂(q) in Eq. (48) is symmetric.
Using a partition function similar to Eq. (38), we obtain, in
the Morera gauge,

〈〈ψ̃ ′
i (q)ψ̃ ′

j (−q)〉〉 = (B̂(q)−1)i j, (49)

which leads to the gauge-invariant stress-stress correlators:

〈〈��̃i(q)��̃ j (−q)〉〉 = A(q)T
ikA(−q) jl (B̂(q)−1)kl . (50)

For the simplest form of the polarizability tensor ̂−1 = K1,
these simplify to

C vacuum
i jkl (q) ≡ 〈〈�σi j (q)�σkl (−q)〉〉

= K

[
1

2
(δikδ jl + δilδ jk ) + qiq jqkql

q4

−1

2

(
δikq jql

q2
+ δ jkqiql

q2
+ δil q jqk

q2
+ δ jl qiqk

q2

)]
.

(51)

As expected, this structure is identical to the VCT E-field
correlators [69]. Analogous to 2D, these correlators are in-
dependent of q and dependent only on the angular variables
θ and φ, producing a pinch point at q = 0. This structure
survives any modifications to any q independent ̂−1. The
forms, given in Eq. (A33) for the −1 defined in Eq. (59) (see
discussion below about this form), provides an explicit verifi-
cation. We have presented numerical evidence of pinch-point
singularities in three-dimensional jammed solids in Figs. 6
and 7.

The detailed fitting of the numerical data to the above ex-
pressions presented in the next section provides strong support
for the predictions of VCTG. The detailed angular variations
of Ci jkl are strongly affected by the form of ̂−1, and these
provide the signatures needed for determining the emergent
elastic moduli tensor from the stress-stress correlations, a
topic that we discuss next.

C. Emergent elastic moduli

In the above procedure for computing the stress-stress cor-
relations of jammed solids in 2D and 3D, the only unknown
in this formulation is the matrix ̂−1. This plays a role of
the elastic modulus tensor in continuum elasticity. However,
within VCTG, the moduli correspond to the dielectric con-
stants via Eq. (24) or Eq. (32). Since these are determined
by the polarizability of the medium they are constrained by
the spatial symmetries of the contact networks in jammed
solids, akin to the spatial symmetries of a crystalline solid.
The symmetry property of the elastic moduli of thermal solids
is imposed by the presence of a free-energy, which does not
exist for jammed solids [8]. Microscopic details of the con-
tact forces, such as the positivity condition in dry granular
materials, or the Coulomb condition of static friction on the
tangential forces enter the field theory through ̂−1, which

we refer to as “emergent elastic moduli.” They are the cou-
pling constants of the field theory, which we determine from
numerical and experimental measurements, as is the practice
in any field theory. Translating to the language of elasticity
theory, computing the elastic moduli is not within the scope
of the theory; they are material inputs.

We can obtain ̂−1 by fitting the theoretical forms of the
VCTG correlations to the observed stress-stress correlations
through Eq. (41) or Eq. (50). Performing these fits for an
arbitrary form of ̂−1 is complicated due to the large number
of parameters involved. It is therefore simpler to posit specific
forms for ̂−1 using the analogy between spatial symmetries
of jammed contact networks and crystals. This reduces the
number of parameters with which to perform the fits to our
configuration averaged numerical data (next section) com-
prehensively. Note that this procedure for determining ̂−1

relies on the fluctuations of the stress and not its response to
a boundary strain. The procedure for determining ̂−1 in ex-
perimentally or numerically generated jammed solids can then
be summarized as: (i) measure Ci jkl (q) ≡ 〈〈�σ̃i(q)�σ̃ j (−q)〉〉
for a given ensemble of jammed networks, (ii) choose forms
of ̂−1 consistent with the symmetries of the configuration av-
erages of these networks (e.g., isotropy, uniaxial anisotropy),
and (iii) fit the numerical data to the corresponding VCTG
predictions.

In the next section, we apply this approach to numerically
generated ensembles of jammed frictionless soft discs and
spheres at a give AG, the average grain area (2D) or volume
(3D), respectively. The packings we study in both 2D and 3D
are under isotropic compression and therefore, we perform
the fit assuming an isotropic form of ̂−1 [71]. This form is
parametrized by two Lamé constants [14]. As we will show
in the next section, this form works extremely well. As was
shown in our earlier paper [20], in a sheared granular system,
̂−1 has less symmetry, in which case one additional parame-
ter is required to describe the stress-stress correlations in 2D.

D. Stress response to a point force

The disorder averaged response of jammed solids to a
perturbing force f p, 〈〈σi j (r)〉〉 f p , can be calculated using the
dielectric theory of VCTG developed above. The 〈〈...〉〉 above
denotes an average over an ensemble of configurations with
the perturbing force f p held fixed. Such experiments have
been performed on sandpiles [2], and motivated the quest for
a stress-only framework for granular elasticity [7] as well as
theories of anisotropic elasticity [8]. In Fourier space,

〈〈σi j (q)〉〉 f p = Gi jk (q) f p
k (q) , (52)

where the Green’s function can be computed using standard
methods based on the Landau-Ginzburg action [Eq. (30)] (see
Appendix A for details):

Gi jk (q) =
[

ig
(
−1

abi j + −1
i jab

)
4

][
qaC−1

kb + qbC−1
ka

]
,

Ci j = − gqaqb
−1
ia jb. (53)

The above expression allows us to compare the VCTG
predictions to numerical and experimental observations in
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TABLE II. Emergent elastic moduli, obtained using a combination of stress-correlation and stress-response measurements. The ensembles
in 2D and 3D are characterized by a fixed grain area and volume (AG). 〈〈z − ziso〉〉 and 〈〈PG〉〉 denote averages over the ensemble of the number
of contacts per grain, and the pressure per grain, respectively. The two- and three-dimensional results are from systems of size 8 192 and
27 000, respectively.

Grain area Dimension 〈〈z − ziso〉〉 Grain Packing Poisson’s 〈〈�P(q)�P(−q)〉〉
AG pressure fraction ratio

〈〈PG〉〉 φ ν K

1.04 × 10−4 2D 0.294 2.24 × 101 0.835 − 0.0537
1.05 × 10−4 2D 0.463 5.25 × 101 0.852 ν ∈ [0.4, 0.5] 0.257
1.06 × 10−4 2D 0.595 8.38 × 101 0.865 − 0.583
1.07 × 10−4 2D 0.705 1.16 × 102 0.877 ν ∈ [0.4, 0.5] 0.992
2.44 × 10−5 3D 0.839 1.26 × 102 0.655 ν ≈ 0.40 0.17
2.56 × 10−5 3D 1.68 5.75 × 102 0.689 ν ≈ 0.40 0.18

jammed solids. In real space,

〈〈σi j (r)〉〉 =
∫

d2r Gi jk (r − r ′) f p
k (r ′). (54)

In particular, for −1 = I, the above equation reduces to
Eq. (A15) with Gi jk = Gd

i jk (r), the vacuum Green’s function
given by Eq. (A17).

VI. NUMERICAL INVESTIGATION OF JAMMED
SOFT SPHERES

In this section we use numerical simulations of jammed
frictionless spheres in 2D and 3D to test the predictions of
VCTG which applies to stress fields averaged over all contact
networks for an ensemble of jammed packings. Details of
the numerical methods and additional numerical results are
provided in the Supplemental Material [72].

The ensembles of jammed packings studied here are char-
acterized by a fixed value of the area (volume in 3D) per grain,
AG. In such an ensemble, the pressure and packing fraction
both fluctuate, however the packing fraction, φ, fluctuations
are purely due to the presence of rattlers. Therefore, we use
fixed AG and fixed φ, interchangeably to characterize our
ensemble. Several key consistencies between VCTG and both
numerical and experimental measurements of stress distribu-
tions in 2D systems were already discussed in Ref. [20]. Here,
in addition to elaborating on these earlier results, we verify the
VCTG predictions (i) of the correlations of stress fluctuations
in both 2D and 3D jammed solids, (ii) the response of jammed
solids to localized external forces in 2D, and (iii) compute the
emergent elastic moduli of 2D and 3D jammed solids as a
function of pressure (see Table II).

A jammed contact network is generated by starting with
a random arrangement of soft frictionless bidisperse grains
interacting via a one-sided harmonic potential [73], in a simu-
lation box that fixes AG, and minimizing the energy. The stress
field σ̂ (r), inside a jammed solid is obtained from the force
moment tensor defined in Eq. (3). Disorder averaging over
multiple such contact networks, we compute 〈〈σi j〉〉 and their
correlations, 〈〈�σi j�σkl〉〉. A coarse-graining length scale is
chosen either through a box size in real space (linear dimen-
sion of ≈5 grain diameters in 2D) or by implementing a large
q ≡ |q| cutoff qmax in Fourier space (corresponding to linear
dimensions of ≈3 grain diameters).

We first present results comparing the numerically ob-
tained correlations, 〈〈�σi j�σkl〉〉, to VCTG predictions in
both 2D and 3D. Then, we present results of comparisons
between the numerical results of stress response to theoretical
predictions in 2D.

A. Numerical results for stress-stress correlation
functions in jammed packings

1. Two dimensions

We begin by examining the stress-stress correlations in
packings of N = 8 192 bidisperse soft frictionless disks in
2D, under isotropic compression. Our objective is two fold:
(i) test the broad features of the VCTG predictions, and (ii)
determine the emergent elastic modulus tensor, ̂−1, by fitting
the numerical results to the theoretical predictions. Following
the earlier discussion on expected symmetries of the emergent
elastic moduli (Sec. V), we choose an isotropic form for ̂−1

for isotropically jammed solids:

̂−1
iso =

⎡
⎣λ + 2μ λ 0

λ λ + 2μ 0
0 0 2μ

⎤
⎦. (55)

We compute the stress-stress correlations predicted by
VCTG [Eq. (41)] using this form of ̂−1 (Sec. V), and de-
termine λ and μ by fitting to numerical results. We emphasize
that this is a two parameter fit to six different correlation func-
tions in Eq. (41) [explicit forms are given in Eq. (A27)]. In 2D,
these correlations turn out to depend only on the following
combination of λ and μ, denoted by K2D via the constant
pressure, P = 1

2 (σxx + σyy), correlations, i.e.,

〈〈�P(q)�P(−q)〉〉 = μ

(
λ + μ

λ + 2μ

)
≡ K2D = μ

2(1 − ν)
,

(56)

where ν = λ
2(λ+μ) is Poisson’s ratio. All other stress correla-

tions are given by

C isotropic
i jkl (q) = 4K2D C vacuum

i jkl (q). (57)

As an example [from Eq. (A27)],

Cxxxx(q, θ ) = 4K2D sin4 θ (58)
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(a) (b) (c) (d)

FIG. 3. Comparison of the correlation function, Cxxxx [Eq. (58)], obtained from numerical simulations with the theoretical predictions in 2D.
Panels (a) and (b) show the Fourier space results from numerics and theory, respectively. Panels (c) and (d) show the real-space correlations,
obtained from numerical simulations and VCTG predictions, respectively, close to the origin. There are approximately 9 × 9 grains in the
region shown in panel (c). The modulations seen are at the grain scale, reflecting the particulate nature of the jammed solid, and the large q
(ultra-violet) cutoff seen in panel (a). From panel (d), it is clear that the VCTG describes the envelope of the power-law decays and the strongly
anisotropic nature of the correlations, but fails to capture the grain-scale structure. The comparison given, is for a system of 8 192 grains
with packing fraction φ = 0.88, averaged over 239 configurations under isotropic compression. The full comparison for all the remaining five
correlations are given in Fig. 5.

is plotted in Fig. 3(b) and the agreement with numerical results
in Fig. 3(a) is evident. Deviations from theoretical predictions
are seen at large q ≈ 2π/(grain diameter), as expected from
the particulate nature of the jammed state. K2D is obtained by
fitting the numerical pressure correlations but we are unable
to determine λ and μ independently from the stress-stress
correlations alone. We will show in the next section that
combining measurements of stress response and stress-stress
correlations, allows us to determine both.

The pinch-point singularities in the stress-stress corre-
lations in q space [Figs. 3(a) and 3(b)] lead to power-
law decays of the correlations in real space [Fig. 3(c)],
〈〈�σ (r)�σ (0)〉〉 ∝ 1/|r|d . An equally important feature is
the strong anisotropy of these correlations which display sharp
variations with the angle in real space. For example, the
correlation of σxx is largest along the x direction, vanishes
along the (1,1) direction, and becomes negative along the y
direction, crossing zero at a distance ≈ grain diameter, as is
evident from the numerical data in Fig. 3(c). This grain-scale
modulation, which is consistent with the large q cutoff seen
in Fig. 3(a), cannot be captured by the continuum, VCTG
description. Further, we can deduce from the rotational in-
variance properties of the stress tensor, that a projection along
any direction α̂ will exhibit the slowest decay along α̂, while
decaying rapidly in the transverse direction [45]. In the con-
tinuum theory, this strong anisotropy is the manifestation of
force-chains, and is a direct consequence of the Gauss’s law
constraint on the stress tensor: transverse correlations are
strongly suppressed in relation to longitudinal correlations.

We have further tested the quantitative agreement between
the VCTG and the configuration averaged numerical data (for
two different packing fractions φ = 0.85 and 0.88), in Fig. 4
for Cxxxx with the best-fit values of the K2D given in Table II.
The contour plots presented in Figs. 3 and 5 are obtained from
239 distinct packings with the packing fraction φ = 0.88.
Similar comparisons for all the five remaining correlations
are given in Fig. 5, all of which show excellent agreement
between the numerical results and the prediction from VCTG.
The excellent agreement between theory and numerical data
supports our assertion regarding the symmetry properties of
emergent elastic moduli.

Table II shows that K2D decreases with the mean back-
ground grain pressure PG. This is expected since the solid
ceases to exist at PG = 0, the unjamming point. Viewed from
the perspective of the types of jammed networks that can be
created with purely repulsive interactions, stress fluctuations
become completely frozen as the imposed pressure goes to
zero since the stress tensor is positive definite.

Interpreted in the VCTG framework in a linear dielectric,
since no dipoles (contact forces) can be created without ex-
ternal pressure, the polarization vanishes. Earlier studies of
jammed frictionless spheres in 2D and 3D have investigated
how the ratio of the shear to bulk modulus varies with the
distance to the unjamming point (φ − φJ ), and identified a
nontrivial power law [11]. While we have not undertaken
a systematic study of this variation close to the unjamming

FIG. 4. Quantitative comparison of the radially averaged Cxxxx

correlation function obtained from numerical simulations, along with
the theoretical predictions, in 2D. The comparisons given, are for
a system of 8 192 grains at two packing fractions φ = 0.88 and
φ = 0.85. Each curve has been scaled by the maximum value of the
corresponding angular Cxxxx correlation.
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FIG. 5. Comparison of the correlation functions obtained from numerical simulations with the theoretical predictions, in 2D. The
comparisons given, are for a system of 8 192 grains at two packing fractions φ = 0.88 and φ = 0.85. The four columns show, respectively:
(a) the numerical results in q space, (b) the theoretical predictions in q space, (c) quantitative comparison between the radially averaged
(integrated over |q|) correlations, plotted as a function of the angle θ , and (d) the numerical results in real space obtained by an inverse Fourier
transform of the correlations in Fourier space. The modulations seen in panel (d) are at the grain scale. The contour plots are for φ = 0.88 and
the quantitative comparison in the third column shows the results for both φ = 0.85 and φ = 0.88. In the quantitative comparison plots, the data
has been scaled by the maximum value of the angular Cxxxx correlation function. Each row presents the results for a specific correlation function.
The five rows present, respectively: (1) Cxyxy, (2) Cyyyy, (3) Cxxxy, (4) Cxxyy, and (5) Cxyyy whose explicit forms are given in the Appendix [see
Eq. (A27)].
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FIG. 6. Comparison of the correlation functions obtained from numerical simulations with the theoretical predictions, in 3D. The
comparisons are done on a system of 27 000 grains at packing fraction φ = 0.69. Panels (a) and (b) show respectively, the numerical and
theoretical forms for a slice of the correlation function Cyyyy(q) on the XY-plane (θ = π/2). The pinch-point structure at |q| = 0 is clearly
visible. Panels (c) and (d) show the numerical and theoretical results for Cyyyy(q), respectively. The results are presented in the Hammer
projection [81] coordinates Hx and Hy. The missing regions in the numerics is due to difficulties in sampling around θ = 0 and θ = π .

point, our simulations, restricted to be deep within the jammed
region, clearly indicate that the Poisson ratio, ν ≈ 1/2 (see Ta-
ble II). This implies that the bulk modulus, ≈λ is much larger
than the shear modulus, μ. The variation of K2D with pressure
and the deviation of the contact number from isostaticity,
〈〈z − ziso〉〉, is also consistent with earlier studies [47].

2. Three dimensions

We extend the above analysis to 3D by performing numeri-
cal simulations of 27 000 soft frictionless bidisperse spherical
grains. We generated 374 packings of grains in mechanical
equilibrium under isotropic compression with packing frac-
tions φ = 0.69.

In 3D, the form of the isotropic ̂−1 is given by

̂−1
iso =

⎡
⎢⎢⎢⎢⎢⎣

λ + 2μ λ λ 0 0 0
λ λ + 2μ λ 0 0 0
λ λ λ + 2μ 0 0 0
0 0 0 2μ 0 0
0 0 0 0 2μ 0
0 0 0 0 0 2μ

⎤
⎥⎥⎥⎥⎥⎦.

(59)

Unlike the two-dimensional case, the three-dimensional
correlations depend on both λ and μ and are qualitatively
different from the vacuum correlations. This allows us to de-
termine both both λ and μ from the stress stress correlations.
The best fit estimates for the parameters λ and μ are given in
Table II.

The explicit forms of the three-dimensional correlation
functions are given in the Appendix [see Eqs. (A28)–(A33)].
For example,

Cyyyy(q, θ,�) = 4μ

(
λ + μ

λ + 2μ

)
[sin2 θ cos2 � + cos2 θ ]2,

(60)

as predicted by VCTG, is compared to numerical results in
Fig. 6 where θ and � are polar and azimuthal angles, respec-
tively. In Fig. 7, we have presented representative samples
for the 21 possible distinct stress-stress correlations in 3D,
grouping them by symmetry. The agreement with theoretical
predictions is remarkable, and the pinch-point singularities are
evident. Notably, for these isotropically jammed solids, all 21
correlation functions are controlled by only two parameters.

We have also presented additional supporting evidence
for the pinch-point singularities in 3D in the Supplemental
Material [72], where we have depicted the behavior of the cor-
relation function Cyyyy integrated over the angular coordinates.
It is clear that the integrated correlation function scales as |q|2,
which is consistent with a function that is independent of |q|
and therefore purely a function of the angular coordinates.
Similar to 2D, the pressure [P = 1

3 (σxx + σyy + σzz )] correla-
tion in 3D is independent of q and given by

〈〈�P(q)�P(−q)〉〉 = 4μ

9

(
3λ + 2μ

λ + 2μ

)

≡ K3D = 4μ

9

(
1 + ν

1 − ν

)
. (61)

B. Numerical results for stress response in 2D

The net difference between the stress fields with and with-
out a perturbing force is given by Eq. (52) in momentum space
or Eq. (54) in real space. With the isotropic form of −1 in
2D, Eq. (55), the Green’s functions Gi jk (q) [Eq. (53)] is [with
q2 ≡ (q2

x + q2
y )]:

Gi jk (q) =G2D
i jk (q) +

( ν

1 − ν

)
×

(
G2D

i jk (q) + iδi jqk − iδikq j − iδ jkqi

q2

)
, (62)

where

G 2D
i jk (q) = i

q4
[qiq

2δ jk + q jq
2δik − qiq jqk] (63)

is the VCT Green’s function in 2D obtained by Fourier trans-
forming Eq. (A17). The explicit forms of various components
are given in Eq. (A20).

We test these predictions in the ensemble of 2D jammed
solids used to analyze stress-stress correlation in the previous
section. Equations (63) and (A20) predict that the Green’s
functions for an isotropically jammed solid can be written as a
linear combination of the VCT Green’s functions. An impor-
tant fact to note is that this mixing depends on the Poisson’s
ratio, ν. Therefore, combining the response measurements
with correlations measurements allows us to determine both
K2D and ν, and consequently both λ and μ.
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FIG. 7. Comparison of the correlation functions obtained from
numerical simulations with the theoretical predictions, in 3D. The
comparisons are done on a system of 27 000 grains at packing
fraction φ = 0.69. Columns (a) and (b) show the numerical and
theoretical results for the correlations, respectively. The rows show,
respectively, (1) Cxzxz, (2) Cxyyy, (3) Cxyyz, (4) Cxxzz, and (5) Cxyzz.
The comparisons for the remaining 15 correlations are given in
Fig. 12.

We compute the response by adopting a method similar
to the one used in Ref. [12]. Figure 8 shows the geometry
used. The starting configurations are drawn from the same
ensemble used in the computation of the stress correlations,
corresponding to φ = 0.88.

We distribute localized forces with a total magnitude F ≈
10 (compared with the average contact force ≈0.1) over all

FIG. 8. Geometry used in the computation of the response to
point forces. The grains are in a square box of length L = 1. The
point charge is distributed on grains (colored in red with downward
arrows) within an circular area with radius r0 = 0.05. The compen-
sating forces are distributed on grains (colored in blue with upward
arrows) that intersect the x axis (solid blue horizontal line). The
spacing between the center of the circle and the compensating line
charge is a = 0.45.

grains within a circle of radius r0 = 0.05 centered at the ori-
gin. This constitutes our implementation of the “point” force
(see Ref. [72] for more details). To maintain force balance, we
add compensating forces along a line (which we choose to be
particles with an overlap with the x axis) as shown in Fig. 8.
The external force distribution is therefore given by

f p(x, y) =
{

1

L
δ(y) − 1

πr2
0

�
[
r2

0 − x2 − (y − a)2
]}

Fŷ ,

(64)

where δ is the Dirac δ function, � is the Heaviside step
function, and the other quantities are depicted in Fig. 8. This
procedure is repeated for each packing in the ensemble, and
the average response of the system is computed using these
configurations.

Fig. 9 compares the predictions of VCTG with our numer-
ical results for the 〈〈σyy〉〉 component of the stress response to
the body force configuration in Eq. (64). We found that the
〈〈σyy〉〉 and 〈〈σxx〉〉 response are roughly symmetric about the
Y axis, as expected, and this symmetry becomes more and
more evident as we increase the number of configurations
in the averaging procedure. Since increasing the number of
configurations used in the averaging is computationally ex-
pensive, we have symmetrized these responses about the Y
axis to reduce noise.

In the first column of Fig. 9, we display the 〈〈σyy〉〉 before
the point force is applied. In this case, the system is under
isotropic compression and the solution for the stress field from
the field equations of VCTG is a uniform stress field. The
numerical results are consistent with this but, as expected ex-
hibit fluctuations about the uniform state. The second column
shows the numerical response computed as the difference be-
tween the average stress fields with and without the perturbing
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(a) (b) (c)

FIG. 9. Comparisons between the theoretical predictions and numerical response to a point force in 2D for 〈〈σyy〉〉 component of the stress
tensor. Panel (a) displays the results for yy component of the background stress fluctuations. Panel (b) depicts the numerical response, computed
as a difference of 〈〈σyy〉〉 before and after the point force is applied. Panel (c) shows the theoretical predictions for the response, computed for
the simulation geometry from the Green’s function using Eqs. (63), (A20), and (64), using the parameters for φ = 0.88 given in Table II. The
numerical result for 〈〈σyy〉〉 has been symmetrized about the Y-axis for noise reduction: σyy(x, y) = 1

2 (σyy(x, y) + σyy(−x, y)). The comparison
is done for packings of N = 8 192 grains with PG ∈ [1.15, 1.20] × 102.

force Eq. (64), and the third column is the VCTG prediction
of the response to the same force perturbation.

Stress response measurements are more sensitive than
correlation measurements to the inherent fluctuations in the
stress background, as seen for example on the left panel of
Fig. 9. To ensure that the signal is larger than the noise,
we chose a large enough point force and focused on the
near-field response. Since the response decays as a power
law, the further away we are from the localized perturbation,
the more difficult it becomes to identify a signal over the
noise.

To compute the Poisson ratio from response measurements,
we analyze the “angular” response obtained by integrating on
an annulus of radius r ∈ [0.075, 0.3] centered on the point
charge. The size of this annulus is chosen such that the inner
radius is larger than the point charge and the outer radius is
small enough that the response has not decayed to the back-
ground stress levels. Fig. 10 presents the comparison between
VCTG predictions and and numerical results for 〈〈σyy〉〉 at two
different packing fractions. Similar comparisons are shown
for the remaining components of the stress tensor in Fig. 11.
The numerical results confirm that that the angular variations
are sensitive only to the Poisson’s ratio ν = λ

2(λ+μ) . Quantita-
tively, we can deduce that 0.4 � ν � 0.5. Since ν → 0.5 as
λ/μ → ∞, these jammed solids are close to this asymptotic
limit. It is computationally difficult to make a more accurate
determination of ν since the sensitivity is reduced near this
asymptotic limit, and as seen from the inset of Fig. 10, there
are large error bars due to the background stress fluctuations
of the packings. The component of the stress most sensitive to
changes in ν is σxx and, therefore, measuring this transverse
response is essential for determining the elastic moduli.

VII. TENSORIAL ELECTRODYNAMICS AND DYNAMICS
IN EMERGENT ELASTICITY

The above analysis provide convincing evidence that
VCTG captures the continuum description of mechanical re-

sponse of jammed solids. We now return to the question of
dynamics of jammed solids vis-a-vis VCTG.

In Sec. IV, we provided a partial mapping of Newton’s
equations to the Maxwell’s equations of VCT and demon-
strated a clear correspondence between the two Gauss’s laws

FIG. 10. Comparisons between theory and numerics for the radi-
ally integrated response of the 〈〈σyy〉〉 component of the stress tensor.
The angular results are obtained by integrating the results given in
Fig. 9 on an annulus of radius r ∈ [0.075, 0.3] centered on the point
charge. The numerical results are presented for two packing fractions
φ = 0.88 and 0.85 and are scaled by the magnitude of the point force.
The theoretical results are determined by the Poisson’s ratio ν and
we plot these results for ν = 0.00, 0.38, and 0.50. (Inset) The same
results with error bars on the numerical response. The large error bars
can be attributed to noise in the background stress, both before and
after the application of the external forces.
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(1a) (1b) (1c) (1d)

(2a) (2b) (2c) (2d)

FIG. 11. Comparisons between the theoretical predictions and numerical response to a point charge in 2D. The external force distributions
used are provided in Eq. (64). The rows (1) and (2) display the results for 〈〈σxx〉〉 and 〈〈σxy〉〉, respectively. The first column (a) displays the
respective components of the background stress fluctuations. The second column (b) displays the response for each component of the stress
tensor computed as a difference before and after the external forces are applied. The third column (c) displays the theoretical predictions for
the response, computed for the simulation geometry using the Green’s function provided in Eqs. (A20), (63), and (64). These theoretical results
have been computed using the stiffness constants for φ = 0.88 provided in Table II. The fourth column (d) displays the quantitative comparison
for the angular response from theory and numerics, obtained by integrating the response on an annulus of radius r ∈ [0.075, 0.3] centered on
the point charge. The numerical results are given for two packing fractions φ = 0.85 and 0.88 and the theoretical results are provided for
three different Poisson’s ratio ν = 0.00, 0.38 and 0.50. The numerical results for the response of σxx have been symmetrized about the Y -axis
as σxx (x, y) = 1

2 [σxx (x, y) + σxx (−x, y)] to reduce the noise in the data. The error bars in the angular response for σxx, σxy are identical in
magnitude to the ones provided for σyy in the inset of Fig. 10 as they result from the background stress fluctuations in the packings.

and the Faraday’s law of VCT by identifying the momentum
density as the magnetic charge, external forces as free electric
charges, and the magnetic charge current with the double curl
of the stress tensor. However, as we mentioned, we currently
cannot provide any systematic derivation of the Ampere’s law
in context of the granular solid from the underlying dynamics.
Instead, we have postulated its existence for completeness of a
fully dynamical VCTG theory along with charge conservation
(force balance for jammed solids).

We now take a step back to examine in a bit more detail
the nature of the dynamics of an assembly of grains to mo-
tivate the Maxwell’s equations. For an assembly of particles
with purely contact interactions, the dynamics, when coarse-
grained over a UV length scale lc, manifests in two different
ways: (1) through rearrangements of the contact network with
minimal displacement of the particles themselves (more par-
ticularly the displacement of any particle in the assembly is
less than the length scale lc), and (2) the bodily motion of
the individual particles for length scales � lc. At the level of
individual particles there is of course no distinction of the two
types, but as far as the assembly is concerned, the first denotes
the dynamics of the network and the force distribution at the
contacts (with few contacts breaking), while the second leads
to substantial rearrangement of the network itself. Contact
breaking necessarily induces nonaffine displacements, and
close to the unjamming transition even infinitesimal pertur-
bations can lead to the breaking of contacts [74]. Deep within

the jammed state, however it is possible to explore network
configurations without inducing contact breaking [2]. It is,
however, difficult to create an affine strain field inside gran-
ular assemblies and special protocols have to be designed to
achieve these [1].

Indeed it is the rearrangements of contact forces, albeit in
the static limit, that identified the emergent elastic behavior of
granular media with VCTG, the dielectric response of VCT
with forces being identified with the vector electric charges.
It is important to reiterate that the above separation of the
dynamics is only meaningful if the coarse-graining length
scale, lc > a, where a is the diameter of the particle and that
the VCTG assumes the existence of a finite lc.

The response of granular media to small time varying
boundary forces are then expected to be completely captured
by purely the motion of electric charges if we coarse-grain
up to the scale lc. In other words, lc defines the smallest
region within which a given contact network can achieve
force and torque balance which then appears in the VCTG in
terms of the coarse-grained fields. In the context of jamming,
this is known as the isostatic length scale [75,76], which
can be deduced from constraint counting, and diverges at the
unjamming transition. The isostatic point is special in that the
boundary forces completely determine the stress state in the
bulk. Equating lc with the isostatic length scale, it is well-
established that this length scale diverges as (〈〈z − ziso〉〉)−ν ,
where 〈〈z〉〉 is the average number of contacts per grain, and
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FIG. 12. Comparison of the correlation functions obtained from numerical simulations with the theoretical predictions in 3D, for the 15
remaining correlations (Figs. 6 and 7). The explicit forms for the correlations are given in the Appendix [see Eq. (A33)]. The panels show,
respectively: numerical (1a) and theoretical (2a) results for Cxxxx , numerical (1b) and theoretical (2b) results for Czzzz, numerical (1c) and
theoretical (2c) results for Cxyxy, numerical (1d) and theoretical (2d) results for Cyzyz, numerical (1e) and theoretical (2e) results for Cxxyy,
numerical (3a) and theoretical (4a) results for Cyyzz, numerical (3b) and theoretical (4b) results for Cxxyz, numerical (3c) and theoretical (4c)
results for Cxzyy, numerical (3d) and theoretical (4d) results for Cxyxz, and numerical (3e) and theoretical (4e) results for Cxzyz. Rows 5 and 6
show, respectively, the numerical and theoretical predictions for correlations of the form Ciii j : (5a) and (6a) for Cxxxy, (5b) and (6b) for Cxxxz,
(5c) and (6c) for Cxzzz, (5d) and (6d) for Cyyyz, and (5e) and (6e) for Cyzzz.

ziso defines the minimum number of contacts per grain that
are needed to achieve force and torque balance. In d dimen-
sions, for frictionless spheres, ziso = 2d . In the limit of infinite
friction coefficient, ziso = (d + 1). In general, ziso depends
nontrivially on the friction coefficient, however the exponent

ν seems to be independent of the friction coefficient [77].
For infinitely rigid particles, hard spheres, 〈〈z〉〉 is bounded
above by 2d . Since granular materials are composed of par-
ticles near this hard sphere limit, 〈〈z〉〉 ≈ ziso, and therefore
lc � a.

065004-18



TENSOR ELECTROMAGNETISM AND EMERGENT … PHYSICAL REVIEW E 106, 065004 (2022)

At the isostatic point (〈〈z〉〉 = ziso), the particles are just
touching with zero compression of grains. Within VCTG, this
translates to the medium losing its ability to polarize and cre-
ate bound charges (contact forces) in response to free charges
(external forces). The external forces therefore, completely
determine the stress state in the bulk. Most earlier field theo-
ries of granular stresses have focused on this limit [48,63,64].

The above interpretation of the two classes of dynamical
responses is consistent with the identification of the magnetic
charge density with the momentum density [Eq. (8)] as only
the second class of dynamics leads to finite momentum den-
sity for the grains when coarse-grained over lc. This gives
clear meaning to the conservation of magnetic charge den-
sity and its cross moments as nothing but the conservation
of momentum and and angular momentum, respectively (see
Appendix A), in the absence of external forces or torques as
is applicable for a particle in ballistic motion.

The dynamics of the electric charge (force), and magnetic
charge (momentum density) act as sources of the correspond-
ing fields in VCTG with each charge being conserved. With
this assumption, we postulate Ampere’s law as given by
Eq. (14). The essence of Faraday’s and Ampere’s is that
they feed back on each other. Thus the full set of Maxwell’s
equation implies a third class of dynamical modes related to
the “photons” of the VCT that arises from the self-sustaining
feedback of the electric and magnetic sectors. It is known [21]
that for VCT, the photon dispersion is given by

ω ∼ k2, (65)

which predicts that the density of states of the analog of
low-energy photons in VCTG to be ρ(ω) ∼ ω(d−2)/2. This
non-Debye form of low-energy density of states differs from
the predictions for the phonon density of states jammed
frictionless solids. Based on a Hessian analysis, phonons
in frictionless jammed solids shows Debye-like behavior
ρ(ω) ∼ ωd−1 for ω below a characteristic frequency ω∗ [11].
However, we note that the low-energy density of modes es-
timated from velocity-velocity correlations [78] in granular
solids indicate departure from the Debye predictions in disor-
dered packings. These observations along with our prediction
based on VCTG suggests that the low-energy density of states
has contributions from different origins with the softest ones,
presumably, arising from the emergent photons. A more de-
tailed study of the dynamics is a natural direction to elucidate
the nature of these different contributions.

A. The meaning of the gauge structure in VCTG

Central to the gauge structure is the position of the indi-
vidual grains in the assembly of the athermal granular solid
that forms the jammed structure. Unlike in crystalline solids
there is no reference unique zero stress configuration for gran-
ular particles such that the deviation from such an unique
configuration can be used to define a strain field. In other
words, a strain field defined by choosing a reference config-
uration should not have an observable consequence for the
mechanical properties. This is exactly the content of

Ei j = 1
2 (∂iϕ j + ∂ jϕi ) , (66)

where the ϕi are the electrostatic potentials, i.e., the potentials
ϕ play a role analogous to that of the displacement field in
the strain tensor of elasticity theory, however unlike the dis-
placement field, ϕ should not have an observable consequence
in a self averaged theory. This nonexistence of the reference
configuration along with the fact that local force and torque
balance needs to be treated at equal level for all configurations
results in a coarse-grained gauge theory.

We note that while for calculations it may be convenient
to choose a reference configuration and define a strain field
with respect to it, within our formalism that would be akin
to fixing a gauge. It would therefore be useful to understand
the structures of existing theories of elasticity of amorphous
solids, and especially the appearance of nonaffine strain fields,
from this perspective [15]. A widely used measure of plastic
response is based on the extent of nonaffine displacements and
referred to as D2

min [15,79]. This measure is defined by looking
at deviations from a locally defined optimum strain tensor.
We suggest that this procedure can be viewed as defining
the gauge fixing conditions since the displacements measured
from these states are not physical observables as they are
based on the locally optimized strain. We plan to investigate
the detailed relationships between gauge potentials and non-
affine displacements in future work.

VIII. SUMMARY AND OUTLOOK

A. Jammed granular media is a symmetric rank-2 U(1)
tensor dielectric

In this paper we have established a rigorous theoretical
framework for the mechanical response of nonthermal, dis-
ordered solids such as those found in granular media, dense
suspensions, and gels. Our framework does not rely on the
existence of a well-defined displacement field and the notion
of a continuum strain tensor that is associated with crystalline
solids, and instead relies on a mapping between the stress
fluctuations and response in such jammed solids to the ten-
sor electrostatics of polarizable media, that we have referred
to as VCTG. The force and torque balance conditions that
govern such materials at the microscopic level are naturally
interpreted as a Gauss’s law, leading to an emergent low-
energy description in terms of vector charges, which leads to
a continuum Maxwell theory of a U (1) tensor field at long
wavelengths. The salient idea underlying the mapping of me-
chanical response to a gauge theory is that gauge-redundancy
is a natural consequence of the lack of a unique stress-free
reference structure in nonthermal amorphous solids.

The identification of the electric displacement field, Di j ,
in the tensor gauge theory with the stress field in amorphous
solids allowed us, through the construction of a Landau-
Ginzburg action of a polarizable medium, to predict both
stress-stress correlations and stress-response of jammed solids
to external forces. Comparisons between theory and numer-
ical or experimental measurements provides a mechanism
for computing the “emergent elastic moduli” of such solids:
emergent since these are not material properties but depend
on preparations protocols. We demonstrate the remarkable
success of this approach by describing in detail its application
to frictionless jammed solids in both 2D and 3D. In an earlier
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paper, we had presented results of comparison to experiments
on frictional packings in 2D [20].

A central feature of the vector-charge theory is that it is
a linear theory, as is evident from the field equations, which
are the analog of Maxwell’s equations (see Appendix A).
This may raise a sense of concern regarding applying it to
the theory of granular elasticity which is a nonlinear problem
in general. It is however important to realize that granular
solids only represent a dielectric for the tensor gauge theory
and in general the response of such a dielectric is nonlinear.
However, deep inside the jammed regime, the dielectric be-
haves linearly in response to small added forces allowing us
to use a dielectric theory with a constant polarizability tensor,
which then has a structure analogous to the linear elasticity.
In addition to the possibility of such a nonlinear response, the
VCTG framework can also be used to analyze the analog of
Debye screening in the presence of “mobile charges” (contact
forces rearranging dynamically), as we show in Appendix A.
In VCTG, the screening is anisotropic and the analog of
screening length is a screening tensor.

The pinch-point singularities in stress correlations pre-
dicted by the VCTG are a consequence of Gauss’s law, and are
expected to be observed in all static athermal solids, since the
local constraints of force and torque balance are satisfied. The
details of the correlations and response are, however, sensi-
tive to the effective elastic moduli, which in turn are a conse-
quence of the representative ensembles. In particular, inherent
structures of glasses drawn from high parent temperatures,
are expected to be well-described by the VCTG. In addition,
amorphous solids with strong density heterogeneities, such as
gels, have length scales that are expected to modulate these
patterns.

B. Dynamic response

We have also presented a mapping of the full tensorial
electrodynamics to the dynamic response of granular solids.
A crucial feature of the mapping is the identification of the
analog of a magnetic field that is “sourced” by the momentum
density. This dynamical theory points to the existence of a
length scale lc that separates the electric and magnetic sectors.
Identifying lc with the well-known isostatic length scale is a
definite avenue for calculations in the immediate future to test
the validity of the proposed tensor gauge theory in the dy-
namic regime, extending the comprehensive tests in the static
regime that we have provided in this paper and in Ref. [20].
A natural question for experimental tests of the theory, in
this regard, is: Can the dynamics of the network be probed
without generating contact breaking? Experiments on stress
transmission in assemblies of photoelastic particles [2], indi-
cates that this is indeed possible. A striking prediction of the
full tensorial electrodynamics is the appearance of the ω ∼ k2

dispersing emergent photons (three of them) at low energies
and long-wavelengths. These low-energy modes represent the
dynamic response of such systems as predicted within the
tensor gauge theory, however the exact nature of these modes
within numerical simulations and experiments remain to be
identified. In this regard, while we have identified stress with
the electric displacement field, the microscopic identification
of the magnetic field in terms of the geometry and dynam-

ics of the granular assembly via Eq. (8) remains to be fully
explored.

C. Other open questions

A natural follow up question pertains to existing theories
that use a reference configuration to define a displacement and
a strain field. While a natural interpretation of these construc-
tions are that they are gauge-fixed versions of our VCTG, the
concrete mapping between these theories and VCTG requires
further investigation following the approach briefly discussed
in Sec. VII in the context of measures of nonaffine strain in
amorphous, jammed solids [15]. In the same vein, the frame-
work of VCTG is always well defined in terms of boundary
forces, in contrast to boundary strain which may or may not
map to a unique set of boundary forces. A special case where
the mapping is expected to work is rheological measurements
with boundary conditions that ensure that all boundary forces
are normal to the boundary (no-slip condition) and provides
for further nontrivial applications of the VCTG. Recent work
on plasticity of granular solids [18], and earlier work by
Pretko and Radzhihovsky [26] on crystalline defects, attempt
to investigate questions similar to ours, by employing effec-
tive theories of electromagnetism in terms of “defects” in the
strain field that are scalar charges. However the connection of
these formalisms with the present vector charge theory or an
alternate version of tensorial gauge theory remain to be better
elucidated.

Two similar but distinct extensions of the VCTG formal-
ism are to understand the mechanical response across (1) the
transition from amorphous jammed solids to broken symmetry
crystals and (2) the connection with the glass transition. For
the former, it appears that a mechanism that selects out a
unique zero-stress reference configuration and hence breaks
down the gauge structure is required, while for the latter we
need to understand the dynamics of VCTG at finite tem-
perature to explore the possibility of growing length and
timescales. In regards to this last point, in a recent paper
[80], the emergence of shear rigidity at the glass transition
has been investigated using the Zwanzig-Mori formalism. The
correlation functions of the shear stress in the “glass” bear
remarkable similarity to the predictions of VCTG.
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APPENDIX A: DETAILS OF THE VECTOR CHARGE
THEORY (VCT)

Here we briefly summarize the electromagnetism of the
vector charges which is a particular type of tensor electro-
magnetism for rank-2 symmetric tensor electric and magnetic
fields that are sourced by vector charges and tensor currents
[21].

1. The Maxwell’s Equations of VCT

The Maxwell equations in three spatial dimension are
given by

∂iEi j = ρ j, (A1)

∂iBi j = ρ̃ j, (A2)

εiabε jcd∂a∂cEbd = −∂t Bi j − J̃i j, (A3)

εiabε jcd∂a∂cBbd = ∂t Ei j + Ji j, (A4)

where Ei j (Bi j), ρi(ρ̃i ), and Ji j (J̃i j ) are the electric (mag-
netic) field, charge, and currents, respectively. A solution
to these equations can be formulated in terms of gauge
potentials Ai j and ϕi as Ei j = − 1

2 (∂iϕ j + ∂ jϕi ) − ∂t Ai j and
Bi j = εiabε jcd∂a∂cAbd . The gauge transformations, Ai j →
Ai j + 1

2 (∂iψ j + ∂ jψi ) and ϕi → ϕi − ∂tψi, leave Bi j and Ei j

unchanged, respectively. In two spatial dimensions the mag-
netic field is a scalar. Since we shall use this, it is convenient
to write this separately:

∂ jE
2D
i j = ρi, (A5)

∂iB
2D = ρ̃i, (A6)

εiaε jb∂i∂ jE
2D
ab = −∂t B

2D − J̃2D, (A7)

εiaε jb∂i∂ jB = ∂t E
2D
ab + J2D

ab . (A8)

The corresponding potential formulation becomes E2D
i j =

− 1
2 (∂iϕ j + ∂ jϕi ) − ∂t Ai j and B2D = εiaε jb∂i∂ jAab

2. Conserved quantities in the VCT

The VCT conserves the total vector charge (both electric
and magnetic)

Q =
∫

d3r ρ (A9)

and corresponding cross moment in a charge neutral system

T =
∫

d3r ρ × r =
∫

d3rT , (A10)

where T is the cross-moment density. For electric charges we
can rewrite the above equation to get

Ti = εi jk

∫
d3r [ρ j rk − ρkr j]

= εi jk

∫
d3r [∂mEm jrk − ∂mEmkr j], (A11)

where in the second line we have used Gauss’s law [Eq. (A1)].
Transferring the integral with partial integration, we get

Ti = εi jk

∫
d3r ∂m[Em jrk − Emkr j]

= εi jk

∫
dSm [Em jrk − Emkr j], (A12)

where, in the second line, we have used the divergence theo-
rem to write it as a pure surface term.

A similar set of relations can be derived for the magnetic
charge cross moment,

T̃i = εi jk

∫
d3r [ρ̃ j rk − ρ̃kr j]. (A13)

3. The electrostatic limit

The electrostatic limit is obtained by setting the time
derivative and the currents to zero in the Maxwell’s equa-
tions [Eqs. (A1)–(A4)], which gives

∂iEi j = ρ j,

εiabε jcd∂a∂cEbd = 0. (A14)

For a general charge distribution, ρi(r), the d-dimensional
solution for electric field due to Gauss’s Law in tensor elec-
tromagnetism [21] is given by

Ei j (r) =
∫

dd r′ Gd
i jk (r − r′)ρk (r′), (A15)

where

G3D
i jk (R) = 1

8π

(
δikR j

R3
+ δ jkRi

R3
− δi jRk

R3
+ 3

RiRjRk

R5

)
,

(A16)

G2D
i jk (R) = 1

4π

(
2RiRjRk

R4
− δi jRk

R2
+ δikR j

R2
+ δ jkRi

R2

)
,

(A17)

with R = r − r′.
To construct the dielectric formulation, we express the

bound charge density, ρbound
i , in terms of the dipole moment

of the induced charge distribution, following the path of usual
electromagnetism [58] by constructing a multi-pole expansion
of the potential for a localized “vector charge” distribution
(see Ref. [72] for details). As shown in Ref. [72], the elec-
trostatic potential created by many dipole moments in 3D is

ϕ
(2)
i (r) =

∫
d3r′ ∂kG3D

i j (r − r′)P jk (r′), (A18)

where G3D
i j (r − r′) is given by Eq. (A23), and Pi j (r) is the

dipole density which is related to the induced volume charge
density via Eq. (21). In addition, similar to ordinary electro-
magnetism [58], there is an induced surface charge-density
given by ρsurf

i = n̂ jPi j , where n̂ is normal to the surface.
As in any dielectric, the polarizability tensor relates the

electric displacement field, Di j and the electric field, Ei j .
In the Supplemental Material [72], we provide detailed
derivations for the correlations and response in a dielectric
characterized by a polarizability tensor, ̂−1, in q space. We

065004-21



JISHNU N. NAMPOOTHIRI et al. PHYSICAL REVIEW E 106, 065004 (2022)

summarize the results below. The response is given by

〈Di j (q)〉ρext = Gi jk (q) ρext
k (q) , (A19)

where Gi jk (q) is given by Eq. (54).
For the response in 2D, with the form of −1 given by

Eq. (55),

Gxxx(q) = G 2D
xxx (q) −

( ν

1 − ν

)
G 2D

yyx (q),

Gxxy(q) = G 2D
xxy (q) +

( ν

1 − ν

)
G 2D

xyx (q),

Gyyx(q) = G 2D
yyx (q) +

( ν

1 − ν

)
G 2D

xyy (q),

Gyyy(q) = G 2D
yyy (q) −

( ν

1 − ν

)
G 2D

xxy (q),

Gxyx(q) = G 2D
xyx (q) +

( ν

1 − ν

)
G 2D

xxy (q),

Gxyy(q) = G 2D
xyy (q) +

( ν

1 − ν

)
G 2D

yyx (q), (A20)

with G2D
i jk (q) being given by Eq. (63).

4. Green’s Functions for the electrostatic potential

The general solution to the zero curl condition in Eq. (A14)
is

Ei j = − 1
2 (∂iϕ j + ∂ jϕi ). (A21)

For a generic charge distribution, ρ j (r), the potential is
given by

ϕ3D
i (r) =

∫
d3r′ G3D

i j (r − r′) ρ j (r′), (A22)

where

G3D
i j (R) = 1

8π

[
3δi j

|R| + RiRj

|R|3
]

(A23)

is the Green’s function for the potential ϕ in 3D. For a point
charge ρ j = Qjδ

3(r) Eq. (A22) reduces to [21]

ϕ3D
i (r) = 1

8π

[
3Qi

|r| + (Q · r)ri

|r|3
]
. (A24)

In 2D, the corresponding Green’s Function is

G2D
i j (R) = 1

4π

{
−3

[
ln

( |R|
C

)]
δi j + RiRj

|R|2
}
. (A25)

Here C is a constant that sets a length scale. The potential in
2D is

ϕ2D
i (r) = 1

4π

{
−3

[
ln

( |r|
C

)]
Qi + (Q · r)ri

|r|2
}
. (A26)

5. Stress-stress correlation in 2D and 3D

Here we present explicit forms for the stress-stress corre-
lations in q space, corresponding to the form of −1 given by
Eq. (55). In 2D, these are

Cxxxx(q, θ ) = 4K2D sin4 θ,

Cyyyy(q, θ ) = 4K2D cos4 θ,

Cxyxy(q, θ ) = 4K2D sin2 θ cos2 θ,

Cxxxy(q, θ ) = 4K2D(− sin3 θ cos θ ),

Cxxyy(q, θ ) = 4K2D sin2 θ cos2 θ,

Cxyyy(q, θ ) = 4K2D(− sin θ cos3 θ ), (A27)

with K2D = μ( λ+μ

λ+2μ
) = μ

2(1−ν) , and ν = λ
2(λ+μ) is the Pois-

son’s ratio. The explicit forms of the three-dimensional
stress-stress correlations are given by

Cxxxx(q, θ,�) = 4(K1 + K2)[sin2 θ sin2 � + cos2 θ ]2,

Cyyyy(q, θ,�) = 4(K1 + K2)[sin2 θ cos2 � + cos2 θ ]2,

Czzzz(q, θ,�) = 4(K1 + K2)[sin4 θ ], (A28)

Cxxxy(q, θ,�) = −4(K1 + K2)(sin2 θ sin � cos �[sin2 θ sin2 � + cos2 θ ]),

Cxxxz(q, θ,�) = −4(K1 + K2)(sin θ cos θ cos �[sin2 θ sin2 � + cos2 θ ]),

Cyyyx (q, θ,�) = −4(K1 + K2)(sin2 θ sin � cos �[sin2 θ cos2 � + cos2 θ ]),

Cyyyz(q, θ,�) = −4(K1 + K2)(sin θ cos θ sin �[sin2 θ cos2 � + cos2 θ ]),

Czzzx (q, θ,�) = −4(K1 + K2) sin3 θ cos θ cos �,

Czzzy(q, θ,�) = −4(K1 + K2) sin3 θ cos θ sin �, (A29)

Cxyxy(q, θ,�) = (K1 + K2) sin4 θ sin2 2� + (2K1 + K2) cos2 θ,

Cxzxz(q, θ,�) = (2K1 + K2) sin4 θ sin2 � + sin2 θ cos2 θ [(2K1 + 3K2) cos2 � + (2K1 + K2)],

Cyzyz(q, θ,�) = (2K1 + K2) sin4 θ cos2 � + sin2 θ cos2 θ [(2K1 + 3K2) sin2 � + (2K1 + K2)], (A30)
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Cxxyy(q, θ,�) = [(K1 + K2) sin4 θ sin2 2� + 2K2 cos2 θ ],

Cxxzz(q, θ,�) = [(K1 + K2) sin2 2θ cos2 � + 2K2 sin2 θ sin2 �],

Cyyzz(q, θ,�) = [(K1 + K2) sin2 2θ sin2 � + 2K2 sin2 θ cos2 �], (A31)

Cxxyz(q, θ,�) = sin 2θ sin �[K2 − 2(K1 + K2) cos2 � sin2 θ ],

Cyyxz(q, θ,�) = sin 2θ cos �[K2 − 2(K1 + K2) sin2 � sin2 θ ],

Czzxy(q, θ,�) = sin2 θ sin 2�[(K1 + K2) cos 2θ + K1], (A32)

Cxyxz(q, θ,�) = − sin θ cos θ sin �[(K1 + K2)(cos 2θ − 2 sin2 θ cos 2�) + K1],

Cxyyz(q, θ,�) = − sin θ cos θ sin �[(K1 + K2)(cos 2θ + 2 sin2 θ cos 2�) + K1],

Cxzyz(q, θ,�) = sin2 θ sin 2�
[
(K1 + K2) cos 2θ + K2

2

]
, (A33)

where K1 = μ( μ

λ+2μ
) and K2 = μ( λ

λ+2μ
). From these, we can

obtain λ and μ as μ = 2K1 + K2, λ = K2
K1

(2K1 + K1).

6. Screening in vector charge theory

Consider an “electrolyte” of vector charges responding to
a test charge Q. The potential energy arising from this test
charge is

−Q · ϕ, (A34)

where ϕ is the electrostatic potential. The charge density,
ρ, includes the induced charge, and therefore depends on ϕ

via the generalization of the Debye-Hückel equation [13] to
the vector charge theory of a charge-neutral system with the
induced charge density screening the test charge. The resultant
Debye-Hückel Equation for the vector charge theory is given
by

∂i[∂iϕ j + ∂ jϕi] = −ρ j = −〈ρ j〉[−eβQ·ϕ + 1]. (A35)

Here, 〈ρ〉 is the average background charge density and β is
the inverse temperature. For small values of the potential, the
above equation simplifies to

∂i[∂iϕ j + ∂ jϕi] ≈ β〈ρ j〉Qkϕk . (A36)

Fourier transforming this gives

[|q|2δk j + qkq j + κ jk]ϕk = 0, (A37)

where κ jk = −βQj〈ρk〉 denotes the inverse of an anisotropic
screening length. The screened Green’s function is given by

G scr
jk (q) = [|q|2δ jk + q jqk + κ jk]−1. (A38)

In 3D, the real-space screened Green’s function is

G3D scr
i j (r) = δi j

4πr
− (∂i∂ j − κi j )

[
1 − e−r

√|κ|
2

4πrκ

]
, (A39)

for Tr(κi j ) = κ > 0, and

G3D scr
i j (r) = δi j

4πr
− (∂i∂ j − κi j )

⎡
⎣1 − cos

(
r
√

|κ|
2

)
4πrκ

⎤
⎦ ,

(A40)

for κ < 0. In two dimensions,

G2D scr
i j (r) =

(
δi j

2π

)
ln

( r

C0

)

−
(

∂i∂ j − κi j

2πκ

)[
ln

( r

C1

)
+ 2πK0

(
r

√
κ

2

)]
,

(A41)

where K0 is the modified Bessel function of the second kind
of order zero.

For κ > 0 the K0 term decays, but for κ < 0 the term can
be written as

K0

(
ir

√
|κ|
2

)
= −π

2

[
iJ0

(
r

√
|κ|
2

)
+ Y0

(
r

√
|κ|
2

)]
,

(A42)

which has oscillating behavior. J0 is the Bessel function of the
first kind of order zero and Y0 is the Bessel function of the
second kind of order zero.

It is clear from these calculations that the screening in VCT
is not characterized by a single length scale but by a screening
tensor, κi j that represents the strong anisotropies dictated by
the charge-angular momentum conservation: A vector charge
can only move along its own direction.

APPENDIX B: ADDITIONAL NUMERICAL RESULTS
FOR THE STRESS-STRESS CORRELATIONS

IN THREE DIMENSIONS

In Fig. 12, we have presented the comparisons between
the VCTG predictions and numerical results for the remaining
15 stress-stress correlations in three dimensions. The compar-
isons are done on a system of 27 000 grains at packing fraction
φ = 0.69. For clarity, the results are given in the Hammer
projection [81] coordinate system.
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