
PHYSICAL REVIEW E 109, 044903 (2024)

Universal stress correlations in crystalline and amorphous packings
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We present a universal characterization of stress correlations in athermal systems, across crystalline to
amorphous packings. Via numerical analysis of static configurations of particles interacting through harmonic
as well as Lennard-Jones potentials, for a variety of preparation protocols and ranges of microscopic disorder,
we show that the properties of the stress correlations at large lengthscales are surprisingly universal across all
situations, independent of structural correlations, or the correlations in orientational order. In the near-crystalline
limit, we present exact results for the stress correlations for both models, which work surprisingly well at
large lengthscales, even in the amorphous phase. Finally, we study the differences in stress fluctuations across
the amorphization transition, where stress correlations reveal the loss of periodicity in the structure at short
lengthscales with increasing disorder.
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I. INTRODUCTION

Athermal solids form due to the macroscopic rigidity of
their constituent particle networks, and are stable to mechan-
ical perturbations [1–5]. Such collective elasticity emerges in
any system of interacting particles at low temperatures, and is
displayed universally across athermal solids, including crys-
talline and amorphous structures [6–8]. However, in contrast
to crystals, amorphous solids form random rigid structures
due to the competing interactions between constituent par-
ticles, and their static configurations do not correspond to
a global energy minimum [9–11]. Although, crystalline and
amorphous packings present very different local structure
[12], they display many common elastic properties [13,14]. As
the displacement correlations are long ranged in such systems
[15,16], it is reasonable to question whether the large scale
elasticity properties are affected by their microscopic structure
[17]. A question of fundamental interest is therefore how
the effects of global rigidity are encoded across these disparate
networks, and whether such effects can be observed in the
fluctuations and correlations in the stress tensor [18–20].

Stress correlations provide important information about
the collective behavior of disordered systems composed of
interacting particles [21–27], and has attracted considerable
recent interest [14,25,28–32]. Consequently, analyzing stress
correlations can also help better understand the underlying
physics of particle packings, such as their degree of rigidity
or floppiness, as well as their response to external stimuli
such as shear or compression [13,28]. In this context, the
ensemble from which configurations are drawn in order to
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measure these correlations becomes of central importance.
As the nature of athermal ensembles is at present unclear,
with temperaturelike variables seeming to govern some of
their properties [33,34], creating ensembles that are amenable
to exact theoretical characterizations becomes important. In
this context, near-crystalline materials that exhibit several
properties and interpolate between the well-known physics
of crystals and those of amorphous materials [5,35–40] are
useful systems to study the behavior of athermal ensembles.
Recent studies of near-crystalline materials have also revealed
several characteristics of fully amorphous solids, including
the emergence of quasilocalized modes [41,42]. The two
often separate branches of condensed matter physics, amor-
phous materials, and crystalline solids are linked through the
large-scale elasticity properties displayed in both situations
[36,43,44]. Gradually introducing disorder into athermal crys-
talline packings can therefore be used to interpolate between
the well-studied physics of crystals and that of amorphous
solids.

Several studies on stress correlations in amorphous sys-
tems have established an anisotropic 1/rd decay at long
distances in d dimensions [32,45–48]. These include a variety
of contexts such as monodispersed packings quenched from
different parent temperatures [32], isotropic amorphous pack-
ings [46,49,50], low temperature liquids [45,47,48], as well as
frictional granular packings [51]. Field theoretic frameworks
have also been developed that predict anisotropic stress cor-
relations in disordered athermal solids [13,14,49,50]. Some
analytical studies have also suggested a universal behavior
for stress correlations at large lengthscales [46,52]. However,
a detailed analysis of this universality across various rigid
packings with different interactions as well as a range of
microscopic disorder has not been done. In this study, we
present exact as well as numerical results for the correlations
in the stress tensor, that reveal universal features of stress
fluctuations in athermal solids. We present results for a wide
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variety of situations, including crystalline, as well as fully
amorphous packings. We find that the properties of these
correlation functions are surprisingly universal across all sit-
uations. We corroborate this with a microscopic derivation of
the correlation functions in near-crystalline configurations as
well as numerical results for large disorders, including across
an amorphization transition. Our study highlights that the
stress correlations in athermal systems at large lengthscale are
independent of the microscopic structure and display univer-
sal characteristics across various situations, including across a
crystalline to amorphous transition.

II. MICROSCOPIC MODELS AND METHODS

Our findings are demonstrated via two paradigmatic model
systems for which crystal to amorphous packings and vice
versa can be generated by tuning of certain parameters as
detailed below.

1. Repulsive interaction at contact: Harmonic disks

The first model consists of a system of frictionless disks
in two dimensions under varying degrees of overcompression,
interacting through a one-sided pairwise potential of the form

Vai j (�ri j ) = k

α

(
1 − |�ri j |

ai j

)α

(1)

for |�ri j |/ai j < 1, and Vai j (ri j ) = 0 for |�ri j |/ai j > 1. Here �ri j =
�ri − �r j represents the distance vector between the particles
i and j, located at positions �ri and �r j , respectively. In this
study, we choose α = 2 to implement a harmonic pairwise
potential between particles. The quenched interaction lengths
are expressed as a sum of individual radii as ai j = ai +
a j . The tuning of the interaction lengths ai j allows for the
transformation from near-crystalline packings to amorphous
structures [5,6,40,53,54]. For this model system, we begin
with equal sized disks in an overcompressed triangular lattice,
i.e., a packing fraction (φ) greater than the marginal hexagonal

close packing. The lattice constant is given by R0 =
√

φ

φc
,

with R0 = 1 representing the marginal state. The quenched
disorder is introduced in the particle radii as

ai = a0(1 + ηζi ). (2)

Here ζ represents the quenched disorder in the system and
each ζi is ±1 (bidisperse) or varies between −1/2 to 1/2
(polydisperse). The parameter η governs the magnitude of
disorder in the system. Various mechanical properties of this
disordered crystal system have been studied in great detail in
previous studies [15,16,37,55–57].

2. Long-ranged attractive interaction: Lennard-Jones

The second model that we consider is a system of particles
interacting via a Lennard-Jones (LJ) pairwise potential of the
form

Vai j (�ri j ) = ε

[(
ai j

|�ri j |
)12

−
(

ai j

|�ri j |
)6

+
2∑

l=0

c2l

( |�ri j |
ai j

)2l
]

(3)

for |�ri j |/ai j < 2.5, and Vai j (ri j ) = 0 for |�ri j |/ai j > 2.5. The
coefficients c2l are chosen to smoothen the potential up to
the second order at the cutoff distance. Here ε sets the micro-
scopic unit of energy and ai j represents the quenched random
interaction lengths. For this model, the quenched disorder is
introduced into half the particles, which are randomly selected
and labeled, to be effectively inflated [40,58]:

ai j =
⎧⎨
⎩

λSS both i, j are unlabeled
η(λSL − λSS) + λSS either i or j are labeled
η(λLL − λSS) + λSS both i and j are labeled

(4)

It is convenient to introduce a labeling parameter ti for every
particle i, with ti = 0 if the particle is small and ti = 1 if it is
large. The length parameters ai j are then set as

ai j = λSS + η[(ti + t j )(λSL − λSS) + tit j (λLL + λSS − 2λSL)].

(5)

Although we may treat the three length parameters λSS, λLL,
and λSL separately, a particularly simple case is when λSL =
(λSS + λLL)/2, which we focus on. Increasing η in both mod-
els enables us to systematically vary the system between
crystalline to amorphous structures. Both the harmonic and
LJ models display an amorphization transition at η ≈ 0.4
and η ≈ 0.6, respectively; see the Supplemental Material for
further discussion on characterization of packings and details
of protocols [59].

A. Simulation details

In order to verify the predictions of our theory against
numerically obtained stress correlations in both models, we
prepare inherent structure states of the model systems, for
each realization of the quenched disorder. For doing the en-
ergy minimization to obtain these states, we use the FIRE
energy minimization protocol [60].

To obtain near-crystalline energy minima, we start with a
perfect crystal in which we introduce microscopic disorder
through the interaction length as given in Eqs. (2) and (5).
The energy minimized configuration obtained this way repre-
sents a unique stress balanced state, which we exploit later in
order to derive exact results for the correlations between the
components of the stress tensor.

The amorphous packings are obtained using two differ-
ent approaches. One way is to start from the perfect crystal
and gradually increase the strength of the disorder to create
amorphous packings without long range order. The sec-
ond approach is to quench from random initialization. For
our simulations, we choose N = 6400 particles and N =
6498 particles for commensurate and incommensurate boxes,
respectively.

While the initial packing fraction for the harmonic model is
φ = 0.92, we fix the initial pressure to zero using the Berend-
sen barostat [61] for simulating the LJ model. For all the cases,
we perform simulations for disorder strengths ranging from
η = 0.001 to η = 0.7.

The local stress components for each particle are then
computed in the energy minimized configurations. Identify-
ing �kx = 2π/Lx and �ky = 2π/Ly, we perform a discrete
Fourier transform of the local stresses. Here, Lx and Ly rep-
resent the linear dimensions of the periodic box containing
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(a) (b) (c)

FIG. 1. (a) Spatial distribution of the orientational order parameter (ψ6) in the system of harmonic disks for different polydispersities
and initial conditions. (b) Spatial distribution of pressure for different initial conditions, with η = 0.5; see text for the definition of labels.
(c) (a1)–( f 1) Exact predictions for stress correlations in Fourier space using Eq. (9). (a2)–( f 2) Radially integrated stress correlations in
Fourier space Ci jkl (θ )/〈δP̃δP̃〉 = ∫ kmax

kmin
dk〈δσ̃i j (�k)δσ̃kl (−�k)〉/ ∫ kmax

kmin
dk〈δP̃(�k)δP̃(−�k)〉, with kmin = 0.5 and kmax = 1.5; comparison between

theory and numerical data. The system size is N = 6400, and the data has been averaged over 400 configurations in order to obtain the
ensemble averaged stress correlations.

the particles. Then we compute the configurational averaged
stress correlations in Fourier space by performing an average
of over 400–500 configurations.

III. STRESS CORRELATIONS

Next, using the energy minimized configurations, we mea-
sure the correlations between the components of the stress
tensor. The stress field σi j within the athermal solid, for a
given packing, can be obtained using the particle level force
moment tensor [13,14]. We measure the fluctuations in the
stress field for the grain situated at position �rg as δσi j (�rg) =
σi j (�rg) − σ̄i j , where σ̄i j is the average force moment tensor
for a given packing. Following recent studies of stress corre-
lations in granular solids and gels [13,14,28,62], we measure
the stress tensor in Fourier space as follows:

δσ̂ (�k) =
N∑

g=1

δσ̂g exp (i�k · �rg). (6)

The correlations between the components of the stress tensor
in Fourier space can then be obtained as

Ci jkl (�k) = 〈δσ̃i j (�k)δσ̃kl (−�k)〉.
The 〈〉 represents an average over the different realizations
of the microscopic disorder. We perform a disorder average
over multiple energy-minimized configurations with the same
external conditions: fixed volume and η for both models.

The results for stress correlations from our numerical sim-
ulations are plotted in Fig. 1(c). We find that these correlations
in the k → 0 limit, i.e., the large lengthscale limit display
surprisingly universal properties. These are readily apparent
from the radially integrated stress correlations in Fourier space
(Cαβγ δ (θ ) = ∫ kmax

kmin
dkCi jkl (|�k|, θ )); see Fig. 1(c)(b)-(d). In or-

der to extract the large lengthscale behavior and also to avoid
effects due to the finite system size, the stress correlations
have been integrated in a narrow window in Fourier space
with kmin = 0.5 and kmax = 1.5. This translates to integrating
the stress correlations between particles separated less than a
distance Lx/2 and greater than four particle diameters in real
space. Our results are not sensitive to the precise value of kmin

(i.e., kmin → 0 gives the same result [59]).
In order to test the universality of our results, we also study

systems with different aspect ratios, which allow for commen-
surate crystalline structures as well as amorphous structures
to form. Specifically, we construct different initial structures,
placing particles with (i) crystalline initial arrangement in a
commensurate box (aspect ratio 1 :

√
3

2 ) (crystal commensu-
rate) and (ii) random initial points in a commensurate box
(random commensurate). In order to establish this universal
behavior in amorphous packings that are not associated in
a specific way with a crystalline limit, we also employ (iii)
random initial points in an incommensurate box (aspect ratio
1 : 1) (random incommensurate), for a variety of polydispersi-
ties as well as bidisperse packings. As illustrated in Fig. 1(a),
there is a varying degree of orientational order in the energy
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minimized states obtained for these different systems, which
we quantify using the orientational order parameter ψ6 =
N−1 ∑

i |z−1
i

∑zi
j=1 ei6θi j |, where zi represents the coordination

of the ith particle. As illustrated in Fig. 1(b), the fluctuations
in the pressure display differences at short lengthscales across
the different preparation protocols. However, these variations
do not affect the large lengthscale behavior of the stress cor-
relations, as is evident from Fig. 1(c), where we have plotted
the stress-correlations normalized by the pressure fluctuations
showing an excellent collapse. Our numerical tests therefore
reveal that the correlations across different situations yield the
same angular dependence, with no observable dependence on
the degree of orientational order.

IV. EXACT PREDICTIONS
FOR NEAR-CRYSTALLINE PACKINGS

As our numerical results reveal the universality of the
stress correlations across various situations, it is instructive
to derive the exact results which we demonstrate in the
near-crystalline limit. For this purpose, it is useful to study
the two models with minimal polydispersity added to the
quenched interaction lengths between particles. In this limit,
the uniqueness of the perturbed crystalline state allows us
to express the displacements at each site in terms of the
underlying quenched disorder δr̃μ(�k) = G̃μ(�k)δã(�k), where
G̃μ(�k) represent the μth component of the response Green’s
functions [15,16,37,55–57], and δr̃μ(�k) is the Fourier trans-
form of particle displacements in real space, i.e., δr̃μ(�k) =∑

�r ei�k.�rδrμ(�r). This formulation allows for analytic com-
putations of the displacement correlations, fluctuations in
components of the stress tensor, as well as the interaction
energy between stress defects in near-crystalline athermal
materials. Taylor expanding the interparticle force about the
crystalline positions up to linear order in the displacements
δrμ yields f μ

i j = f μ(0)
j + Cμx

j δxi j + Cμy
j δyi j + Cμa

j δai j . Here
Cμν

j are the linear order coefficients of the interparticle poten-

tial at linear order. Here �f (0) is the interparticle force between
particles i and j, separated by a distance �� j in the initial
crystalline arrangement. These coefficients Cμν

j ,�α
j depend

only on the initial crystalline structure, the form of the inter-
action potential, and the relative position of the neighbor j
in the initial crystalline structure. Here δai j = δai + δa j for
the Harmonic model whereas δai j = η(λSL − λSS)(ti + t j ) for
the LJ model. This formulation, developed in the context of
harmonic disks [37,55], has now been extended to the LJ
system in the near-crystalline limit, with δai ≡ ti. Next, by im-
posing the force balance conditions on every grain, the linear
order displacement fields can be uniquely obtained. Using the
exact displacement fields we can express the components of
the stress tensor in Fourier space in terms of the microscopic
disorder as

δσ̃αβ (�k) = Sαβ (�k)δã(�k), (7)

where Sαβ (�k) are the relevant source terms in Fourier space
that can be derived explicitly from the underlying crystalline
lattice and grain disorder (see the Supplemental Material for

details [59]). Explicitly, we have

Sαβ (�k) =
∑

j

[e−i�k. �� j + 1]Cβa
j �α

j +
∑

j

[e−i�k. �� j − 1]

×
⎛
⎝∑

μ

�α
j C

βμ
j G̃μ(�k) + f β(0)

j G̃α (�k)

⎞
⎠, (8)

where μ = x, y. Equation (8) has the same form for both
models, with the only differences arising in the coefficients
and range of interaction. For the harmonic model, the range
of the interaction determines z = 6 neighbors for each par-
ticle in the crystalline configuration, as we only need to
consider distances up to the first shell, whereas for the
LJ model, the interactions are up to the third shell, with
z = 18. The derivation of the exact Green’s functions, as
well as the correlations between the various stress tensor
components, are given in the Supplemental Material [59].
The underlying microscopic quenched random variables are
uncorrelated in real space, which in Fourier space trans-
lates to 〈δã(�k)δã(�k′)〉 = η2

48δ�k,−�k′ for the harmonic model and

〈δã(�k)δã(�k′)〉 = η2

4 (λSL − λSS)δ�k,−�k′ for the LJ model. Using
these microscopic correlations, we arrive at the expressions
for the stress correlations in disordered crystals as given in
Eqs. (9) and (10). Specifically, for Harmonic interactions we
have

〈δσ̃αβ (�k)δσ̃γ δ (−�k)〉 = η2

48
Sαβ (�k)Sαβ (−�k), (9)

and for the LJ interaction, we have

〈δσ̃αβ (�k)δσ̃γ δ (−�k)〉 = η2(λSL − λSS)

4
Sαβ (�k)Sαβ (−�k). (10)

Stress correlations computed in Fourier space from direct
numerics show an exact match with the above predictions, as
displayed in Fig. 1(c). Surprisingly, this microscopic theory
provides extremely accurate results for a wide range of poly-
dispersities. We note that although these configurations have
many broken contacts (particles that have been interparticle
distances further than the interaction range), the theory is able
to predict stress correlations with remarkable accuracy. The
success of such a microscopic theory in the k → 0 limit stems
from the fact that it captures the large length scale behavior of
the system, and therefore is not sensitive to the local structure
of the packing.

V. CRYSTALLINE VERSUS AMORPHOUS PACKINGS:
COMPARING STRESS CORRELATIONS

Finally, we investigate the differences between crystalline
and amorphous packings through a measurement of the stress
correlations. The transition between these two phases has been
studied for both models in many previous studies [5,40]. The
amorphization transition with increasing disorder (polydis-
persity η) can be observed via the fluctuation in the bond
orientational parameter defined as

ψ6 = 1

N

∑
i

∣∣∣∣∣∣
1

zi

zi∑
j=1

ei6θi j

∣∣∣∣∣∣. (11)
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(a)

(b)

FIG. 2. Bond orientational order parameter (ψ6) and its fluctu-
ation (χ6) with variation in the disorder parameter η for (a) short
ranged Harmonic model and (b) long-ranged LJ model. For each
value of η, ψ6, χ6 are obtained by averaging over 50 000 disordered
configurations of system size N = 256.

Here zi is the coordination number of the ith particle in the
energy minimized configuration and θi j is the relative angle
made by the bond between particle i and its neighbor j with
an x axis. For near crystalline systems ψ6 → 1, whereas in
completely amorphous systems ψ6 is typically small. Further,
one can compute the susceptibility of ψ6 as

χ6 = 〈
ψ2

6

〉 − 〈ψ6〉2. (12)

The susceptibility χ6 diverges near the amorphization tran-
sition, and can therefore distinguish between crystalline and
amorphous states. For the harmonic model, with initial pack-
ing fraction φ = 0.92, the divergence of χ6 occurs at a
polydispersity of η ≈ 0.42 as plotted in Fig. 2(a) indicat-
ing the onset of amorphization transition. For the LJ model,
with initial pressure P = 0 and constant volume, the transi-
tion is observed at η ≈ 0.65 as shown in Fig. 2(b). Now
we demonstrate how the stress correlations shape up across
the amorphization transition. For the harmonic model, we
display results for both near-crystalline and across the amor-
phization transition (η = 0.4, 0.5) in Figs. 3(b)–3(d). These
stress correlations do not show any significant change at large
lengthscales (|�k| → 0), as predicted by our exact results for
near-crystalline systems.

In the amorphous limit, various frameworks have at-
tempted characterization of stress correlations [22,45,46,49–
51]. In particular, a recently developed “stress only” frame-
work to describe stress fluctuations in athermal solids, termed
vector charge theory of granular mechanics (VCTG), allows
for a computation of the correlations between the components
of the stress tensor [13,14]. Within a continuum framework,
the local force-balance constraints can be expressed as [9,63]
∂iσi j = 0. Torque balance leads to a symmetric stress ten-
sor σxy = σyx. However, the mechanical force balance is

(a) (b)

(c) (d)

FIG. 3. Stress correlations [Cxxxx (�k) = 〈δσ̃xx (�k)δσ̃xx (−�k)〉] in the
harmonic model. (a) Theoretical prediction in the η → 0 limit,
(b)–(d) numerical results with polydispersities varying across the
amorphization transition, at fixed initial packing fraction φ = 0.92.
These stress correlations display the same large lengthscale behavior,
with observable changes at larger values of |�k|, near the edges of the
Brillouin zone.

insufficient to solve for all the components of the stress tensor
[64]. The VCTG framework [13] posits a Gaussian action
with the coupling between the components of the stress tensor
representing generalized elastic moduli. This can then be used
to compute correlations between the components of the stress
tensor that display pinch-point singularities as |�k| → 0. The
predictions from this theory are valid up to lengthscales of
the order of the grain diameter: with very short ranged cor-
relations in real space and pinch-point singularities appearing
at small k [13,14]. Our microscopic derivations of the stress
correlations in the near-crystalline limit [Eq. (9)] therefore
allow for a direct comparison of the stress correlations be-
tween an exact theory at low disorder, and the predictions
of VCTG. In particular, our microscopic derivation yields an
angular dependence for Cxyxy ∼ sin2(θ ) cos2(θ ), independent
of packing fraction and initial pressure, which matches the
predictions from the field theory exactly.

Further, in the near-crystalline limit, our theory provides
the exact expressions for the correlations in the entire range
of k and not just in the small k limit. Being derived from
a reference crystalline structure, these exact predictions are
periodic in Fourier space, with the Brillouin zone being deter-
mined by the periodicity of the crystal. We therefore expect
the symmetry of the crystal to be present in the correlations
at shorter lengthscales. The match with the near-crystalline
predictions is expected to get worse near the Brillouin zone
edges as disorder is increased. This is illustrated in Fig. 4,
where we display the changes in the correlations Cxxxx with
varying polydispersity for the Harmonic model across the
amorphization transition. From Fig. 2(a) we observe the amor-
phization transition occur about η ≈ 0.42. We also observe
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(a) (b) (c)

(d) (e) (f)

FIG. 4. Stress correlations [Cxxxx (�k) = 〈δσ̃xx (�k)δσ̃xx (−�k)〉] in the
harmonic model plotted for |�k| � 11.5. (a)–(e) Numerical results
with polydispersities varying across the amorphization transition,
at fixed initial packing fraction φ = 0.92, (f) stress correlations for
jammed packings quenched from random initialization with η = 0.5.
These stress correlations display the same large lengthscale behavior,
with observable changes at larger values of |�k|, near the edges of the
Brillouin zone.

that the periodic structure of stress correlations in Fourier
space starts to vanish after the transition. This represents an
intriguing signature of the well-studied crystal to amorphous
transition and provides a direct order parameter with measur-
able differences. The structure of the correlations in Fourier
space warrants further investigation.

VI. CONCLUSION AND DISCUSSION

In this paper, we have demonstrated, both numerically as
well as theoretically, the universality of stress correlations in
static athermal solids. Our results for near-crystalline, as well
as amorphous, packings demonstrate that although real-space
measures of orientational order vary in these structures, the

correlations in the fluctuations of the stress tensor at large
lengthscales remain unaffected, as suggested in previous stud-
ies [46,52]. This allows for correlations extracted from a
reference crystalline configuration to correctly predict stress
correlations even in amorphous packings.

Several intriguing directions for further research remain.
The universality of our findings has implications for diverse
systems such as granular and glassy materials, as well as
biological tissues. It would be interesting to analyze in detail
the features of the crystal to amorphous transition using stress
correlations to test whether a stress-only order parameter is
able to capture the significant features of the transition be-
tween the phases. Another aspect that remains to be probed
is the dependence of the correlations on the prestress of the
system, which can play an important role in the nature of
the vibrational eigenmodes and consequently in the stabil-
ity of amorphous solids [41,65]. As our microscopic theory
correctly predicts the large lengthscale behavior, it would be
useful to derive a Lagrangian that incorporates the effects of
the microscopic disorder, which could help explain features in
the correlations observed from a coarse grained approach [13].
Finally, although the static limit reveals a striking universality
between crystalline and amorphous structures, it would be
very interesting to study dynamical signatures through stress
correlations, which can reveal differences between the well-
studied elastodynamics of crystals [66] and the dynamics of
amorphous systems.
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