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Singularities in Hessian element distributions of amorphous media
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We show that the distribution of elements H in the Hessian matrices associated with amorphous materials
exhibit singularities P(H ) ∼ |H |γ with an exponent γ < 0, as |H | → 0. We exploit the rotational invariance of
the underlying disorder in amorphous structures to derive these exponents exactly for systems interacting via
radially symmetric potentials. We show that γ depends only on the degree of smoothness n of the potential of
interaction between the constituent particles at the cut-off distance, independent of the details of interaction in
both two and three dimensions. We verify our predictions with numerical simulations of models of structural
glass formers. Finally, we show that such singularities affect the stability of amorphous solids, through the
distributions of the minimum eigenvalue of the Hessian matrix.
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Introduction. Understanding and modeling the properties
of amorphous solids such as glasses has remained a challenge
due to their extreme nonequilibrium nature as well as the
underlying disorder in the arrangement of particles [1–10].
An important aspect in the study of such systems is their
vibrational properties, typically probed through the eigen-
values of the Hessian matrix [11–13], with low-frequency
modes being particularly relevant at the low temperatures
where glass physics dominates [13–28]. Since glass-forming
systems settle into disordered configurations, random matrix
treatments provide a natural framework with which to model
amorphous systems [29–39]. The Hessian is thus naturally
characterized by the distribution of its elements [40,41]. Al-
though the Hessian matrix is relatively simple to compute in
simulations [42,43], an experimental determination remains
difficult, accessible for example, only through displacement
correlations in colloidal glasses [44]. In this context, it is
important to study the vibrational properties of model sys-
tems via simulations. Simulation models vary in strength and
range of interaction [45], and exhibit a wide range of phys-
ical properties [46]. Even though there are indications of an
underlying “amorphous order” in such systems [9,10], their
behavior differs fundamentally from that of crystals, with the
low-lying eigenvalues of their Hessian matrices displaying
marked non-Debye behavior [21–27], related to the growth of
a structural length scale [47] as well as static correlations [48].
The distribution of elements affects the eigenvalues of the
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Hessian which is directly related to the mechanical properties
of amorphous solids [49–51].

In this Rapid Communication, we analyze the distributions
of Hessian elements in structural glass formers analytically,
as well as through numerical simulations. In simulations, in-
teraction potentials are typically cut off at a finite distance for
computational expediency, and in order to avoid unphysical
changes, they are smoothed to relevant degrees at this cut-
off [52]. However, the effect of this smoothness on vibrational
properties of such amorphous systems has never been inves-
tigated. In crystals, the ordered interparticle distances imply
delta distributed Hessian elements. For example, in a trian-
gular lattice of particles with nearest-neighbor interactions as
shown in Fig. 1(a), the diagonal Hessian elements take on one
of two nonzero values. However, in the case of a disordered
arrangement derived from simulations of glass formers as
shown in Fig. 1(b), this distribution is continuous, peaking
at zero with a marked singularity. We exploit the rotational
invariance of the underlying amorphous disorder to derive
analytic expressions for these distributions, for systems with
radially symmetric interactions, which we then verify using
direct numerical simulations. We show that these distributions
indeed exhibit smoothness-dependent singularities

P(H ) ∼ |H |γ , for |H | → 0 (1)

with a power γ < 0. We derive exact results for γ , for any
degree of smoothness, in both two dimensions (2D) as well as
three dimensions (3D). Our results are summarized in Table I,
highlighting the nontrivial dependence of these distributions
on the nature of the interaction at the cutoff. Finally, we show
that these singularities have crucial implications for the low-
energy vibrational modes of amorphous systems, through a
numerical sampling of the minimum eigenvalue of systems
with varying smoothness in their interactions.

Distribution of Hessian elements. We begin with a disor-
dered arrangement of particles at positions {ri}, where the
particle index i ∈ {1, . . . , N}. The Hessian is then a dN × dN
matrix where d represents the dimension of the system, with
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FIG. 1. Comparison of energy minimized configurations in (a) a
monodisperse crystal and (b) an amorphous glass consisting of two
types of particles: A (small, green) and B (large, blue). Also plotted
are the corresponding distributions P(H ) of the diagonal elements
of their Hessians. In (b), the distribution is shown only for A-B
interactions.

elements Hi j
αβ that describe the stiffness between particles i

and j, along the coordinates α, β ∈ {x, y, z}. In terms of the in-
terparticle distance vector ri j = ri − r j , the Hessian elements
may be expressed as

Hi j
αβ (ri j ) = ∂2U [{ri}]

∂ri j
α ∂ri j

β

. (2)

Here, U [{ri}] is the total potential energy of the system, which
is a function of the positions of all particles. For pairwise
additive interactions, U [{ri j}] = ∑

i j ψ
i j , where ψ i j is the

interaction potential between particles i and j. We consider
central potentials ψ (r), where r ≡ ri j = |ri j | is the distance
between particles i and j. In addition, these potentials are
smoothed to n derivatives at a cut-off distance rc, i.e., dmψ

drm |
rc

=
0 for all 0 � m � n. Figure 2 shows a typical interaction
potential in 2D used in our numerical simulations, and its

TABLE I. Asymptotic behavior of Hessian element distributions
in the limit H → 0. The diagonal element distribution depends on
the relative signs of H and the interaction potential near the cutoff
ψδ ≡ ψ (rc − δ). The results are identical for both two and three
dimensions.

Element (H ) Smoothness (n) lim
H→0

P(H )

Diagonal [2,∞)a |H |−1+(3/2n)

(α = β ) {2}b |H |−1+(3/2n)

{3}b |H |−1/2 log (|H |−1)

(3,∞)b |H |−1+[1/(n−1)]

Off-diagonal {2} log (|H |−1)

(α �= β ) (2,∞) |H |−1+[1/(n−1)]

aCorresponds to H × ψδ > 0.
bCorresponds to H × ψδ < 0.

FIG. 2. The R10 potential ψ (r) ∼ r−10 + c + br2 + ar4 for A-
B interactions, smoothed to two derivatives (n = 2) at the cutoff
[ψ (rc ) = ψ ′(rc ) = ψ ′′(rc ) = 0]. The derivatives have been scaled
down by a factor of 100 for clarity. The inset shows a plot in the
interparticle coordinates (r, cos φ), displaying contours which con-
tribute to the distribution of diagonal Hessian elements (α = β) at a
fixed H .

derivatives, all of which tend to zero at cutoff (n = 2 in this
case). The Hessian elements for central potentials are given
by [53]

Hi j
αβ (ri j ) = −

(
ψ

i j
rr

(ri j )2 − ψ
i j
r

(ri j )3

)
ri j
α ri j

β − δαβ

ψ
i j
r

ri j
, (3)

where the subscripts of r indicate partial derivatives
with respect to the interparticle distances: ψr ≡ ψ

i j
r =

∂ri j ψ i j, ψrr ≡ ψ
i j
rr = ∂ri j ∂ri j ψ i j . Since the potential and its

derivatives vanish at the cut-off distance, the small Hessian
elements arise primarily due to pair distances near this cutoff.
The values of Hessian elements in Eq. (3) depend on the
length and angle of the interparticle distances in an arbitrarily
chosen (fixed) Cartesian coordinate system. We therefore de-
fine a generalized angular coordinate 	 with respect to these
fixed axes, which is a function of the angle φ in 2D, and both
the polar and azimuthal angles θ, φ in 3D. The distribution of
Hessian elements P(H ) is then given by

P(H ) =
∫

dr d	 P(r,	)δ
[
H − Hi j

αβ (ri j )
]
, (4)

where P(r,	) represents the joint probability distributions of
interparticle distances and orientations, as shown in the inset
of Fig. 3. For a given H , the delta function constraint in Eq. (4)
selects the corresponding contour in (r,	) through Eq. (3), as
shown in the inset of Fig. 2.

We next exploit the rotational invariance of the underly-
ing amorphous disorder to relate P(H ) to the distribution of
interparticle distances. This microscopic rotational symmetry
leads to isotropic angular distributions at all distances. Hence,
we may assume the distributions of interparticle distances and
angles to be uncorrelated P(r,	) = P(r)P(	). Numerical
sampling of this joint distribution P(r,	) in structural glass
formers (inset of Fig. 3), demonstrates that all orientations
are sampled uniformly, independent of the radial distance.
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FIG. 3. Numerically sampled radial distribution function of A-B
particle pairs in the R10 system in three dimensions. The vertical line
indicates the cut-off distance of the interaction. Inset: Numerically
sampled joint distributions of the distances (r) and angles (φ and
cos θ ), indicating isotropic angular distributions.

We therefore assume uniform distributions in the angular
variables P2D(φ) = P3D(φ) = 1

2π
, and P3D(cos θ ) = 1

2 . The
distribution of r is the radial distribution function g2(r), nor-
malized over the range of interaction r ∈ [0, rc], i.e., P(r) =
g2(r)�(rc − r)N , where � is the Heaviside function, and
N−1 = ∫ rc

0 g2(r) is a constant of normalization. For a given
H , the integration over the angular variables in Eq. (4) yields
a Jacobian factor, leading to the Hessian element distribution

P(H ) =
∫ rc

0
dr P(r)

P(	)∣∣ ∂H
∂	

∣∣ =
∫ rc

0
dr P(r)P (H, r). (5)

Above, the angular variable 	 in the final expression has
been expressed in terms of H and r using Eq. (3). Therefore,
given an empirical g2(r), P(H ) can be determined exactly.
The partial integrand P (H, r) = [| ∂H

∂	
|]−1

P(	) depends on
the dimension, as well as the spatial indices α and β. However,
rotational symmetry dictates that there are only two classes
of Hessian element distributions: the diagonal (Hαα : Hxx ≡
Hyy ≡ Hzz) and off-diagonal (Hαβ : Hxy ≡ Hyz ≡ Hzx).

Exact partial integrands. We first consider the distri-
bution of Hessian elements in 2D systems, choosing the
diagonal element Hxx and the off-diagonal element Hxy.
From Eq. (3), H2D

xx = −(ψrr − ψr

r ) cos2 φ − ψr

r , and H2D
xy =

−(ψrr − ψr

r ) cos φ sin φ. It is convenient to use the an-
gular variable 	 ≡ cos φ with the distribution P2D(	) =
1/(π

√
1 − 	2). Substitution of these into the expression in

Eq. (5) yields the same partial integrand for both cases P2D
αβ =

[π | ∂H
∂ cos φ

|
√

1 − cos2 φ]
−1

. Finally, inverting the above expres-

sions for H2D
xx and H2D

xy to express cos φ in terms of H and r,
we arrive at

P2D
αβ (H, r) =

{∣∣4π2
(
H + ψr

r

)
(H + ψrr )

∣∣−1/2
α = β,∣∣π2

{(
ψrr − ψr

r

)2 − 4H2
}∣∣−1/2

α �= β.

(6)

FIG. 4. Distribution of diagonal Hessian elements in the R10
system with different smoothness at cutoff n = 2 and 3 in two dimen-
sions. The configurations sampled are at energy minima. The plot
is in symmetric-log-log scale, showing the power-law divergence in
both positive and negative H . The dashed lines represent the analytic
predictions from Eq. (5), using numerically sampled radial distribu-
tion functions. Exponent of the singularity changes with the degree
of smoothness n. Inset: Distribution of the minimum eigenvalue λmin

of the Hessian (for system size N = 256), displaying significant
changes with the degree of smoothness n.

For 3D systems, we choose Hzz and Hxz to represent the diag-
onal and off-diagonal elements, respectively. From Eq. (3) we
have H3D

zz = −(ψrr − ψr

r ) cos2 φ − ψr

r , and H3D
xz = −(ψrr −

ψr

r ) cos θ sin θ cos φ. In the case of diagonal elements, it
is convenient to choose 	 ≡ cos θ , with the distribution
P3D(cos θ ) = 1

2 (see inset of Fig. 3). Under these conditions,

the partial integrand defined in Eq. (5) is P3D
zz = [2| ∂H

∂ cos θ
|]−1

.
In the case of off-diagonal elements, it is convenient to choose
	 ≡ cos φ, and given that P(φ) = 1

2 , we arrive at the ex-

act integral form P3D
xz = ∫

πd (cos θ )[| ∂H
∂ cos φ

|
√

1 − cos2 φ]
−1

.

Finally, inverting the above expressions for H3D
zz and H3D

xz to
express cos θ and cos φ in terms of H and r, we arrive at the
simplified expressions

P3D
αβ (H, r) =

{∣∣4(
H + ψr

r

)(
ψrr − ψr

r

)∣∣−1/2
α = β,

κ
H

∫ 1
−1 dx[x2(1 − x2) − κ2]−1/2

α �= β

(7)

with κ = H (ψrr − ψr

r )
−1

. The above integral form for the
off-diagonal elements has the asymptotic behavior (refer to
Supplemental Material [54])

P3D
α �=β (H, r)

κ→0∼ 2κ

H
log

(
4

κ

)
. (8)

The distributions of Hessian elements can now be found
using these partial integrands [Eqs. (6) and (7)] in Eq. (5)
along with the numerically obtained radial distribution func-
tions, as shown in Fig. 3. We display the match between our
theoretical predictions and distributions obtained from numer-
ical simulations in Fig. 4. In the Supplemental Material [54],
we additionally show a precise match between P(H ) obtained
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analytically and numerically, for an exponentially decaying
g2(r).

Asymptotic forms and singular distributions. We focus next
on the behavior of P(H ) in the limit H → 0. It is clear from
the forms of the partial integrands in Eqs. (6) and (7), that they
diverge as r → rc and H → 0, since ψr → 0 and ψrr → 0.
Consequently, the corresponding integrals determining P(H )
in Eq. (5) exhibit singularities P(H ) ∼ Hγ as H → 0, as
displayed in Figs. 1(b) and 4. We show below that the strength
γ of this singularity depends on the rate of decay (i.e., smooth-
ness n) of the interaction at cutoff.

To determine the behavior of the distribution near the sin-
gularity, we focus on the integral in Eq. (5), as we approach
the cutoff r → rc. It is assumed also, that the g2(r) does not
contain singularities at rc as justified by the plot in Fig. 3. The
interaction potential, smooth to n derivatives at the cutoff dis-
tance and its derivatives in the limit of r → rc, may therefore
be approximated as

ψ (r) = (rc − r)n+1 f (r), ψr/r ≈ C1(rc − r)n,

ψrr ≈ C2(rc − r)n−1, (9)

where f (r) is a regular function, along with C1 = −(n +
1) f (r)/r, and C2 = n(n + 1) f (r) which vary significantly
slower compared to the power-law term as r → rc. Above,
in ψr/r, we have ignored (rc − r)n+1 f ′(r) in comparison to
(rc − r)n f (r). Under this approximation, the singular points
of P (H, r) in the complex-r plane are determined by the two
expressions

(rc − r)n = − H

C1
, (rc − r)n−1 = − H

C2
. (10)

The full structure of the poles in Eq. (10) is detailed in
the Supplemental Material [54]. However, as the integral in
Eq. (5) is performed over the real interval [0, rc], the new
upper limit is determined by the largest positive real root of
these expressions. This occurs at a value r∗ = rc − s, where
s ≡ s(H ) represents the shift in the upper limit. The singular
behavior in P (H, r) is thus determined by both the sign of H ,
and the signs of the first two derivatives of the potential (C1

and C2), as the cut-off distance r → rc is approached.
In order to analyze the asymptotic forms of P(H ) in Eq. (5)

as H → 0, we define a small variable ε as a distance to r∗ at
a given value of H , ε = (rc − s) − r. The derivatives of the
potential described in Eq. (9) can then be written as

ψr/r ≈ C1(ε + s)n, ψrr ≈ C2(ε + s)n−1. (11)

We can now extract the asymptotic behavior of P(H ) using
this approximation in the partial integrands in Eqs. (6) and (7).
The behavior of these integrands depends on the relative signs
of H and the interaction potential near cutoff ψδ ≡ ψ (rc − δ)
with δ/rc � 1. Below, we present the analysis for the diagonal
elements in 2D, with the details of all cases presented in the
Supplemental Material [54]. Using Eq. (11) in Eq. (6), for
H → 0, ε → 0, we have

P2D
αα (H, ε) ∼ {[H + C1(ε + s)n][H + C2(ε + s)n−1]}−1/2

.

(12)
We can extract the limiting behavior of P(H ) by identifying
the dominant contribution from the above expression to the

integral in Eq. (5). There exist up to three regimes of ε in
terms of the behavior of the partial integrand in Eq. (12): (i)
[0, H1/n−1), (ii) [H1/n−1, H1/n), and (iii) [H1/n,∞), depend-
ing on the shift s(H ) (refer to Supplemental Material [54]).
For the case H × ψδ > 0, contribution of the integral over
the last interval dominates, with P(H ) ∼ ∫ ∞

H1/n ε−n+1/2 =
ε−n+3/2|∞H1/n . Therefore, we arrive at the asymptotic form
P2D

αα (H ) ∼ H−1+(3/2n). Our results for all cases are sum-
marized in Table I. Remarkably, although the expressions
in Eqs. (6) and (7) have very different forms, they yield
exactly the same results for the singularities in both 2D
and 3D.

Numerical simulations. In order to verify our predictions,
we have performed extensive numerical simulations of struc-
tural glass formers, in 2D as well as 3D. We simulate a
binary mixture of purely repulsive particles of type A and
B (refer to Supplemental Material [54]). The A-B interac-
tions are illustrated in Fig. 2. High-temperature molecular
dynamics simulations were utilized to generate independent,
uncorrelated configurations of particles, and sample their in-
herent structures by locating the nearest local minimum via
the conjugate-gradient minimization. We then evaluate the
Hessian elements between particles within interacting range
of each other. In Fig. 4 we plot the numerically sampled distri-
butions of the diagonal Hessian elements for A-B interactions
in 2D systems for n = 2 and n = 3, along with our theoretical
predictions (dashed lines) using Eq. (5) in Eq. (6), displaying
near-perfect agreement. These distributions diverge as H →
0+ with the exponents − 1

4 for n = 2 and − 1
2 for n = 3, as

predicted in Table I.
Finally, we turn our attention to the vibrational properties

of the system, that are probed through the eigenvalue spectrum
of the Hessian matrix. We test the sensitivity of low-lying
eigenvalues to the smoothness of the potential, and conse-
quently, the power of the singularity in P(H ), by analyzing
the distribution of the minimum eigenvalue, λmin. Our results
for the short-ranged R10 glass model, displayed in the inset of
Fig. 4, show a significant divergence at low values, between
distributions for two values of smoothness.

Discussion. We have presented analytic results for the dis-
tribution of Hessian elements in disordered amorphous media
in 2D and 3D, and verified them with extensive numeri-
cal simulations. Our treatment is quite general, relying only
on the isotropy of the underlying amorphous medium, and
can be extended to other systems displaying such disorder.
Additionally, we have shown that the Hessian matrices of
amorphous materials display a preponderance of small ele-
ments, characterized by a singularity whose strength depends
on the smoothness of the interaction potential at the cut-
off distance. Remarkably, the results for the singularities are
exactly the same in both 2D and 3D, a fact that warrants
deeper investigation. We have also shown numerically that
such singularities have crucial implications for the low-lying
eigenvalues of the Hessian matrix that govern the stability or
fragility of amorphous solids, highlighting their sensitivity to
the small, nonzero elements in the Hessian matrix. Our re-
sults are particularly relevant for numerical studies of glasses,
where the degree of smoothness in interaction potentials have
been shown to affect vibrational properties [55]. The limit
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where such interaction potentials display sharp cutoffs are
typically used in the study of jamming transitions [56–59],
and it would be interesting to study the effect of smoothness
in the potential on the properties of such systems. Finally,
it would also be interesting to extend our analytic results
to construct bounds on the vibrational density of states of
amorphous systems [60].
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