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Generalized disorder averages and current fluctuations in run and tumble particles
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We present exact results for the fluctuations in the number of particles crossing the origin up to time t in
a collection of noninteracting run and tumble particles in one dimension. In contrast to passive systems, such
active particles are endowed with two inherent degrees of freedom, positions and velocities, which can be used
to construct density and magnetization fields. We introduce generalized disorder averages associated with both
these fields and perform annealed and quenched averages over various initial conditions. We show that the
variance σ 2 of the current in annealed versus quenched magnetization situations exhibits a surprising difference
at short times, σ 2 ∼ t vs σ 2 ∼ t2, respectively, with a

√
t behavior emerging at large times. Our analytical results

demonstrate that in the strictly quenched scenario, where both the density and magnetization fields are initially
frozen, the fluctuations in the current are strongly suppressed. Importantly, these anomalous fluctuations cannot
be obtained solely by freezing the density field.

DOI: 10.1103/PhysRevE.108.L052601

Introduction. One-dimensional diffusive systems are
known to exhibit a surprising characteristic in which they
retain memory of their initial conditions indefinitely, i.e., even
at late times the behavior of the system is influenced by
how it was set up [1–9]. In analogy with disordered systems
[10–13], there are two main types of initial conditions that
are commonly studied. In the first, referred to as “annealed,”
averages are performed over all possible trajectories allowing
for equilibrium fluctuations in the initial positions of particles,
while in the second, referred to as “quenched,” the initial
positions of particles are held fixed [3,7–9,14]. A quantity of
central interest that is used to understand the effect of such
initial conditions in one-dimensional stochastic systems is the
integrated current, i.e., the flux Q of particles, across the origin
up to time t . There have been several studies on the statistics
of Q for different systems such as a collection of noninteract-
ing random walkers, the symmetric simple exclusion process
(SSEP), among others [3,7,15–19]. The mean of Q which
is a self-averaging quantity exhibits the same behavior for
different initial conditions [7]. However, the fluctuations of
Q strongly depend on how the system is set up at t = 0, with
annealed initial conditions displaying larger fluctuations [9].
Interestingly, the variance of Q for these systems exhibits a√

t behavior at all times, with the coefficient determined by
the type of initial conditions being employed. While there has
been extensive research on current fluctuations in such passive
systems [3,7,15–24], there have been relatively few studies of
fluctuations in active systems [25–28].

Active systems consist of particles that perform directed
motion by consuming energy at the microscopic level, and
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represent an important paradigm in nonequilibrium physics
[29–34]. Several microscopic models of active motion have
been studied in detail in the literature [35–51]. A theoretically
appealing class of active motion is the run and tumble particle
(RTP) motion [35–42], in which an organism moves in a
straight line (run) for a certain period of time, and then ran-
domly changes direction (tumbles), before resuming another
run. Recently [25], it was shown that for noninteracting RTPs
in one dimension, the variance of Q displays a linear t behav-
ior at short times and a

√
t behavior at large times. Similar to

the case of passive particles, the coefficients governing these
fluctuations differ for quenched and annealed initial condi-
tions associated with the positions of the particles. However,
in contrast to passive particles, whose motion is governed
solely by random thermal fluctuations, the self-propulsion
of active particles endows them with an additional degree
of freedom: their internal bias direction. This opens up an
intriguing possibility of constructing annealed and quenched
disorder averages associated with both the positions and ve-
locities of active particles.

In this Letter, we introduce generalized disorder averages
for active particle systems which can lead to surprising dif-
ferences in transport properties including the distribution of
the particle flux Q across the origin. Focusing on the case of
noninteracting run and tumble particles in one dimension, we
derive exact results for the fluctuations in Q for each of the
four types of disorder averages (quenched or annealed initial
conditions for the positions and velocities, respectively). Our
analytic results demonstrate that for quenched initial condi-
tions associated with both the positions and velocities of the
particles, the current fluctuations are anomalously suppressed
at short times. This suppression is characterized by a t2 behav-
ior in the variance of Q, as opposed to a t behavior displayed in
the other cases. This peculiar difference in growth exponents
for different initial conditions does not seem to have an analog
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in passive systems, where the initial conditions only give rise
to different prefactors. Crucially, this anomalous suppression
of fluctuations cannot be achieved by quenching the initial
positions alone, highlighting the importance of considering
both the positions and velocities of active particles in defining
disorder averages.

Microscopic model. We consider N independent run and
tumble particles evolving according to the Langevin equation

∂xi(t )

∂t
= vmi(t ), v > 0, 1 < i < N, (1)

in one dimension. Here, mi(t ) is a stochastic variable that can
switch values between +1 and −1 at a Poissonian rate γ . If
mi(t ) = +1, the ith particle is in the + state at time t and
performs a biased motion towards the right. If mi(t ) = −1,
the ith particle is in the − state at time t and performs a biased
motion towards the left. We consider a finite one-dimensional
box bounded between [−L, 0] with N particles and then even-
tually take the infinite system size limit. The positions of the
particles xi(t ) can be used to construct a density field ρ(x, t ) =
L−1 ∑N

i=1 δ(x − xi(t )). Since the velocities resemble internal
spin states, we construct a corresponding magnetization field
m(x, t ) = L−1 ∑N

i=1 mi(t )δ(x − xi(t )) associated with the in-
ternal bias of the particles. For brevity, we denote the positions
and bias states of particles at time t = 0 by {xi} and {mi},
respectively. Each position xi is drawn from a uniform dis-
tribution between −L and 0 with 0 > x1 > x2 > x3 · · · . The
initial bias state mi can be + or − with probability 1/2. This
corresponds to a step initial density profile ρ(x, 0) = ρθ (−x)
and a zero initial magnetization m(x, 0) = 0. Here, θ is the
Heaviside theta function and ρ = N/L.

The variable ξi(t ) = vmi(t ) in Eq. (1) is effectively
coloured noise, with the autocorrelation

〈ξi(t )ξi(t
′)〉 = v2 e−2 γ |t−t ′|. (2)

In the limit γ → ∞, v → ∞, and keeping the ratio Deff =
v2/2γ fixed, the noise ξi(t ) reduces to white noise with
〈ξi(t )ξi(t ′)〉 = 2Deff δ(t − t ′), where Deff = v2/(2γ ) is the ef-
fective diffusion constant for RTP motion in one dimension.
This is the “passive limit” in which active particle dynamics
reduces to an ordinary Brownian motion.

The number of particles Q that cross the origin up to time t
can be computed as follows: When a particle crosses the origin
from left to right, it contributes +1 to Q, and when a particle
crosses from right to left, it contributes −1. Therefore, the
integrated current up to time t is exactly equal to the number
of particles on the positive-half infinite line (x > 0) at time t .
The dynamics of a system of noninteracting RTPs is depicted
in Fig. 1.

Summary of the main results. We compute the statistics of
Q for various initial conditions. We first consider an annealed
density and annealed magnetization setting. This allows for
equilibrium fluctuations in the positions and velocities of
particles at time t = 0. This is the specific case studied
in Ref. [25]. As we show, another equivalent scenario is
the annealed density and quenched magnetization setting
where the positions are allowed to fluctuate, but the veloci-
ties are fixed at time t = 0. The explicit expressions for the
variance of Q for both these cases are the same and are given

FIG. 1. Schematic diagram depicting the trajectories of noninter-
acting active particles in one dimension. The system is initiated using
a step density profile, with all particles uniformly distributed to the
left of the origin at time t = 0. The initial positions and bias states of
the particles are denoted by {xi} and {mi}, respectively.

as [25]

σ 2
a,a = σ 2

a,q = ρv

2
te−tγ [I0(tγ ) + I1(tγ )]. (3)

Here, I0 and I1 are modified Bessel functions. The first and
second subscripts denote the type of averaging done for the
density and the magnetization fields, respectively (“a” for
annealed and “q” for quenched). The mean of Q, which is a
self-averaging quantity, assumes the same form for all initial
conditions, and is also given by the above equation. In the

passive limit this reduces to σ 2
a,a = σ 2

a,q = ρ

√
Deff t

π
recovering

the result for ordinary Brownian motion with an annealed
density initial condition [3]. The expression in Eq. (3) has the
limiting behaviors

σ 2
a,a = σ 2

a,q ≈
⎧⎨
⎩

ρv

2 t, for t → 0,

ρ

√
Deff t

π
, for t → ∞.

(4)

Since we consider a purely active process without diffu-
sion, the primary timescale is the persistence time τ ∼ 1/γ .
Consequently, t → 0 pertains to situations where time t is
significantly smaller than τ , i.e., t 
 τ , while t → ∞ relates
to cases where t greatly exceeds τ , i.e., t � τ .

In the quenched density and quenched magnetization set-
ting, the initial positions and velocities of the particles are held
fixed. The variance σ 2

q,q for this case can be computed as

σ 2
q,q = ρv

4
te−2γ t {[2 + πL0(2tγ )]I1(2tγ )

−πL1(2tγ )I0(2tγ )}, (5)

where L0 and L1 are modified Struve functions. The above
expression has the limiting behaviors

σ 2
q,q ≈

⎧⎨
⎩

ρvγ

2 t2, for t → 0,

ρ

√
Deff t
2π

, for t → ∞.
(6)
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FIG. 2. Variance of the integrated current plotted as a function
of time for different initial conditions. The solid curves correspond
to the theoretical results provided in Eqs. (3), (5), and (7) and the
points are from numerical simulations of the microscopic model. For
quenched density and quenched magnetization initial conditions, the
fluctuations surprisingly exhibit a t2 behavior at short times.

We notice that for the case where both the fields are quenched
initially, the fluctuations surprisingly exhibit a t2 behavior at
short times.

The final case we study is the quenched density and an-
nealed magnetization setting where the initial positions of the
particles are fixed, but the velocities are allowed to fluctuate.
This nontrivial case is usually difficult to analyze, nevertheless
we have exactly computed the variance σ 2

q,a which has the
explicit form

σ 2
q,a = ρv

8
te−2γ t {[4 + πL0(2tγ )]I1(2tγ )

+ [2 − πL1(2tγ )]I0(2tγ )}, (7)

with the limiting behaviors

σ 2
q,a ≈

⎧⎨
⎩

ρv

4 t, for t → 0,

ρ

√
Deff t
2π

, for t → ∞.
(8)

These asymptotic behaviors were also computed numerically
in Ref. [25]. In the passive limit, Eqs. (5) and (7) reduce

to σ 2
q,q = σ 2

q,a = ρ

√
Deff t
2π

recovering the result for ordinary
Brownian motion with a quenched density initial condition
[3]. Our analytic expressions obtained in Eqs. (3), (5), and (7)
are compared with direct numerical simulations in Fig. 2. We
find excellent agreement between our theoretical predictions
and the Monte Carlo simulation results.

Generalized disorder averages. The associated degrees of
freedom {xi}, {mi} allow averages to be performed over their
initial realizations, as well as the noise history separately. In
the calculations that follow, the angular bracket 〈· · · 〉{xi},{mi}
denotes an average over the history (equivalent to a partition
function), but with fixed initial positions {xi} and bias states
{mi}. We use · · · to denote an average over initial positions
and

︷︸︸︷· · · to denote an average over initial bias states.

We focus on the moment-generating function 〈e−pQ〉{xi},{mi}
with respect to a conjugate variable p. This quantity has been
computed in Ref. [25] for the case where one field (density)
is considered. We extend the definition to incorporate the
magnetization field, which yields

〈e−pQ〉{xi},{mi} =
N∏

i=1

[1 − (1 − e−p)U mi (−xi, t )], (9)

where

U mi (−xi, t ) =
∫ ∞

0
dx Gmi (x, xi, t ) (10)

is the integral of the single-particle Green’s function
Gmi (x, xi, t ). The Green’s functions Gmi (x, xi, t ) gives the
probability density of finding a particle at the location x at
time t , starting from the location xi in the bias state mi at
time t = 0, and have not been derived previously. We present
a detailed derivation of the Green’s functions Gmi (x, xi, t ) for
different initial bias states in the Supplemental Material [52].

Annealed density and annealed magnetization. We first
consider annealed density and annealed magnetization initial
conditions. The flux distribution for this case is denoted as
Pa,a(Q, t ). The moment-generating function for this distribu-
tion is given as

∞∑
Q=0

e−pQPa,a(Q, t ) =
︷ ︸︸ ︷
〈e−pQ〉{xi},{mi} . (11)

To perform an average over initial positions, we consider
the position of each particle to be distributed uniformly in the
box [−L, 0], and eventually take a L → ∞, N → ∞ limit
with N/L → ρ fixed. After performing an average over the
initial positions in Eq. (9), we obtain

〈e−pQ〉{xi},{mi} =
N∏

i=1

[1 − (1 − e−p)U mi (−xi, t )]

=
[

1 − 1

L
(1 − e−p)

∫ L

0
dz U mz (z, t )

]N

. (12)

Here, mz denotes the bias state of the particle located at xi =
−z at time t = 0. Next, performing an average over initial bias
states in the above equation, we obtain︷ ︸︸ ︷
〈e−pQ〉{xi},{mi} =

[
1 − 1

L
(1 − e−p)

∫ L

0
dz U 0(z, t )

]N

, (13)

where

U 0(z, t ) = [U +(z, t ) + U −(z, t )]/2. (14)

Taking the limit N → ∞, L → ∞, and keeping ρ = N/L
fixed yields

∞∑
Q=0

e−pQPa,a(Q, t ) =
︷ ︸︸ ︷
〈e−pQ〉{xi},{mi}

→ exp[−μ(t ) (1 − e−p)], (15)

where

μ(t ) = ρ

∫ ∞

0
dz U 0(z, t ). (16)
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The above expression is exactly the moment-generating func-
tion for a Poisson distribution. Therefore, Pa,a(Q = N, t ) is
always a Poisson distribution [25] with

Pa,a(Q = N, t ) = e−μ(t ) μ(t )N

N!
, N = 0, 1, 2, . . . , (17)

and the mean and the variance are both given by μ(t ). We thus
obtain

σ 2
a,a(t ) = μ(t ). (18)

The explicit expression for σ 2
a,a can be directly computed us-

ing Eq. (16) and we obtain the announced result in Eq. (3). The
derivation of this expression is provided in the Supplemental
Material [52].

Annealed density and quenched magnetization. We next
consider annealed density and quenched magnetization initial
conditions. The flux distribution for this case is denoted as
Pa,q(Q, t ). The moment-generating function for this flux dis-
tribution is given as

∞∑
Q=0

e−pQPa,q(Q, t ) = exp

[︷ ︸︸ ︷
ln 〈e−pQ〉{xi},{mi}

]
. (19)

Using Eq. (12), we directly compute the cumulant-generating
function as︷ ︸︸ ︷

ln 〈e−pQ〉{xi},{mi}

=
︷ ︸︸ ︷
ln

[
1 − 1

L
(1 − e−p)

∫ L

0
dz U mz (z, t )

]N

→ −μ(t )(1 − e−p), (20)

where μ(t ) is defined in Eq. (16). In the large system size limit
(L → ∞, N → ∞, N/L → ρ), the distribution Pa,q(Q, t ) is
equivalent to the distribution Pa,a(Q, t ). This is because keep-
ing the velocities fixed or allowing them to fluctuate does
not make a difference in the annealed density setting as the
initial positions of particles are randomized. Thus we obtain
the identity in Eq. (3).

Quenched density and quenched magnetization. The third
case we study is the quenched density and quenched magne-
tization initial conditions. The flux distribution for this case
is denoted as Pq,q(Q, t ). The moment-generating function is
given as

∞∑
Q=0

e−pQPq,q(Q, t ) = exp

[︷ ︸︸ ︷
ln〈e−pQ〉{xi},{mi}

]
. (21)

Taking the logarithm on both sides of Eq. (9) yields

ln
[〈e−pQ〉{xi},{mi}

] =
N∑

i=1

ln[1 − (1 − e−p)U mi (−xi, t )]. (22)

After performing an average over the initial positions
and the velocities, we obtain the expression for the

cumulant-generating function as︷ ︸︸ ︷
ln[〈e−pQ〉{xi},{mi}] = ρ

2

∫ ∞

0
dz ln[1 − (1 − e−p)U +(z, t )]

+ ρ

2

∫ ∞

0
dz ln[1 − (1 − e−p)U −(z, t )].

(23)

The cumulants can be extracted by collecting terms that ap-
pear in the same powers of p. This yields the expressions for
the mean and variance of Q as

〈Q〉q,q = μ(t ),

σ 2
q,q = 〈Q2〉q,q − 〈Q〉2

q,q

= ρ

2

∫ ∞

0
dz{U +(z, t )[1 − U +(z, t )]}

+ρ

2

∫ ∞

0
dz{U −(z, t )[1 − U −(z, t )]}, (24)

where μ(t ) is defined in Eq. (16) and the explicit expression
for μ(t ) is provided in Eq. (3). One can also derive the explicit
expression for the variance using Eq. (24). Thus we obtain the
announced result in Eq. (5). See Supplemental Material [52]
for details related to the derivation of this expression.

Quenched density and annealed magnetization. Finally, we
study quenched density and annealed magnetization initial
conditions. The flux distribution for this case is denoted as
Pq,a(Q, t ). The moment-generating function for this process
is given as

∞∑
Q=0

e−pQPq,a(Q, t ) = exp

[
ln

︷ ︸︸ ︷
〈e−pQ〉{xi},{mi}

]
. (25)

After performing an average over the initial velocities in
Eq. (9), we obtain︷ ︸︸ ︷

〈e−pQ〉{xi},{mi} =
N∏

i=1

[
1 − (1 − e−p)

︷ ︸︸ ︷
U mi (−xi, t )

]

=
N∏

i=1

[1 − (1 − e−p)U 0(−xi, t )], (26)

where U 0 is defined in Eq. (14). Next, we compute the
cumulant-generating function as

ln
︷ ︸︸ ︷
〈e−pQ〉{xi},{mi}

= N

L

∫ 0

−L
dxi ln[1 − (1 − e−p)U 0(−xi, t )]

−→ ρ

∫ ∞

0
dz ln[1 − (1 − e−p)U 0(z, t )].

Collecting terms that appear in the first and second powers of
p, we obtain the expressions for the mean and variance of Q
as

〈Q〉q,a = μ(t ),

σ 2
q,a = 〈Q2〉q,a − 〈Q〉2

q,a

= ρ

∫ ∞

0
dz{U 0(z, t )[1 − U 0(z, t )]}, (27)
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where μ(t ) is defined in Eq. (16) and the explicit expression
for μ(t ) is provided in Eq. (3). The explicit expression for
the variance can also be computed using the single-particle
Green’s functions [52] and we obtain the announced result in
Eq. (7).

Discussion. In this Letter, we have introduced generalized
disorder averages for active systems that account for fluctu-
ations in both the initial positions and velocities of particles.
We illustrated these averages in a one-dimensional system of
noninteracting RTPs, and derived exact results for the fluctu-
ations in the integrated current across the origin up to time t .
Surprisingly, these fluctuations display different growth expo-
nents at short times for different initial conditions, a feature
that does not seem to occur in passive systems. Specifically,
we observed suppressed fluctuations for the case when both
the positions and velocities are initially quenched, character-
ized by a t2 growth in the variance, as opposed to a linear
t behavior observed in the other cases. At large times, a

√
t

behavior emerges, consistent with late time diffusive behavior,
with the quenched and annealed density settings differing by
a factor of

√
2 [3,6,7,25].

Such generalized disordered averages can also be extended
to a variety of other models with multiple degrees of freedom
at the particle level. While the exact results reported in this
Letter are specific to noninteracting RTPs in one dimension,
we expect the derived asymptotic behaviors to hold in other
active systems as well. In particular, we expect other models
of active motion such as active Brownian particles [43–47]
as well as interacting active particles in the low-density limit
[27,53–55] to display similarly suppressed fluctuations for

quenched initial conditions. Additionally, we also expect the
surprising differences in the growth exponents governing the
current fluctuations for different initial conditions to appear in
higher dimensions as well.

Several interesting directions for further research remain.
It would be instructive to compute the higher-order cumulants
of the current, in order to better understand the differences
between quenched and annealed disorder in active systems. It
would also be interesting to verify our predictions by imple-
menting the different disorder averages within a fluctuating
hydrodynamics framework or using macroscopic fluctuation
theory [56–63], which have been shown to successfully pre-
dict fluctuations in many-particle systems [3,7,8,15,17,23,64].
Additionally, although we have considered the case of zero
diffusion and symmetric initial conditions, our framework
can also be extended to situations where the particles have
a nonzero diffusion in their microscopic dynamics, and are
initiated with asymmetric magnetization initial conditions.
Finally, it would also be interesting to study the effect of
generalized disorder averages on observables such as the
magnetization current, which could lead to a better un-
derstanding of the differences between active and passive
systems.
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