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Abstract. We study the fluctuations of the integrated density current across
the origin up to time T in a lattice model of active particles with hard-core
interactions. This model is amenable to an exact description within a fluctuating
hydrodynamics framework. We focus on quenched initial conditions for both the
density and the magnetization fields and derive expressions for the cumulants of
the density current, which can be matched with direct numerical simulations of
the microscopic lattice model. For the case of uniform initial profiles, we show
that the variance of the integrated current displays three regimes: an initial√
T rise with a coefficient given by the symmetric simple exclusion process, a

cross-over regime where the effects of activity increase the fluctuations, and a
large-time

√
T behavior with a prefactor that depends on the initial conditions,

the Péclet number, and the mean density of particles. Additionally, we study the
limit of zero diffusion, where the fluctuations intriguingly exhibit a T 2 behavior
at short times. However, at large times, the fluctuations still grow as

√
T , with a

coefficient that can be calculated explicitly. For low densities, we show that this
coefficient can be expressed in terms of the effective diffusion constant D eff for
non-interacting active particles.
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1. Introduction

Active systems comprising particles that can self-propel and perform directed motion
for intervals of time constitute a major class of non-equilibrium systems [1–6]. The
steady states of active particle systems do not satisfy the principle of detailed balance
because energy is dissipated at the microscopic scale in the bulk. Active systems have
long attracted a lot of attention due to their biological relevance and applications in
synthetic materials and soft matter industries. There have been numerous studies on
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the dynamics of active particles in different spatial dimensions using different micro-
scopic models such as the run-and-tumble particle (RTP) model [7–12] and the active
Brownian motion (ABM) model [13–17]. Although the literature on analytic results on
active particle systems is vast, most of these studies focus on single-particle models.
There have been numerous studies on computing various quantities related to a single
active particle, such as the position distributions, first passage times, and large devi-
ation functions. Given the rich behavior of active particles, there have also been numer-
ous attempts to study active systems in different geometries, confining potentials, and
with space-dependent activity [18–20]. Even at the single-particle level, active systems
exhibit intriguing features such as non-Boltzmannian steady-state distribution, unusual
first passage properties, and large deviation functions with different cross-over regimes
[21–23].

Most analytical studies on active matter at the multi-particle level are based on
fluid dynamic approaches, mean field theories, and gradient expansions [24–28]. These
models have been very successful in predicting many collective properties exhibited by
active matter, such as clustering, synchronous dynamics, motility-induced phase sep-
aration (MIPS), etc. However, the lack of microscopic models that are amenable to
an exact analysis has been an open problem within this field. Recently, an active lat-
tice gas model with interactions was introduced by Kourbane-Houssene et al [29]. This
model consists of hard-core active particles on a lattice, and can be described by exact
hydrodynamic equations that predict emergent behavior akin to MIPS. This frame-
work can therefore be used to study the dynamics of interacting active particles, and
corroborate the predictions of the hydrodynamic theory with microscopic simulations.
Recent studies have extended this framework to a fluctuating hydrodynamics descrip-
tion [30], as well as macroscopic fluctuation theory (MFT) [31, 32], which accounts for
the Poissonian noise arising due to the flipping of the velocities of the particles. This
allows for an investigation of several interesting aspects, such as diverging correlation
lengths, dynamical correlation functions, current fluctuations, large deviation functions,
as well as entropy production [31, 32].

MFT [33–36] is a framework for investigating the fluctuating hydrodynamics of
many-particle systems in the limit where the noise is small. In this limit, the evolution
equations for stochastic systems take the form of a classical Hamiltonian field theory,
which can be used to compute the fluctuations of macroscopic variables and currents.
MFT involves coupled partial differential equations for macroscopic observables and the
associated conjugate fields and has been used to compute the large deviation functions
associated with many quantities such as the densities of mass, charge, and energy, as
well as their associated currents.

A quantity of central interest that can be studied within the MFT is the integ-
rated density current Qρ(T ) across the origin up to time T for different diffusive pro-
cesses. The time dependence of the mean current, as well as its higher cumulants,
provides sensitive information regarding the large-scale behavior of diffusive systems.
Some examples of these processes that have been extensively studied include a collec-
tion of independent random walkers, the symmetric simple exclusion process (SSEP),
and the Kipnis-Marchioro-Presutti (KMP) model in one dimension. The SSEP is a

https://doi.org/10.1088/1742-5468/aceb53 3

https://doi.org/10.1088/1742-5468/aceb53


Current fluctuations in an interacting active lattice gas

J.S
tat.

M
ech.(2023)

083208

model of hard-core particles on a lattice, where the particles can hop symmetrically to
any neighboring site if it is empty [37, 38]. We note that the active lattice gas model
studied in this paper reduces to the SSEP when the self-propulsion (activity) is set
to zero. In the KMP model, a chain of mechanically uncoupled harmonic oscillators
in one dimension is considered, where the energy is redistributed between neighboring
oscillators stochastically, while the total energy remains constant [39]. Using MFT, it
was shown that the cumulants of the integrated current for the above processes in one
dimension scale as

√
T for all macroscopic times T [40]. Additionally, there have also

been detailed studies on the differences between annealed versus quenched averaging
for these models. In the annealed case, the initial positions of the particles are allowed
to fluctuate, while in the quenched average, the particle positions are initially fixed.
Interestingly, it was demonstrated that the prefactor of the current fluctuations for the
annealed and quenched averages differs even as T →∞, suggesting the existence of long-
term memory of initial conditions [40–43]. For these models with one conserved field, a
perturbative approach to solve the MFT equations for the noiseless solution was intro-
duced in [40]. This approach yields successive cumulants of the quantity being studied,
in this case, the current across the origin at each order. Subsequently, this was used to
obtain a general expression for the variance of the current, starting from a flat initial
condition [44], and to derive expressions for the higher-order cumulants [45]. Recently,
the MFT equations for the SSEP have been exactly solved for annealed initial conditions
[46], and the perturbative MFT approach has also been extended to long-range
interactions [47].

Although many predictions of fluctuating hydrodynamics for this interacting active
particle model have been tested against microscopic simulations, including dynamical
correlation functions [30], other quantities remain inaccessible within this framework. A
prime example is the fluctuations of the time-integrated current, which can be extracted
in a systematic manner using the MFT. For annealed initial conditions, it has been
shown previously [48] using exact techniques involving single-particle Green’s functions
that the variance of the integrated density current across the origin for non-interacting
RTPs in one dimension exhibits different scaling behaviors in time. This is different
from the SSEP case, where the variance of the integrated current grows as

√
T at

all times. In this work, we extend the recently developed MFT framework to study
the integrated density current fluctuations for the interacting active particle model
studied in [31, 32], but for quenched initial conditions. Interestingly, we find that the
variance of the integrated current for the interacting active lattice gas with diffusion
exhibits three regimes: a short-time regime where the variance grows as

√
T , which

can be described by the SSEP, a cross-over regime, and a large-time regime where the
variance grows again as

√
T . We also study the case of zero diffusion where the system

exhibits a new regime of behavior at short times, where the variance increases as T 2.
We also demonstrate that the large-time behavior of the current fluctuations of the
interacting active gas is

√
T with a prefactor that, for low densities, coincides with

the effective diffusion constant D eff for non-interacting active walkers. We explicitly
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calculate the coefficient of the variance for finite densities as well, when interactions
are important.

This paper is organized as follows. In section 2, we introduce the microscopic model
used in the study. In sections 3 and 4, we explain the hydrodynamics and fluctuating
hydrodynamics framework for this model developed in previous studies for completeness.
We extend the MFT framework introduced in [31] to compute the integrated current
fluctuations in sections 5 and 6. We provide the details of the perturbative techniques
used in the study and the expressions for the cumulants of the integrated current for
general initial conditions in section 7. In section 8, we discuss our main results on
the fluctuations of the integrated density current of the active lattice gas model for
flat initial conditions. We also analyze the active gas model with zero diffusion in a
separate subsection. We present the conclusions from the study in section 9. Finally, we
provide the details pertaining to some of the calculations and the microscopic as well
as macroscopic simulations in appendices A–C.

2. Microscopic model

We consider a one-dimensional lattice bounded between (−L/2,L/2] with interacting
active particles, where each site i can be occupied by at most one particle [29]. The
lattice is periodic and is of size L. Each particle can be associated with an internal
state + or − depending on the bias direction. The occupancies of site i are denoted
by the indicator variables µ+

i and µ−
i . If the site i is occupied by a + particle, µ+

i = 1
and µ−

i = 0. Similarly, if the site i is occupied by a − particle, µ−
i = 1 and µ+

i = 0. Both
µ−
i = µ+

i = 0 if the site i is empty. The dynamics take place according to the following
microscopic rules:

(1) Neighboring sites exchange their occupancies at a diffusive rate D.

(2) A + particle can jump to the right neighboring site if that site is empty with a bias
rate λ/L. Similarly, a − particle can jump to the left neighboring site if that site is
empty with a bias rate λ/L.

(3) Particles switch their states with a flipping rate γ/L2.

The scalings of the bias and flipping rates with the system size L ensure that all
three processes contribute equally in the coarse-grained hydrodynamic regime [29, 30].
Figure 1 provides a schematic representation of the lattice sites with a few particles and
the associated probability rates.

In this work we are concerned with the current fluctuations through the origin,
starting from a quenched uniform initial condition where both the positions and states
(+ and −) of the particles are fixed initially. This situation can be created in our
microscopic simulations, with a fixed assignment of + and − particles. In particular, we
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Figure 1. Lattice model of interacting active particles with different probability
rates. (i) Neighboring sites exchange their occupancies at a diffusive rate D. A
diffusive exchange can occur even if both the neighboring sites are occupied, and
is independent of the bias states of the particles. (ii) A + particle can jump to
the right neighboring site if that site is empty with a bias rate λ/L. Similarly, a
− particle can jump to the left neighboring site if that site is empty with a bias
rate λ/L. Bias moves require one of the neighboring sites to be empty. (iii) Also,
particles switch their states with a flipping rate γ/L2. Disallowed transitions are
represented by a red cross. The coarse-graining box is of size 2Lδ, where 0< δ < 1.

study the initial condition with zero magnetization and uniform particle density, where
the hydrodynamic equations can be solved exactly.

3. Hydrodynamic equations

Using the diffusive rescaling of space and time x→ i/L and t→ t/L2, one can define
the coarse-grained plus and minus density fields ρ+(x,t) and ρ−(x,t) as

ρ+(x,t) =
1

2Lδ

∑

|i−Lx|<Lδ

µ+
i ,

ρ−(x,t) =
1

2Lδ

∑

|i−Lx|<Lδ

µ−
i , (1)

where the coarse-graining parameter δ ∈ (0,1). The hydrodynamic equations obeyed by
the system were shown in [29] to be

∂tρ
+ =D∂2xρ

+−λ∂x
[
ρ+(1− ρ)

]
+ γ(ρ− − ρ+),

∂tρ
− =D∂2xρ

− +λ∂x
[
ρ−(1− ρ)

]
+ γ(ρ+− ρ−). (2)

In terms of the total density ρ= ρ+ + ρ− and magnetization m= ρ+− ρ− fields, the
hydrodynamic equations can be rewritten as

∂tρ=D∂2xρ−λ∂x[m(1− ρ)],

∂tm=D∂2xm−λ∂x[ρ(1− ρ)]− 2γm. (3)
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4. Fluctuating hydrodynamics framework

The fluctuating hydrodynamic equations [30] obeyed by ρ+(x,t) and ρ−(x,t) can be
derived as

∂tρ
+ =D∂2xρ

+−λ∂x
[
ρ+(1− ρ)

]
+ γ(ρ− − ρ+)+

√
D√
L
∂xη

+ +

√
γ

√
L
ηK,

∂tρ
− =D∂2xρ

− +λ∂x
[
ρ−(1− ρ)

]
+ γ(ρ+− ρ−)+

√
D√
L
∂xη

− −
√
γ

√
L
ηK. (4)

The noises η+ and η− are Gaussian noises with mean zero and delta correlations. These
fluctuations are conjectured through an exact mapping with the ABC model [49, 50].
However, the noise ηK coming from tumbling events follows Poissonian statistics [31].
They come from slow local tumbling events of the + and the − particles. In the ABC
model, each site is occupied by a particle of type A, B, or C. The mapping follows by
identifying + particles, − particles, and holes in the active gas model with A, B, and
C particles, respectively, in the ABC model [30]. This allows us to derive the correla-
tions for the noise terms associated with the conservative fluxes in the hydrodynamic
equations for the density fields of + and − particles as

〈η±(x,t)η±(x ′, t ′)〉= 2ρ±(1− ρ±)δ(x−x ′)δ(t− t ′),

〈η+(x,t)η−(x ′, t ′)〉= 〈η−(x,t)η+(x ′, t ′)〉=−2ρ+ρ−δ(x−x ′)δ(t− t ′). (5)

In terms of the total density and magnetization fields ρ(x,t) and m(x,t), the fluc-
tuating hydrodynamic equations provided in equation (4) can be written as

∂tρ=D∂2xρ−λ∂x[m(1− ρ)] +

√
D√
L
∂xηρ,

∂tm=D∂2xm−λ∂x[ρ(1− ρ)]− 2γm+
1√
L

(√
D∂xηm+2

√
γ ηK

)
. (6)

The noise terms ηρ and ηm are simply given as η+ + η− and η+− η− respectively with
mean zero and the following correlations,

〈ηρ(x,t)ηρ(x ′, t ′)〉= σρ δ(x−x ′)δ(t− t ′),

〈ηm(x,t)ηm(x ′, t ′)〉= σmδ(x−x ′)δ(t− t ′),

〈ηρ(x,t)ηm(x ′, t ′)〉= 〈ηm(x,t)ηρ(x ′, t ′)〉= σρ,m δ(x−x ′)δ(t− t ′), (7)

and the noise amplitudes are given as

σρ = 2ρ(1− ρ), σm = 2
(
ρ−m2

)
, σρ,m = 2m(1− ρ). (8)

Using a second rescaling t→ tγ and x→ x(s, where (s =
√
γ/D, the fluctuating

hydrodynamic equations provided in equation (6) can be converted to the dimensionless
form
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∂tρ=−∂xJρ =−∂xJ̄ρ+
√
(s
L
∂xηρ,

∂tm=−∂xJm− 2K =−∂xJ̄m− 2K̄ +

√
(s
L
(∂xηm+2ηK), (9)

where the deterministic hydrodynamic components are given as

J̄ρ =−∂xρ+Pem(1− ρ), J̄m =−∂xm+Peρ(1− ρ), K̄ =m, (10)

and the noise correlations are given by equation (7). Here, the Péclet number Pe =
λ/

√
γD gives the ratio of the distance traveled by the particle due to pure bias to that

by pure diffusion between two consecutive tumbles, and the field K measures the local
difference between the flips of + particles to − particles and − particles to + particles.
The fluctuations of K around its mean value K̄ follow a Poisson distribution. The noise
caused by these stochastic events can be straightforwardly accounted for in MFT, as
demonstrated in the next section. In deriving equation (9), we have performed two
rescalings of space and time coordinates. The first rescaling is the diffusive rescaling
(x→ i/L, t→ t/L2), where we rescale the space and time coordinates by the actual
system size L. This results in 1/

√
L scaling of the noise terms. The second rescaling t→

tγ and x→ x(s introduces an additional
√
(s scaling of the noise terms. We emphasize

that diffusive scaling has been performed in all calculations and plots presented in the
subsequent sections, whereas in some subsequent calculations, we find it convenient
to perform the second rescaling. In this case, we explicitly refer to these as ‘rescaled’
equations.

The noiseless hydrodynamic equations in the rescaled coordinates can be obtained
by setting the noise terms to zero in equation (9). These are given as

∂tρ=−∂xJ̄ρ,
∂tm=−∂xJ̄m− 2K̄, (11)

with the expressions for the deterministic currents provided in equation (10). We focus
on the (s =

√
γ/D →∞ limit in our analytical calculations presented in section 8.

This is the same limit studied in [29, 30] to derive the phase diagram associated
with the interacting active gas model. The homogeneous steady-state solutions to the
hydrodynamic equations provided in equation (11) are given as ρ(x,t) = ρ̄, m(x,t) = 0,
where ρ̄ is the mean density. It can be shown that the constant density solution
ρ(x,t) = ρ̄ and the zero-magnetization solution m(x,t) = 0 are linearly unstable when
Pe2(1− ρ̄)(2ρ̄− 1)> 2. This defines the spinodal region of the system. In this region,
a coexistence of dilute and dense phases was observed in [29], and this is a char-
acteristic feature of MIPS. We limit our study to the linearly stable region outside
the spinodal curve in the phase diagram. This is given as Pe2(1− ρ̄)(2ρ̄− 1)< 2. In
this parameter regime, the homogeneous solutions to the hydrodynamic equations are
linearly stable.
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5. MFT framework

The fluctuating hydrodynamic equations provided in equation (9) can be interpreted
within the framework of MFT, which allows for the direct computation of various quant-
ities including the cumulants of the integrated current. The probability P of observing
a history of fields ρ(x,t), m(x,t), Jρ(x,t), Jm(x,t), K(x,t) in the rescaled space interval
−(s/2< x! (s/2 and rescaled time interval 0< t < T can be written as

− lnP [ρ,m,Jρ,Jm,K] = L(−1
s S [ρ,m,Jρ,Jm,K] . (12)

The prefactor L(s
−1 appearing in the rhs of the above equation results from the rescal-

ings of the space and time coordinates.
The action S in the rescaled coordinates is given as

S [ρ,m,Jρ,Jm,K] =

ˆ T

0
dt
ˆ (s

2

− (s
2

dx(LJ +LK) . (13)

where LJ accounts for the Gaussian current fluctuations due to the hops of the particles
and LK accounts for the Poisson tumble statistics. These Lagrangian densities have the
explicit forms

LJ =
1

2

[
Jρ− J̄ρ
Jm− J̄m

]T
C−1

[
Jρ− J̄ρ
Jm− J̄m

]
, (14)

where the correlation matrix C is given as

C=

[
σρ σρ,m
σρ,m σm

]
, (15)

and

LK = ρ−
√
K2 + (ρ2−m2)+K ln

[√
K2 + (ρ2−m2)+K

(ρ+m)

]
. (16)

This exact expression for LK has been derived in [31] by considering the underlying
Poisson process for the tumble events. For typical small fluctuations, the noise arising
due to the flipping of states can be approximated as a Gaussian noise, and the above
expression for the Lagrangian density reduces to LK = (K −m)2/(2σK), where σK = ρ.
It is sufficient to consider the action with Gaussian noise to compute the cumulants up
to the second order. However, in this paper, we have considered the full large deviation
form for the generality of the calculations.

6. Time-integrated current

The MFT of the active lattice gas was used in [31] to investigate the large deviation
function of the density current averaged over the whole system. The authors showed that
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this large deviation function displays a dynamical phase transition between a stationary
profile and traveling waves. While the average current is a global quantity, in this paper
we investigate a local quantity, which is the total number of particles transferred through
a single bond in the system. The fluctuations of this quantity have also been studied in
other stochastic particle systems [41, 48, 51], as they are related to the tagged particle
fluctuations, which are also of enormous interest. We study the change in the mass in
the right half of the system,

Qρ(T ) =
1

2

ˆ (s
2

0
dx [ρ(x,T )− ρ(x,0)]. (17)

We have,

ˆ (s
2

0
dx [ρ(x,T )− ρ(x,0)] =

ˆ T

0
dt
ˆ (s

2

0
dx [−∂xJρ] =

ˆ T

0
dt [Jρ(0, t)− Jρ((s/2, t)]. (18)

This is the difference between the integrated current at two opposite edges along
the ring. The distribution of the integrated current is symmetric and has a zero mean.
Thus, at short times, the quantity Qρ(T ) measures the integrated current across the
origin in an infinite system. On a lattice of size L, finite size effects set in at microscopic
times of order ∼ L2, and the fluctuations of this quantity saturate after such a time.

We next compute the moment-generating function for the integrated current via the
MFT formulation,

〈
eL(

−1
s ΛQρ(T )

〉
=

ˆ
DρDmDJρDJmDKeL(

−1
s (ΛQρ(t)−S)

∏

x,t

δ(ρ̇+ ∂xJρ)δ(ṁ+ ∂xJm+2K),

(19)

where the action S is defined in equation (13). The moment-generating function encodes
the full statistics of the integrated current Qρ(T ). The logarithm of the moment-
generating function yields the cumulant-generating function, from which the cumulants
can be extracted by collecting terms that appear at the same powers of Λ. The Dirac
delta functions appearing in the above equations ensure that the continuity equations
in equation (9) for the density and magnetization fields are satisfied at each point of
space and time (x,t). We can use the integral representation of the delta functions,
where we introduce the auxiliary fields, pρ(x,t) and pm(x,t), which are also periodic.
Equation (19) thus translates to

〈
eL(

−1
s ΛQρ(T )

〉
=

ˆ
DρDmDJρDJmDKDpρDpm exp

[
L(−1

s

(
ΛQρ(t)−S

+

¨
dxdt(pρ (ρ̇+ ∂xJρ)+ pm (ṁ+ ∂xJm+2K))

)]
. (20)
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In the limit L(−1
s −→∞, we arrive at a large deviation form for the cumulant-generating

function with

1

L(−1
s

ln
〈
eL(

−1
s ΛQρ(T )

〉
= ψρ(Λ,T ), (21)

and ψρ(Λ,T ) is the large deviation free energy function or the scaled cumulant-
generating function. In this limit, ψρ(Λ,T ) can be obtained by a saddle-point evaluation
of the integral in equation (20). The MFT equations presented in this paper are gen-
eric and hold for any value of (s subject to the condition that L(−1

s →∞. However, in
the calculations presented in section 8, we choose the particular limit L−→∞, (s −→∞,
with L(−1

s →∞. This is because (s −→∞ is an easy limit to consider in the analytical
computations presented in section 8.

After integrating over the J and K fields in equation (20), the large deviation func-
tion ψρ(Λ,T ) can be computed by maximizing an action Stot given as [31]

ψρ(Λ,T ) = max
{ρ,m,pρ,pm}

[ΛQρ(T )−Stot] , (22)

and Stot can be derived as

Stot =

ˆ (s
2

− (s
2

dx
ˆ T

0
dt
{
ρ̇pρ+ ṁpm−H[ρ,m,pρ,pm]

}
. (23)

The Hamiltonian density H appearing in the above equation can be computed as [31]

H[ρ,m,pρ,pm] =
1

2

[
∂xpρ
∂xpm

]T
C
[
∂xpρ
∂xpm

]
+ J̄ρ∂xpρ+ J̄m∂xpm+2ρsinh2 pm

−msinh2pm . (24)

The term ΛQρ(T ) appearing in equation (22) determines the temporal boundary condi-
tions for the conjugate fields. One can now determine the equations obeyed by the
optimal trajectories by considering small variations of the fields ρ→ ρ+ δρ, m→
m+ δm, pρ → pρ+ δpρ, and pm → pm+ δpm. This yields four bulk Hamiltonian MFT
equations for the fields ρ, m, pρ, and pm at the optimum:

∂tρ=
δH
δpρ

=−∂x
[
J̄ρ+σρ∂xpρ+σρ,m∂xpm

]
,

∂tm=
δH
δpm

=−∂x
[
J̄m+σm∂xpm+σρ,m∂xpρ

]
+2(ρsinh2pm−mcosh2pm),

∂tpρ =−δH
δρ

=−∂2xpρ− (1− 2ρ)(∂xpρ)
2 + 2m∂xpρ∂xpm− (∂xpm)

2

+Pem∂xpρ−Pe(1− 2ρ)∂xpm− 2sinh2pm,

∂tpm =−δH
δm

=−∂2xpm+2m(∂xpm)
2− 2(1− ρ)∂xpρ∂xpm−Pe(1− ρ)∂xpρ+ sinh2pm.

(25)
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The SSEP limit can be obtained by setting the Péclet number Pe =0 in the above
equations. This corresponds to the case where the particles are non-motile. When Pe
equals zero, the solution for pm is zero, causing the equations for ρ and pρ to become
decoupled from the equation for m. These decoupled equations are identical to those of
the SSEP. The MFT equations for the SSEP [41] are thus obtained as

∂tρ= − ∂x
[
σρ∂xpρ+ J̄ρ

]
,

∂tpρ = −
[
∂2xpρ+(1− 2ρ)(∂xpρ)

2
]
, for SSEP, (26)

with J̄ρ =−∂xρ.
We note that although the expressions in equation (25) represent the optimal path

of the density and magnetization fields, the boundary conditions are yet to be determ-
ined [40, 41]. These are set by the quantities being measured. In this study, we focus
on the time-integrated current up to a time T, which sets an initial condition on the
ρ and m fields and a final condition on pρ and pm . These represent sufficient condi-
tions to uniquely specify the trajectory, and therefore one can obtain predictions for
the integrated current, which can then be matched with microscopic simulations. Since
we study the integrated density current up to time T, we obtain the final time boundary
conditions on the auxiliary fields as

{
pρ(x,T ) = Λθ(x),
pm(x,T ) = 0.

(27)

7. Perturbative framework

For small deviations from the average current, one can use the perturbative
approach introduced in [40] to compute the current fluctuations. We expand the
fields (ρ, m, pρ, pm) about the solutions of the noiseless hydrodynamic equations
(ρ0, m0, 0, 0) with Λ as the perturbation parameter. Here, Λmeasures the noise strength
and Λ= 0 corresponds to the noiseless case. The fields are expanded as

ρ= ρ0 +Λρ1 +Λ2ρ2 + . . . ,

pρ = Λpρ1 +Λ2pρ2 + . . . ,

m=m0 +Λm1 +Λ2m2 + . . . ,

pm = Λpm1 +Λ2pm2 + . . . . (28)

Substituting these expressions into equation (25) yields the zeroth-order (in Λ) equations

∂tρ0 =−∂xJ̄0
ρ ,

∂tm0 =−∂xJ̄0
m− 2m0. (29)
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Figure 2. Evolution of the (a) density ρ(x,t) and (b) magnetization m(x,t)
fields starting from identical step initial conditions for fixed parameter values
D = 1, λ= 10, γ = 1. The points are obtained from Monte Carlo simulations and
the solid curves are obtained from direct numerical integration of the zeroth-order
hydrodynamic equations provided in equation (29) using finite difference methods.
From the profiles, one can clearly observe the effects of advection along with the
diffusive relaxation towards the uniform steady state.
Note: In the microscopic simulations, we have used a lattice of size L=1000 with
250 particles. The simulation data is averaged over 2000 realizations. The rates as
well as the spatial and temporal coordinates in the above plots have the diffusive
scaling (D →D, λ→ λ/L, γ→ γ/L2, x→ i/L, t→ t/L2)

In the above equations, the superscript and subscript ‘0’ indicate that the corresponding
fields are at zeroth order (noiseless). To zeroth order, we recover the noiseless hydro-
dynamic equations for the density and magnetization fields as in equation (11), with the
J fields defined in equation (10). These zeroth-order equations have been shown to yield
numerically exact results through a match with microscopic profiles and the numerical
solutions of the coupled non-linear differential equations. Figure 2 provides our results
for the match between the numerical integration and the microscopic simulations. In
this figure, we have used step initial profiles for both the density and magnetization
fields. Substituting the expansions provided in equation (28) into equation (25) also
yields the first-order (in Λ) equations

∂tpρ1 =−∂2xpρ1 +Pem0∂xpρ1−Pe(1− 2ρ0)∂xpm1,

∂tpm1 =−∂2xpm1−Pe(1− ρ0)∂xpρ1 + 2pm1,

∂tρ1 =−∂x
[
− ∂xρ1 +σ0

ρ∂xpρ1 +σ0
ρ,m∂xpm1−Pem0ρ1 +Pem1(1− ρ0)

]
,

∂tm1 =−∂x
[
− ∂xm1 +σ0

m∂xpm1 +σ0
ρ,m∂xpρ1 +Peρ1(1− 2ρ0)

]
+4ρ0pm1− 2m1. (30)

We next turn to the computation of the cumulants of the integrated current using
the above perturbative equations. For the case of quenched average in density and
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magnetization fields, the initial conditions for the ρ and m fields do not have any
fluctuations. Thus, we have

{
ρ0(x,0) = ρ(x,0),
m0(x,0) =m(x,0),

(31)

and
{
ρ1(x,0) = 0,
m1(x,0) = 0.

(32)

Using equations (27) and (28), the boundary conditions on the first-order conjugate
fields translate to

{
pρ1(x,T ) = θ(x),
pm1(x,T ) = 0.

(33)

We may also define an expansion of the integrated current using the expressions
provided in equation (28) as

Qρ(T ) =Qρ0(T )+ΛQρ1(T )+ ... , (34)

where the integrated currents up to the first order are given as

Qρ0(T ) =

ˆ (s
2

0
dx [ρ0(x,T )− ρ0(x,0)] , (35a)

Qρ1(T ) =

ˆ (s
2

0
dx [ρ1(x,T )] . (35b)

We show in appendix A that the above expressions directly reduce to the first and
second cumulants of the integrated density current. Thus, we obtain

〈Qρ(T )〉c =Qρ0(T ), (36)

〈Qρ(T )
2〉c =Qρ1(T ). (37)

We notice that the first cumulant depends only on the zeroth-order field ρ0 and the
second cumulant depends only on the first-order field ρ1. Although the above expressions
are the exact expressions for the first and second cumulants, the calculation of the second
cumulant involves solving the ρ1 field, which in turn requires solving the six coupled
equations provided in equations (29) and (30). We next derive alternate expressions for
the cumulants from the perturbative expansions, which require only solving the first
two equations in (30) along with the hydrodynamic equations in (29). We substitute
the expansions from equation (28) into equation (22). To the second order in Λ, we
obtain

ψρ(Λ,T ) = ΛQρ0(T )+Λ2Qρ1(T )−Stot(Λ), (38)
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where Stot(Λ) is the expansion of the total action provided in equation (23) up to the
second order in Λ, and the fields obey the MFT equations provided in equation (25).
Substituting the MFT equations provided in equation (25) into equation (23) and integ-
rating by parts, we obtain

Stot =

ˆ (s
2

− (s
2

dx
ˆ T

0
dt
{
(m+2ρpm)sinh2pm−m2pm cosh2pm

− 2ρsinh2 pm+
1

2

[
∂xpρ
∂xpm

]T
C
[
∂xpρ
∂xpm

]}
. (39)

Expanding the above expression up to the second order in Λ, we obtain

Stot(Λ) = Λ2

ˆ (s
2

− (s
2

dx
ˆ T

0
dt
{
2ρ0pm1

2 +
1

2

[
∂xpρ1
∂xpm1

]T
Cρ0,m0

[
∂xpρ1
∂xpm1

]}
. (40)

Finally, using equations (38) and (40), we obtain the expression for the scaled cumulant-
generating function (up to the second order in Λ) as

ψρ(Λ,T ) = ΛQρ0(T )+Λ2

{
Qρ1(T )−

ˆ (s
2

− (s
2

dx
ˆ T

0
dt
[
2ρ0pm1

2

+
1

2

[
∂xpρ1
∂xpm1

]T
Cρ0,m0

[
∂xpρ1
∂xpm1

]]}
. (41)

The above expression is different from the SSEP because of the additional 2ρ0p2m1
term.

By setting Pe =0, which sets pm = 0, we can obtain the SSEP limit of the above expres-
sion. This yields

ψρ(Λ,T )SSEP = ΛQρ0(T )+Λ2

{
Qρ1(T )−

ˆ (s
2

− (s
2

dx
ˆ T

0
dt
[
1

2
σρ0(∂xpρ1)

2
]}

. (42)

This is exactly the same expression derived in [40].
By definition, the cumulant-generating function can also be expanded as

ψρ(Λ,T ) = Λ〈Qρ(T )〉c+
Λ2

2
〈Qρ(T )

2〉c+ . . . . (43)

Collecting terms that appear at the same order in Λ in equations (41) and (43), we obtain
the expression for the first cumulant of the integrated current as in equation (36). The
expression for the second cumulant is now obtained as

〈Qρ(T )
2〉c = 2Qρ1(T )−

ˆ (s
2

− (s
2

dx
ˆ T

0
dt
{
4ρ0pm1

2 +

[
∂xpρ1
∂xpm1

]T
Cρ0,m0

[
∂xpρ1
∂xpm1

]}
, (44)
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where Qρ0(T ) and Qρ1(T ) are defined in equation (35). We notice that the expression
for the first cumulant depends only on the zeroth-order fields, and the expression for the
second cumulant depends only on the zeroth- and first-order fields. The specific structure
of the action for the system allows for exact cancellations of the fields appearing at higher
orders.

The expression for the first cumulant obtained from both methods is exactly the
same. Comparing the expressions for the second cumulant obtained using both the
methods in equations (44) and (37), we obtain

〈Qρ(T )
2〉c =

ˆ (s
2

− (s
2

dx
ˆ T

0
dt
{
4ρ0pm1

2 +

[
∂xpρ1
∂xpm1

]T
Cρ0,m0

[
∂xpρ1
∂xpm1

]}
. (45)

We note from the above equation that the variance of the density current explicitly
involves only the zeroth-order fields and the first-order momentum fields. This is similar
to previous results obtained for passive particles [40], where the current fluctuations are
given by the second term of the above equation but with just one field (density). The
active case, in contrast to the passive case, has the extra term 4ρ0pm1

2, which explicitly
involves the square of the conjugate magnetization field. In practice, it is easier to
integrate the p fields at first order as it involves only the zeroth-order fields and the
first-order p fields themselves (see equation (30)). The advantage of the perturbation
expansion is that we are able to provide analytic expressions for the p fields as we show
in the latter sections. Equation (45) represents one of the main results of our study.
Given the solutions of the MFT equations (30) up to the first order, the cumulants of
the current can be derived using the above expressions.

We note that these are typical fluctuations as we expand the solutions about the
deterministic hydrodynamic solutions. To obtain the expression for the variance, we
expand the action, retaining terms up to second order in the parameter Λ. This expan-
sion allows us to approximate the large deviation function, or the cumulant-generating
function, up to the second order in Λ. This approximation provides insights into the
small fluctuations of the current from its mean value. However, to account for large
fluctuations, which are manifested in the tail of the large deviation function, it is neces-
sary to include higher-order terms in Λ in the perturbation expansion. The perturbat-
ive framework discussed in this section holds for arbitrary initial conditions for the ρ
and m fields. However, the computation of the fields and subsequently the integral in
equation (45) is in general difficult. In the next section, we discuss the case of uniform
initial conditions for the ρ and m fields, where it is possible to compute exact analytical
expressions for the current fluctuations.

8. Current fluctuations for uniform initial conditions

In this section, we use the perturbative framework developed in the previous section
to predict the current fluctuations in an active lattice gas. The perturbative frame-
work allows for the computation of the second cumulant from the first-order solu-
tions of the pρ and pm fields. However, since the equations governing the fields at
each order are non-linear, finding closed-form solutions even at the zeroth order
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is challenging. We therefore turn to cases where the zeroth-order fields can be
exactly determined and therefore be used to provide solutions at the first order.
The simplest case for the active lattice gas is when the density fields ρ+ and ρ−

for the two types of particles are exactly identical. This corresponds to the case
with uniform density and zero magnetization throughout the lattice. We consider the
initial condition

ρ(x,0) = ρ̄, m(x,0) = 0. (46)

Although the above form of the initial condition defined within a finite region −(s/2<
x! (s/2 which respects periodic boundary conditions is easy to realize in numerical
simulations, for our analytical studies we focus on the case of (s −→∞. This is for the
simplicity of the calculations presented in this section. For this, we first take the limit
L−→∞, then take the limit (s −→∞ with L(−1

s →∞ as described in section 6. Therefore,
our microscopic simulations for finite lattice size deviate from the theory after a cer-
tain (large) time once the boundary effects become important. We do not probe these
boundary effects in our present work.

8.1. Interacting active lattice gas with non-zero diffusion

In this section, we study the current fluctuations in an interacting active lattice gas
with a finite non-zero value of the diffusion constant. For the homogeneous initial con-
ditions equation (46), the zeroth-order MFT equations presented in equation (29) admit
analytical solutions of the form

ρ0(x,t) = ρ̄, m0(x,t) = 0. (47)

Substituting these solutions into the first-order equations for the conjugate fields in
equation (30) yields

∂tpρ1 = − ∂2xpρ1−Pe(1− 2ρ̄)∂xpm1,

∂tpm1 = − ∂2xpm1−Pe(1− ρ̄)∂xpρ1 + 2pm1. (48)

The above equations are in the rescaled coordinates (that is, x−→ x(s and t−→ tγ).
Being linear, these equations can be solved exactly. For general initial conditions, the
first-order equations involve nonlinear terms and are hard to solve analytically. The
above equations are to be solved with the time boundary conditions pρ1(x,T ) = θ(x)
and pm1(x,T ) = 0. Using the transformation τ → T − t, these equations can be solved
as an initial condition problem in the Fourier space. We define the Fourier trans-
form of the field p as p̃(k,τ) =

´∞
−∞dxe−ikxp(x,τ) and the inverse Fourier transform

as p(x,τ) = 1
2π

´∞
−∞dkeikxp̃(k,τ). If (s is finite, the Fourier transform is defined as a

discrete summation over modes rather than a continuous transform. Taking a Fourier
transform of equation (48) yields the matrix equation

∂

∂τ
|p̃(k,τ)〉=M(k)|p̃(k,τ)〉, (49)
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where the column vector |p̃(k,τ)〉 is given as

|p̃(k,τ)〉=
(
p̃ρ1(x,τ)
p̃m1(x,τ)

)
, (50)

and the matrix M(k) is given as

M(k) =

(
−k2 −ikPe(2ρ̄− 1)

ikPe(1− ρ̄) −(k2 + 2)

)
. (51)

Equation (49) can be solved by diagonalizing the matrix M(k). The eigenvalues ε1(k),
ε2(k) and the eigenvectors |ψ1(k)〉, |ψ2(k)〉 of the matrix M(k) are given as

ε1(k) =−1− k2−
√
1+ k2g, ε2(k) =−1− k2 +

√
1+ k2g , (52)

and

|ψ1(k)〉=
(

i
(
−1+

√
1+k2g

)

kPe(1−ρ̄)
1

)
, |ψ2(k)〉=

(
i
(
−1−

√
1+k2g

)

kPe(1−ρ̄)
1

)
. (53)

The constant g appearing in the above expressions has the explicit form

g = Pe2(1− ρ̄)(2ρ̄− 1). (54)

We note that the above constant g is the same factor that appears in the equation of
the spinodal curve and the correlation length in [3, 30]. We obtain the initial condition
for the conjugate fields as

(
p̃ρ1(x,τ = 0)
p̃m1(x,τ = 0)

)
=

(
θ(x)
0

)
. (55)

In Fourier space, the initial condition for the conjugate density field translates to

p̃ρ1(k,0) =

ˆ ∞

−∞
dxe−ikxθ(x) =− i

k
+πδ(k), (56)

where δ(k) is the Dirac delta function. Using equations (52), (53), and (56), we finally
solve the matrix equation (49) to obtain

p̃ρ1(k,τ) = e−(1+k2)τ p̃ρ1(k,0)



cosh
(
τ
√
1+ k2g

)
+

sinh
(
τ
√
1+ k2g

)

√
1− k2g2



 ,

p̃m1(k,τ) =
ie−(1+k2)τ p̃ρ1(k,0) k Pe(1− ρ̄)sinh

(
τ
√
1+ k2g

)

√
1+ k2g

, (57)

where the expression for p̃ρ1(k,0) is provided in equation (56).
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We next compute the cumulants of the integrated current using the above exact
expressions. Using equations (35a), (36), and (47), the average integrated current can
be directly obtained as

〈Qρ(T )〉c = 0. (58)

To compute the second cumulant of the integrated current, we rewrite the expression
for the second cumulant provided in equation (45) as

〈Qρ(T )
2〉c =

1

2π

ˆ ∞

−∞
dk
ˆ T

0
dt
{
4ρ0p̃m1(k,t)p̃m1(−k,t)

+σρ0 p̃ρ1(k,t)p̃ρ1(−k,t)k2 +σm0 p̃m1(k,t)p̃m1(−k,t)k2
}
. (59)

In the above equation we have used the fact that σρ0,m0 = 0 as is clear from equations (8)
and (47). Equation (59) is a double integral and we can first compute the time integral.
This yields the exact expression

〈Qρ(T )
2〉c =

σρ̄
8π

ˆ ∞

−∞
dkF (k,T ), (60)

where σρ̄ is defined in equation (8) and the function F (k,T ) is given as

F (k,T ) = e−2Th1(k) [f1(k,T )+ f2(k,T )+ f3(k,T )+ f4(k,T )] . (61)

The function F (k,t) is in turn composed of constituent functions fi (where i = 1,2,3,4)
and h1. The exact expressions for these functions can be computed as

f1 =
2 Pe2(1− ρ̄)

(
h1− k2ρ̄

)

h1 (1+ gk2)
,

f2 =
e−2T

√
1+gk2

(√
1+ gk2−Pe2(1− ρ̄)(1+ k2ρ̄)− 1

)

h1 (1+ gk2)+ (1+ gk2)3/2
,

f3 =
2 e2Th1

((
−2+ g− k2

)
h1 + (g+h1 (2− g+2h1)) ρ̄

)

(2ρ̄− 1)(h3
1−h1 (1+ gk2))

,

f4 =
e2T

√
1+gk2

(
−
√
1+ gk2−Pe2(1− ρ̄)(1+ k2ρ̄)− 1

)

h1 (1+ gk2)− (1+ gk2)3/2
,

h1 = 1+ k2 , (62)

where the factor g appearing in the above equations is defined in equation (54). The
SSEP limit of the current fluctuations can be obtained by setting Pe =0 (which in turn
corresponds to g =0) in equations (60)–(62). This sets f1 = f2 = 0. We then obtain the
simple result
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〈Qρ(T )
2〉c =

σρ̄
4π

ˆ ∞

−∞
dk e−2Th1

(e2Th1 − e2T
k2

)
=
√
T

σρ̄√
2π

, for SSEP. (63)

Therefore, for the SSEP, the fluctuations grow as
√
T at all times.

Interestingly, as we show below, the addition of activity introduces different scal-
ings at different times in the current fluctuations. This can be shown through the
computation of the variance of the integrated current in Laplace space. We also
present an alternate method to derive the large- and small-time asymptotic beha-
vior of the variance in appendix B. We define the Laplace transform of 〈Qρ(T )

2〉c as

L
[
〈Qρ(T )

2〉c
]
= 〈Q̃ρ(s)

2〉c =
´∞
0 dT e−sT 〈Qρ(T )

2〉c. Using equations (60) and (61), we

obtain the exact expression for the Laplace transform of 〈Qρ(T )
2〉c as

〈Q̃ρ(s)
2〉c =

σρ̄
2π

ˆ ∞

−∞
dk

(2+ s)(4+ s)+ 4k2
(
k2 + 3+ s+Pe2(1− ρ̄)2

)
+4Pe2(1− ρ̄)

s(2+ 2k2 + s)(4k4 + s(4+ s)+ 4k2(2+ s− g))
.

(64)

After performing the k integral in the above equation, we obtain the explicit expression
for the variance in Laplace space. This expression is rather complicated, and we quote
the asymptotic expansions in the small and large s limits below. We have

〈Q̃ρ(s)
2〉c −−→

s→0

σρ̄ ξ
(
2+Pe2(1− ρ̄)

)

4s3/2
+
σ2
ρ̄ Pe2

(
−1+ g ξ 3

)

8(1− g)s
+ . . . for g < 2, (65)

and

〈Q̃ρ(s)
2〉c −−−→

s→∞

σρ̄
2
√
2s3/2

+
σ2
ρ̄ Pe2

16
√
2s5/2

+ . . . , (66)

where

ξ =
1√
2− g

, (67)

is the correlation length derived in [30] and g is defined in equation (54). We notice
that g < 2 is the region where the homogeneous solutions ρ0(x,t) = ρ̄ and m0(x,t) = 0
to the noiseless hydrodynamic equations are linearly stable [29]. For g > 2, which in
turn corresponds to the linearly unstable region, the integral in equation (64) is not
convergent.

To obtain the behavior of the current fluctuations in the time domain, we invert the
expressions provided in equations (65) and (66). This yields the large- and small-time
behaviors of the variance as

〈Qρ(T )
2〉c −−−→

T→∞

√
T
σρ̄ ξ

(
2+Pe2(1− ρ̄)

)

2
√
π

+
σ2
ρ̄ Pe2

(
−1+ g ξ 3

)

8(1− g)
+ . . . for g < 2, (68)
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and

〈Qρ(T )
2〉c −−−→

T→0

√
T

σρ̄√
2π

+T 3/2 σ
2
ρ̄ Pe2

12
√
2π

+ . . . . (69)

The leading term in the T → 0 expansion of the variance corresponds to the current
fluctuations in the SSEP starting from a quenched uniform density profile given in
equation (63). It is important to note that the above expressions are in the rescaled
variables, and the unscaled expressions can be obtained from these using the substitution
〈Qρ(T )

2〉c −→
√
D/γ 〈Qρ(γT )

2〉c.
Next, using the asymptotic behavior of the variance in equation (69), we can extract

the timescale T ∗ up to which the system exhibits short-time SSEP behavior. This can
be obtained by equating the first two terms in the rhs, yielding

T ∗ ≈ D

λ2σρ̄
. (70)

Interestingly, this timescale diverges in the limit of zero density and therefore emerges
purely from the interactions between particles. At large times, a single RTP dis-
plays diffusive behavior beyond T * 1/γ, with an effective diffusion constant Deff =
D+λ2/(2γ) [8, 21, 22]. We thus expect a

√
T behavior of the current fluctuations

beyond this timescale. We note, however, that the model studied in this paper does
not trivially reduce to the SSEP with the dynamics governed by the single particle
D eff, as is clear from the large-time asymptotic behavior of the current fluctuations in
equation (68).

We plot the second cumulant of the integrated density current as a function of time
for the initial condition ρ(x,0) = 0.25 and m(x,0) = 0 in figure 3(a). For this, we have
used equation (60) and have done a numerical integration in Fourier space. The curve
typically consists of three regimes; a short-time

√
T behavior predicted exactly by the

SSEP, a cross-over regime, and a large-time
√
T behavior, where activity drives large

fluctuations. We also plot the second cumulant of the integrated density current as a
function of time for the initial condition ρ(x,0) = ρ̄ and m(x,t) = 0 for different values
of ρ̄ with fixed Pe in figure 3(b). We observe that the fluctuations are non-monotonic
functions of the mean density. Initially, the fluctuations are symmetric about the density
0.5 as in the case of the SSEP. That is, the fluctuations for densities 0.5+∆ and 0.5−∆
are exactly the same (where 0<∆< 0.5). At large times, each of the solid curves splits
into two. The dashed curves correspond to the higher-density (0.5+∆) counterparts.
At large times, the fluctuations for densities 0.5−∆ are higher than for the densities
0.5+∆, pointing to the lack of particle–hole symmetry in the model. However, at short
times, where activity does not play any role, we recover the particle–hole symmetry
associated with the symmetric exclusion process.

In figure 4(a), we display the behavior of the current fluctuations for different choices
of the Péclet number Pe. The density is fixed to be ρ̄= 0.75. Since (ρ̄= 0.75, Pe= 4)
corresponds to the critical point [3] of the model, we observe large current fluctuations
as we cross the critical point. For small values of Pe, the theory predicts the typical
fluctuations. For Pe > 4, the system enters into an unstable (spinodal) region where
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Figure 3. (a) The three regimes in the second cumulant of the integrated density
current plotted as a function of time for the initial condition ρ(x,0) = ρ̄= 0.25 and
m(x,0) = 0. For this, we have used equation (60) and have done a numerical integ-
ration in Fourier space. The dashed curve at short times corresponds to the limiting
case of SSEP. We observe that at small timescales (T → 0), the second cumulant

reduces to that of an SSEP, and 〈Qρ
2(T )〉c −−−→T→0

√
T

√
Dσρ̄√
2π

with σρ̄ = 2ρ̄(1− ρ̄). At

large time scales, the fluctuations again exhibit a
√
T behavior. The spatial and

temporal coordinates in this plot only have diffusive scaling. The different para-
meter values used are D = 1, γ = 1, and λ=10. (b) The second cumulant of the
integrated density current plotted as a function of time for the initial condition
ρ(x,0) = ρ̄ and m(x,0) = 0 for different values of ρ̄. The Pe number is fixed to
be 2. We observe that the fluctuations are non-monotonic functions of the mean
density. Initially, the fluctuations are symmetric about the density 0.5 as in the
SSEP. At large times, we observe that each of the solid curves splits into two and
the system breaks particle–hole symmetry. The dashed curves correspond to the
higher-density counterparts. The above plot is in the rescaled coordinates (diffusive
scaling is always present).

homogeneous phases are no longer stable. Another interesting feature we observe is that
as we reduce the diffusion rate D in the original active gas model while keeping all other
parameters fixed, the small-time behavior of the current fluctuations gradually changes
from

√
T to T 2 in the D −→ 0 limit. This behavior is clearly exhibited in figure 4(b) for

the average density ρ̄= 0.25. We discuss the zero-diffusion limit in detail in section 8.2.

8.1.1. Exact expression of the variance for ρ̄= 1/2. For ρ̄= 1/2, which in turn corres-
ponds to g =0 and ξ = 1/

√
2, the integral in equation (60) can be computed exactly.

This yields the exact expression

〈Qρ(T )
2〉c =

√
T
(
4+Pe2

)

8
√
2π

− e−2TPe2 sinh2(T )

16
√
2π

√
T

− 1

32
Pe2Erf

[√
2T
]
, (71)
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Figure 4. (a) The second cumulant of the integrated density current plotted as
a function of time for the initial condition ρ(x,0) = 0.75, m(x,0) = 0 for different
values of Pe. For this, we have used equation (60) and have done a numerical
integration in Fourier space. Since (ρ̄= 0.75, Pe= 4) corresponds to the critical
point of the model, we observe large fluctuations as we cross the critical point.
For small values of Pe, the theory predicts the typical fluctuations. For Pe > 4, the
system enters into the unstable (spinodal) region, where homogenous phases are no
longer stable. The dashed curves correspond to our predictions for the asymptotic
behavior. The above plot is in the rescaled coordinates. (b) The second cumulant of
the integrated density current plotted as a function of time for the initial condition
ρ(x,0) = 0.25, m(x,0) = 0 for different values of D. The fixed parameter values used
are γ = 1, λ= 2. As we reduce D, the small-time behavior changes from

√
T to T 2.

Since we display the effect of the diffusion constant on current fluctuations, this
plot only has diffusive rescaling.

where Erf is the error function. We note that the above expression can be used to
compute the behavior of fluctuations at all times. This expression indeed reproduces
the limiting behaviors provided in equations (68) and (69) for ρ̄= 1/2.

8.1.2. Non-interacting limit. To obtain the non-interacting limit of the current fluctu-
ations for the active lattice model, we take a ρ̄→ 0 limit of equation (64). Performing a
series expansion and keeping the terms linear in ρ̄ yields the expression for the Laplace
transform of 〈Qρ(T )

2〉c in the non-interacting limit. We have

〈Q̃ρ(s)
2〉c =

ρ̄

π

ˆ ∞

−∞
dk

(2+ s)(4+ s)+ 4k2
(
k2 + 3+ s+Pe2

)
+4Pe2

s(2+ 2k2 + s)
(
4k4 + s(4+ s)+ 4k2(2+ s+Pe2)

) . (72)

As for the interacting case, the k integral in the above expression can be computed
explicitly. Since this expression is long, we provide asymptotic expansions of the variance
in the Laplace space below. In the small s limit we have
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〈Q̃ρ(s)
2〉c −−→

s→0

√
2+Pe2ρ̄

2s3/2
−

Pe2
(
12+5Pe2

)
ρ̄

16
(
2+Pe2

)3/2√
s
+ . . . , (73)

and in the large s limit we have

〈Q̃ρ(s)
2〉c −−−→

s→∞

ρ̄√
2s3/2

+
5Pe2ρ̄

4
√
2s7/2

+ . . . . (74)

Inverting the above expressions yields the large- and small-time behaviors of the variance
in the non-interacting limit as

〈Qρ(T )
2〉c −−−→

T→∞

√
T

√
2+Pe2 ρ̄√

π
− 1√

T

Pe2
(
12+5Pe2

)
ρ̄

16
(
2+Pe2

)3/2√
π
+ . . . , (75)

and

〈Qρ(T )
2〉c −−−→

T→0

√
T

√
2ρ̄√
π

+T 5/2

√
2ρ̄ Pe2

3
√
π

+ . . . . (76)

We note that the subleading corrections at large and short times are of the order
T−1/2 and T 5/2 respectively. This is in contrast to the subleading behaviors provided
in equations (68) and (69), where the corrections are of the order T 0 and T 3/2

respectively. This is due to the fact that the coefficients of these subleading terms
in equations (68) and (69) do not have terms linear in ρ̄, and therefore vanish in the
ρ̄→ 0 limit.

In the unscaled coordinates, the leading-order terms in the asymptotic limits have
the explicit forms

〈Qρ(T )
2〉c −−−→

T→∞

√
T

√
Deff√
2π

2ρ̄, (77)

and

〈Qρ(T )
2〉c −−−→

T→0

√
T

√
D√
2π

2ρ̄, (78)

where Deff =D+λ2/(2γ) is the effective diffusion constant for a single RTP with diffu-
sion in one dimension.

The factor 2ρ̄ appearing in equations (77) and (78) arises because we consider uni-
form initial conditions, with particles initially distributed uniformly on both sides of
the origin. For instance, if we consider step initial conditions with particles uniformly
distributed toward the left of the origin, this factor would be ρ̄. As anticipated, we
recover the

√
T behavior of the current fluctuations described by the effective diffusion

constant of the single RTP at large times. At short times, the particles behave as non-
interacting random walkers, and the fluctuations display a

√
T behavior described in
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equation (78), which is consistent with the expression for current fluctuations of non-
interacting random walkers derived in [41]. The typical timescale T ∗, up to which the
current fluctuations exhibit the short-time

√
T behavior, can be computed by equating

the first two terms in the rhs of equation (76). This yields

T ∗ ≈
√
D

√
γλ

. (79)

This timescale can be understood as follows. Since we focus on the low-density limit,
the current fluctuations at short times are dominated by single-particle fluctuations.
For quenched initial conditions, each particle can be considered as initialized in either
of the bias states + or −. For a single particle initialized asymmetrically in the + or −
state, the mean squared displacement behaves as

〈x2〉c −−−→T→0
2DT +

4

3
γλ2T 3 + . . . . (80)

The typical timescale up to which the system exhibits the short-time diffusive beha-
vior is thus obtained as T ∗ ≈

√
D/(

√
γλ), consistent with the timescale derived in

equation (79).

8.2. Interacting active lattice gas in the zero-diffusion limit

We next derive asymptotic limits of the variance of the integrated current in the active
lattice gas model with zero diffusion, which can be analyzed as a limiting case of the
model studied in this paper. The D → 0 limit allows us to understand the limiting
behavior observed in the current fluctuations as the microscopic diffusion constant is
reduced to a very small value. The hydrodynamic equations for the ρ and m fields are
valid for any small non-zero D. In this limit, we expect the hydrodynamic scaling to
still be valid, and the diffusion term in the hydrodynamic equations can be neglected.
The current fluctuations in the D → 0 limit are illustrated in figure 4(b). When the
diffusion constant is decreased, a regime where the fluctuations grow as T 2 begins to
appear. To further characterize this, we study the MFT equations with D =0, which
allows us to derive analytic expressions for the observed limiting T 2 behavior as the
diffusion constant is reduced. In the zero-diffusion limit, the fluctuating hydrodynamic
equations provided in equation (6) reduce to

∂tρ=−λ∂x[m(1− ρ)],

∂tm=−λ∂x[ρ(1− ρ)]− 2γm+
2√
L

√
γ ηK. (81)

As in the diffusive case, we analyze the case of uniform initial conditions, which is
provided in equation (46). The zeroth-order equations provided in equation (29) admit
the analytical solutions in equation (47). Substituting these solutions into the first-order
equations for the conjugate fields yields
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∂tpρ1 = −λ(1− 2ρ̄)∂xpm1,

∂tpm1 = −λ(1− ρ̄)∂xpρ1 + 2γpm1. (82)

Notice that the above equations are in the unscaled coordinates and only have diffusive
rescaling.

Taking a Fourier transform of equation (82) yields the matrix equation

∂

∂τ
|p̃(k,τ)〉=M0(k)|p̃(k,τ)〉, (83)

where the column vector |p̃(k,τ)〉 is defined in equation (50) and

M0(k) =

(
0 −ikλ(2ρ̄− 1)

ikλ(1− ρ̄) −2γ

)
. (84)

Equation (83) can be solved by diagonalizing the matrix M0(k). The eigenvalues ζ1(k),
ζ2(k) and the eigenvectors |φ1(k)〉, |φ2(k)〉 of the matrix M0(k) are given as

ζ1(k) =−γ−
√
γ2 + k2λ2g0, ζ2(k) =−γ+

√
γ2 + k2λ2g0 , (85)

and

|φ1(k)〉=
(

i
(
−γ+

√
γ2+k2λ2g0

)

kλ(1−ρ̄)
1

)
, |φ2(k)〉=

(
i
(
−γ−

√
γ2+k2λ2g0

)

kλ(1−ρ̄)
1

)
. (86)

The constant g0 appearing in the above equation has the explicit form

g0 = (1− ρ̄)(2ρ̄− 1). (87)

We use the initial condition in equation (55) along with the expressions for the eigenval-
ues and the eigenvectors in equations (85) and (86) to solve the matrix equation in (83).
The final expressions for the conjugate fields are thus obtained as

p̃ρ1(k,τ) = e−γτ p̃ρ1(k,0)



cosh
(
τ
√
γ2 + k2λ2g0

)
+
γ sinh

(
τ
√
γ2 + k2λ2g0

)

√
γ2 + k2λ2g0



 ,

p̃m1(k,τ) =
ie−γτ p̃ρ1(k,0) k λ(1− ρ̄)sinh

(
τ
√
γ2 + k2λ2g0

)

√
γ2 + k2λ2g0

. (88)

We next compute the cumulants associated with the integrated current. As in the
diffusive case, the mean integrated current, 〈Qρ(T )〉c, is zero. Using equation (45), the
second cumulant of the integrated density current assumes the form

〈Qρ(T )
2〉c =

ˆ ∞

−∞
dx
ˆ T

0
dt4γρ0pm1

2. (89)

https://doi.org/10.1088/1742-5468/aceb53 26

https://doi.org/10.1088/1742-5468/aceb53


Current fluctuations in an interacting active lattice gas

J.S
tat.

M
ech.(2023)

083208

The other two terms in equation (45) are zero due to zero diffusion. In Fourier space,
the above equation can be rewritten as

〈Qρ(T )
2〉c =

1

2π

ˆ ∞

−∞
dk
ˆ T

0
dt4γρ0p̃m1(k,t)p̃m1(−k,t). (90)

The time integral in equation (90) can be first computed explicitly. Using equations (88)
and (90), we thus obtain

〈Qρ(T )
2〉c =

1

2π

γ

λ

ˆ ∞

−∞
dα G(α,T ), (91)

where

G(α,T ) =
e−2Tγλ2(1− ρ̄)ρ̄

α2γ2 (1+ g0α2)(2ρ̄− 1)
×
[√

1+ g0α2 sinh
(
2Tγ

√
1+ g0α2

)

+ cosh
(
2Tγ

√
1+ g0α2

)
+ g0α

2− e2Tγ
(
1+ g0α

2
)]

. (92)

In the above expression, we have used the substitution k = αγ/λ.
We next define the Laplace transform of the function G(α,T ) as L [G(α,T )] =

G̃(α,s) =
´∞
0 dT e−sTG(α,T ). Using equation (92), we obtain the exact expression for

the Laplace transform of G(α,T ) as

G̃(α,s) =
8g0γλ2(1− ρ̄)ρ̄

s(s+2γ)(s2 + 4sγ− 4g0α2γ2)(2ρ̄− 1)
. (93)

Integrating the above function over α yields

ˆ ∞

−∞
dα G̃(α,s) =

4
√
|g0|πλ2(1− ρ̄)ρ̄

s(s+2γ)
√
s(s+4γ)(1− 2ρ̄)

, g0 < 0, (94)

where g0 is defined in equation (87). Using equation (91), we now obtain

〈Qρ(T )
2〉c =

1

2π

γ

λ
L−1

[ˆ ∞

−∞
dα G̃(α,s)

]
. (95)

We can compute this inverse Laplace transform yielding the final expression for the
variance as

〈Qρ(T )
2〉c =

√
|g0|(1− ρ̄)ρ̄λTe−2γT

2(1− 2ρ̄)

×
[
(2+πLLL0(2Tγ))III1(2Tγ)−πLLL1(2Tγ)III0(2Tγ)

]
, g0 < 0. (96)
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Here,LLL0 andLLL1 are modified Struve functions and III0 and III1 are modified Bessel func-
tions. The above expression provides the full-time dependence of the variance. Finally,
we compute the leading-order terms in the asymptotic expansions of the variance as

〈Qρ(T )
2〉c −−−→

T→∞

√
T

√
|g0|λ(1− ρ̄)ρ̄√
π
√
γ(1− 2ρ̄)

, (97)

and

〈Qρ(T )
2〉c −−−→

T→0
T 2

√
|g0|γλ(1− ρ̄)ρ̄

(1− 2ρ̄)
. (98)

In the above expressions, g0 < 0 defines the region where the homogeneous solutions
ρ(x,t) = ρ̄ andm(x,t) = 0 to the hydrodynamic equations with D =0 are linearly stable.
This is equivalent to the limit ρ̄< 0.5. For densities " 0.5, the integral in equation (94)
is not convergent. For the case with a finite diffusion constant, we were able to derive
the exact expression for the second cumulant at all times for density ρ̄= 0.5. However,
for the case with zero diffusion, ρ̄= 0.5 is the critical point of the model, and the
hydrodynamic description fails. For T * 1/γ, the system becomes effectively diffusive
and the current fluctuations exhibit a

√
T behavior. This can also be seen by equating

the expressions in equations (97) and (98). Therefore, for timescales larger than 1/γ,
the system becomes effectively diffusive.

We have plotted the second cumulant for different diffusion constants with aver-
age density ρ̄= 0.5 in figure 5(a). The behavior of the fluctuations is very dif-
ferent for the two choices of densities, as is evident from figures 4(b) and 5(a).
Since ρ̄= 0.5 corresponds to the critical point of the active lattice gas model
with zero diffusion, we observe large fluctuations as D → 0. In figure 5(b), we
have also plotted the current fluctuations for the zero-diffusive active gas model
for different densities. The current fluctuations diverge as we approach the critical
point ρ̄= 0.5.

8.2.1. Non-interacting limit. To obtain the non-interacting limit, it is sufficient to take
a ρ̄−→ 0 limit of the expression provided in equation (96). This yields

〈Qρ(T )
2〉c =

ρ̄λT e−2γT

2

[
(2+πLLL0(2Tγ))III1(2Tγ)−πLLL1(2Tγ)III0(2Tγ)

]
, (99)

with the limiting behaviors

〈Qρ(T )
2〉c −−−→

T→∞

√
T

√
D0

eff√
2π

2ρ̄, (100)

and

〈Qρ(T )
2〉c −−−→

T→0
T 2γ

λ

2
(2ρ̄). (101)
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Figure 5. (a) The second cumulant of the integrated density current plotted as
a function of time for the initial condition ρ(x,0) = 0.5, m(x,0) = 0 for different
values of the diffusion constant. For this, we have used equation (60) and have
done a numerical integration in Fourier space. Since ρ̄= 0.5 corresponds to the
critical point of the active lattice gas model with zero diffusion, we observe large
fluctuations as we approach the critical point. The fixed parameter values used are
γ = 1, λ= 2. The above plot has only diffusive scaling. (b) The second cumulant
of the integrated density current for the zero-diffusive active system provided in
equation (96) plotted as a function of time for the initial condition ρ(x,0) = ρ̄,
m(x,0) = 0 for different values of ρ̄. The fixed parameter values used are D =
0, γ = 1, λ= 2. As we approach the density ρ̄= 0.5, the system exhibits large
current fluctuations. This plot has only diffusive rescaling.

Here, D0
eff = λ2/(2γ) is the effective diffusion constant for a single non-diffusive RTP in

one dimension [21, 22]. The superscript ‘0’ indicates that diffusion is absent. For non-
interacting RTPs without diffusion, it can also be shown using Green’s function tech-
niques that the variance displays the exact same behavior predicted in equation (99)
for quenched density and quenched magnetization initial conditions [52]. The large-time
behavior of the current fluctuations quoted in equation (100) has also been derived
in a continuous space non-interacting RTP model with a quenched initial condition
for the density profile and an annealed initial condition for the magnetization pro-
file [48]. Our result in equation (100) is larger by a factor of 2 as we consider a
uniform profile, as opposed to a step initial condition [48]. It can also be seen from
equations (98) and (100) that for quenched initial conditions, the T 2 behavior at short
times holds for all densities, and not just in the low-density limit. For T * 1/γ, the sys-
tem becomes effectively diffusive with a modified diffusion constant D0

eff. However, this
effective diffusion constant does not appear when interactions are considered, as is clear
from equation (97).

Although the above analytical results are obtained for the case of an infinite lattice,
microscopic simulations done on a finite lattice provide another route to understand-
ing the boundary effects on the fluctuations and verifying the small-time asymptotics
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predicted from the infinite lattice calculations. We provide details of such numerical
simulations in appendix C.

9. Conclusion and discussion

In this paper, we have studied the fluctuations of the integrated current in an inter-
acting active lattice gas that allows a comparison between microscopic measurements
and predictions based on fluctuating hydrodynamics and MFT. We used this model and
the associated MFT to compute the cumulants of the time-integrated current through
the origin. This was possible through the application of a perturbative approach to the
Euler–Lagrange equations associated with the action appearing in the generating func-
tion of the integrated current. However, as the non-linear equations are hard to analyze
in an exact manner, we used a simple initial condition with constant density and zero
magnetization profiles. We found a very good match between the theoretical predic-
tions and simulations of the microscopic dynamics of the model, further confirming the
validity of the fluctuating hydrodynamic framework for this model.

Interestingly, we found that the fluctuations of the integrated density current in
an interacting active lattice gas display three regimes; (1) the first regime where the
fluctuations are exactly given by the

√
T behavior of the SSEP as shown in equation (69);

(2) a cross-over regime where activity and interactions drive larger fluctuations; (3) a
third regime where the fluctuations again grow as

√
T , but with a coefficient that

depends on the Péclet number along with the density and the initial arrangement of
particles as in equation (68). The two diffusive regimes originate from the short-time
diffusive motion arising from the intrinsic rate D and the late-time effective diffusion
of the particles, respectively. The first regime appears up to a typical timescale T ∗ ≈
D/λ2σρ̄. At late times, the motion of a single RTP becomes effectively diffusive for
T * 1/γ. Therefore, the

√
T behavior at large times originates from this effective late-

time diffusive behavior of RTPs. In the non-interacting limit, the integrated current can
be expressed as a function of the effective diffusion constant D eff as demonstrated in
equation (77). However, the general interacting model does not reduce to the SSEP with
dynamics governed by the single particle D eff at large times. In this case, the interplay
of activity and interactions remains important, as evidenced by the prefactor of the
leading-order term in equation (68).

For density ρ̄= 1/2, we were able to derive the exact expression for the fluctuations
at all times for the interacting active particle model, which is given in equation (71).
Additionally, in the limit of zero diffusion, we showed that the current fluctuations
typically consist of two regimes with an initial T 2 behavior as in equation (98) and a
later

√
T behavior as in equation (97). We also computed the full-time dependence of

the fluctuations for the zero-diffusive model, which is provided in equation (96). The
T 2 behavior of fluctuations at short times can be attributed to the ballistic motion
of particles as well as the quenched initial conditions in the density and the magnet-
ization fields [52]. Furthermore, in the non-interacting limit (ρ̄→ 0), the fluctuations
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exhibit a large-time
√
T behavior, which can be expressed in terms of the single-particle

effective diffusion constant D0
eff as shown in equation (100). For higher densities, our

results demonstrate that the late-time diffusive behavior of the current fluctuations is
modified in a non-trivial manner due to interactions between particles, as evidenced by
the coefficient of

√
T in equation (97).

The model studied in this paper has within it hydrodynamic instabilities, which
have been shown to be the analogs of MIPS. In this case, the MFT approach is able to
capture the non-trivial entropy production [32]; however, the integrated current does
not seem to be amenable to these methods beyond the phase boundary. It would be
interesting to analyze how the integrated current behaves beyond the phase boundary.
Several interesting directions remain to be pursued. It would certainly be useful to study
other initial conditions where the coupled non-linear equations representing the zeroth-
order solutions can be solved analytically. This would greatly simplify the analysis of
the current fluctuations, as has been shown in the case of the SSEP. Since in this work,
we have focused on the case with fixed initial conditions, it would be interesting to
study the effects of activity on the differences between quenched and annealed settings
in detail. Another interesting quantity to investigate is the integrated magnetization
current, which measures the excess of + particles crossing the origin up to time T.
The framework derived here can also be used to study other models where multiple
coupled fields can lead to phase separation and aggregation, such as the Light–Heavy
model [53–55].
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Appendix A. Alternate expressions for the cumulants

The cumulants of the integrated current can also be computed using the following
alternate method [51]. The scaled cumulant-generating function of the integrated cur-
rent Qρ(T ) across the origin up to time T can be computed as

ψρ(Λ,T ) = log
〈
eΛQρ(T )

〉
, (A.1)

where the average is given by the ensemble weighted by the action S. Differentiating
equation (A.1) with respect to Λ yields
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ψ ′
ρ(Λ,T ) =

〈QρeΛQρ〉
〈eΛQρ〉 = 〈Qρ〉Λ =QρMFT, (A.2)

where the average 〈Qρ〉Λ is over the ensemble with the modified weight S+ΛQρ. This
gives the average current for a given Λ. This is the same as the MFT solution as the
MFT equations provide the saddle-point solution to the modified action. The MFT
solutions can be perturbatively expanded as

QρMFT =Qρ0MFT +ΛQρ1MFT. (A.3)

Using this expansion in equation (43), we directly obtain the expressions for the first
and second cumulants provided in equations (36) and (37).

Appendix B. Asymptotic expansions of the variance

We next present an alternate method to compute the limiting behaviors of the variance
of the integrated current for an interacting active lattice gas. We use the substitution
u= k

√
T in equation (60) to extract the scaling behavior of the integrand F (k,T ) at

small and large times. It is easy to show that F (k,T ) admits the scaling forms

F (k,T ) −−−→
T→0

TS1(u),

F (k,T ) −−−→
T→∞

TS2(u), (B.1)

at small and large times respectively with

S1(u) =
2 e−2u2

(
e2u

2 − 1
)

u2
, (B.2)

and

S2(u) =
2 e−2u2

(
e2u

2 − egu
2
)(

2+Pe2(1− ρ̄)
)

(2− g)u2
. (B.3)

In the asymptotic limits, we thus obtain the following behaviors for the fluctuations,

〈Qρ(T )
2〉c −−−→

T→0

√
T
σρ̄
8π

ˆ ∞

−∞
duS1(u), (B.4)

and

〈Qρ(T )
2〉c −−−→

T→∞

√
T
σρ̄
8π

ˆ ∞

−∞
duS2(u). (B.5)
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These integrals can be easily computed, yielding the leading behaviors of the variance
in the asymptotic limits as in equations (68) and (69).

Appendix C. Simulations

C.1. Microscopic simulations

In the microscopic simulations, we consider a one-dimensional periodic lattice of size
L=1000 with N particles. The mean density is given as ρ̄=N/L. We realize quenched
initial profiles by fixing the locations and bias states of the particles at time t =0. For
the case of a uniform initial density profile, we arrange the particles symmetrically with
equally spaced gaps. To obtain zero magnetization initially, the + and − spins (bias
states) are also assigned symmetrically. We use the kinetic Monte Carlo method to
update the position and states of the particles. To match with the analytical results,
we should work in the limit L−→∞, (s =

√
γ/D −→∞ with L/(s also −→∞. However, in

microscopic simulations, we use a lattice of finite size and finite values of the rates, which
introduces deviation from the analytical prediction. These finite lattice effects tend to
saturate the cumulant of the integrated current at large times. We can also study finite
lattice size effects analytically by treating the Fourier integration in equation (59) as
a discrete sum over finite modes instead of a continuous integration. In figure C1, we
display the plot of the second cumulant of the integrated density current as a function
of time for finite lattice size (s with periodic boundary conditions. We show that the
microscopic simulations agree well with equation (59) with the integration replaced by
a discrete sum of the Fourier modes. Additionally, the small-time asymptotics predicted
from the infinite lattice analytical calculations can also be matched with the microscopic
simulations.

C.2. Macroscopic simulations

Since the perturbation equations provided in equations (29) and (30) involve non-linear
terms, we use the pseudo-spectral method to integrate these equations numerically.
Notice that the equations for ρ0 and m0 are solved with initial boundary conditions.
These solutions are used to integrate the equations for pρ1 and pm1 backward in time.
Finally, the equations for ρ1 and m1 are integrated forward in time using the solutions
for ρ0, m0, pρ1 ,and pm1 . These solutions for the fields at different orders can be used
in equation (45) to compute the fluctuations for arbitrary boundary conditions. Finite
difference schemes also match the microscopic simulations for carefully chosen discret-
ization parameters. In figure 2 of the main text, we have used finite difference schemes
with periodic boundary conditions to numerically integrate the hydrodynamic equations
with discretization parameters dx= 10−3 and dt= 10−8.
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Figure C1. Second cumulant of the integrated density current plotted as a function
of time T for finite lattice size (s with periodic boundary conditions. The initial
condition is given as ρ(x,0) = 0.25 and m(x,t) = 0. The points are obtained from
direct Monte Carlo simulations. The solid curves on top of the simulation data
correspond to the theoretical result in equation (60), but with the integral in k
replaced by a discrete summation over the Fourier modes (kn = 2nπ(s

−1). We have
done the summation numerically over 1000 modes. Note that the discrete summa-
tion measures the current across both boundaries and one has to divide by a factor
of 2 to obtain the actual current across the origin.
The dashed curve corresponds to the small-time asymptotic result provided in
equation (69). The above plot is in rescaled coordinates.
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[2] Czirók A, Barabási A-L and Vicsek T 1999 Collective motion of self-propelled particles: kinetic phase transition
in one dimension Phys. Rev. Lett. 82 209

[3] Tailleur J and Cates M E 2008 Statistical mechanics of interacting run-and-tumble bacteria Phys. Rev. Lett.
100 218103

[4] Cavagna A, Cimarelli A, Giardina I, Parisi G, Santagati R, Stefanini F and Viale M 2010 Scale-free correlations
in starling flocks Proc. Natl Acad. Sci. 107 11865–70

[5] Cates M E 2012 Diffusive transport without detailed balance in motile bacteria: does microbiology need stat-
istical physics? Rep. Prog. Phys. 75 042601

[6] Ramaswamy S 2010 The mechanics and statistics of active matter Annu. Rev. Condens. Matter Phys. 1 323–45

https://doi.org/10.1088/1742-5468/aceb53 34

https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1103/PhysRevLett.82.209
https://doi.org/10.1103/PhysRevLett.82.209
https://doi.org/10.1103/PhysRevLett.100.218103
https://doi.org/10.1103/PhysRevLett.100.218103
https://doi.org/10.1073/pnas.1005766107
https://doi.org/10.1073/pnas.1005766107
https://doi.org/10.1088/0034-4885/75/4/042601
https://doi.org/10.1088/0034-4885/75/4/042601
https://doi.org/10.1146/annurev-conmatphys-070909-104101
https://doi.org/10.1146/annurev-conmatphys-070909-104101
https://doi.org/10.1088/1742-5468/aceb53


Current fluctuations in an interacting active lattice gas

J.S
tat.

M
ech.(2023)

083208

[7] Evans M R and Majumdar S N 2018 Run and tumble particle under resetting: a renewal approach J. Phys. A:
Math. Theor. 51 475003

[8] Malakar K, Jemseena V, Kundu A, Vijay Kumar K, Sabhapandit S, Majumdar S N, Redner S and Dhar A 2018
Steady state, relaxation and first-passage properties of a run-and-tumble particle in one-dimension J. Stat.
Mech. 2018 043215

[9] Mori F, Le Doussal P, Majumdar S N and Schehr G 2020 Universal survival probability for a d-dimensional
run-and-tumble particle Phys. Rev. Lett. 124 090603

[10] Mori F, Le Doussal P, Majumdar S N and Schehr G 2020 Universal properties of a run-and-tumble particle in
arbitrary dimension Phys. Rev. E 102 042133

[11] Angelani L, Di Leonardo R and Paoluzzi M 2014 First-passage time of run-and-tumble particles Eur. Phys. J.
E 37 1–6

[12] Martens K, Angelani L, Di Leonardo R and Bocquet L 2012 Probability distributions for the run-and-tumble
bacterial dynamics: an analogy to the Lorentz model Eur. Phys. J. E 35 1–6

[13] Lindner B and Nicola E M 2008 Diffusion in different models of active Brownian motion Eur. Phys. J. Spec.
Top. 157 43–52

[14] Basu U, Majumdar S N, Rosso A and Schehr G 2018 Active Brownian motion in two dimensions Phys. Rev. E
98 062121

[15] Kumar V, Sadekar O and Basu U 2020 Active Brownian motion in two dimensions under stochastic resetting
Phys. Rev. E 102 052129

[16] Romanczuk P and Erdmann U 2010 Collective motion of active Brownian particles in one dimension Eur. Phys.
J. Spec. Top. 187 127–34

[17] Romanczuk P, Bär M, Ebeling W, Lindner B and Schimansky-Geier L 2012 Active Brownian particles-from
individual to collective stochastic dynamics Eur. Phys. J. Spec. Top. 202 1–162

[18] Das S, Gompper G and Winkler R G 2018 Confined active Brownian particles: theoretical description of
propulsion-induced accumulation New J. Phys. 20 015001

[19] Caprini L and Marini Bettolo Marconi U 2019 Active chiral particles under confinement: surface currents and
bulk accumulation phenomena Soft Matter 15 2627–37

[20] Sevilla F J, Arzola A V and Puga Cital E P 2019 Stationary superstatistics distributions of trapped run-and-
tumble particles Phys. Rev. E 99 012145

[21] Jose S, Mandal D, Barma M and Ramola K 2022 Active random walks in one and two dimensions Phys. Rev.
E 105 064103

[22] Jose S 2022 First passage statistics of active random walks on one and two dimensional lattices J. Stat. Mech.
2022 113208

[23] Le Doussal P, Majumdar S N and Schehr G 2019 Noncrossing run-and-tumble particles on a line Phys. Rev. E
100 012113

[24] Peshkov A, Aranson I S, Bertin E, Chaté H and Ginelli F 2012 Nonlinear field equations for aligning self-propelled
rods Phys. Rev. Lett. 109 268701

[25] Wittkowski R, Tiribocchi A, Stenhammar J, Allen R J, Marenduzzo D and Cates M E 2014 Scalar ϕ4 field
theory for active-particle phase separation Nat. Commun. 5 1–9
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