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In this supplementary material we explore the convergence properties of the
range expansion developed in our Letter by studying the effects of the subleading
three-body and four-body interactions V3 and V4 in a small 6 × 6 lattice with
open boundary conditions using exact enumeration techniques.

We use a standard backtrack procedure [1] to generate all the allowed con-
figurations of fully packed dimers on a 6 X 6 square lattice with open boundary
conditions. We find that the system has NC = 6728 configurations. Using this
list of dimer configurations, we generate all possible loop configurations L by
the geometric superposition of any two valid dimer configurations. We compute
the exact partition function Zloop of the loop model by summing over all L with
weight

wloop(g,L) = (g)nd(L)(2g)nl(L) , (1)

where nd(L) is the number of doubled edges and nl(L) the number of non-trivial
loops in the loop configuration L.

We are now in a position to compare the exact results for various observables
with the predictions obtained from the interacting dimer model. Our interest
in doing this is to compare the predictions obtained by truncating the range ex-
pansion at the level of two-body interactions with improved estimates obtained
by keeping three-body and four-body interactions.

As an illustrative example, we consider

Q = 〈[nh(D) − nv(D)]2〉, (2)

where nh(D) and nv(D) are the number of horizontal and vertical dimers in
the dimer configuration D respectively. The angular brackets denote the aver-
age over the dimer ensemble defined by the weight 〈Ψ(g)|D〉. Using our exact
enumeration results for the loop model partition function Zloop = 〈Ψ(g)|Ψ(g)〉,
we compute Q exactly as a function of g for the 6 × 6 lattice mentioned ear-
lier. We compare Q with interacting dimer model predictions obtained for the
same quantity using our exact enumeration of dimer configurations, but keep-
ing only some of the interactions. In this manner, we obtain three different
approximations to Q: QV2

, which is computed using weights that incorporate
only two-body interactions, Q(V2+V3) computed using two-body and three-body
interactions,and Q(V2+V3+V4) computed using two, three and four-body interac-
tions.

For this purpose, we use the expressions for V2 and V3 in the main text and
work out the corresponding results for V4. We find that V4 is zero except in the
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following cases
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and their symmetry related counterparts.
In Fig 1, we display the corresponding results forQV2

, Q(V2+V3), andQ(V2+V3+V4)

on the 6× 6 sample, and compare them to the exact result Q.
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Figure 1: Plot of Q ≡ 〈(nh − nv)
2〉/L2 for a L = 6 open lattice as a function of

g−1, compared with QV2
, Q(V2+V3), and Q(V2+V3+V4).

We find that the result using only V2 overestimates the answer, while adding
the next order term underestimates it. V4 once again gives a larger estimate
of the answer compared to the exact answer. This illustrates the important
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oscillatory nature of the range expansion, namely the fact that V2 and V3 have
opposite effects: The former favours columnar order of dimers, but overestimates
it for not too small g−1. V3 corrects this. This correction is asymptotically exact
for g−1 → 0, but at finite g−1 it leads to a bit of overcorrection. This is rectified
by V4, and so on. For observables which take on a large value in a columnar
ordered phase and are suppressed in a disordered phase, this can in principle
lead to non-monotonic convergence of the range expansion. Q is an example
of such a variable, and the observed non-monotonic convergence to the exact
result is an illustration of this general point.

With this in mind, we turn to our estimate for α obtained in our Letter by
including only two-body interactions. Since the two-body interactions favour
columnar order and the three-body interactions disfavour it, we expect that
V3 will most likely decrease the effective stiffness κ(g) relative to its value in
a system with only two-body interactions present. As a result, we expect that
the inclusion of V3 will result in a corresponding increase in our estimate of
α(g) ≡ 1/κ(g). This will result in an estimate for α(g = 2) that is slightly
greater than the leading order estimate α(g = 2) ≈ 1.22, which we have obtained
in our Letter by including only two-body interactions.

In other words, we expect that inclusion of V3 will actually worsen the agree-
ment with the numerically determined exact value α(2) ≈ 1.20 . . . [2, 3]. More-
over, we expect that including V4 in addition to V2 and V3 will again bring our
estimate closer to the exact value, similar to the non-monotonic convergence
seen in our finite-size example discussed above.
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