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We relate properties of nearest-neighbor resonating valence-bond (NNRVB) wave functions for SUðgÞ
spin systems on two-dimensional bipartite lattices to those of fully packed interacting classical dimer

models on the same lattice. The interaction energy can be expressed as a sum of n-body potentials Vn,

which are recursively determined from the NNRVB wave function on finite subgraphs of the original

lattice. The magnitude of the n-body interaction Vn (n > 1) is of order Oðg�ðn�1ÞÞ for small g�1. The

leading term is a two-body nearest-neighbor interaction V2ðgÞ favoring two parallel dimers on elementary

plaquettes. For SUð2Þ spins, using our calculated value of V2ðg ¼ 2Þ, we find that the long-distance

behavior of the bond-energy correlation function is dominated by an oscillatory term that decays as 1=j~rj�
with � � 1:22. This result is in remarkable quantitative agreement with earlier direct numerical studies of

the corresponding wave function, which give � � 1:20.
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Spin liquid states of low-dimensional insulating mag-
nets, in which the constituent spins fail to develop any kind
of long-range order down to T ¼ 0 in spite of strong
magnetic exchange interactions, are an interesting conse-
quence of competing magnetic interactions in the system.
Simple variational wave functions that show such behavior
have played a very important role in our understanding of
such states of matter [1]—the best-known examples per-
haps being the resonating valence-bond (RVB) wave func-
tions introduced by Anderson and collaborators [2,3].

The simplest of these is the nearest-neighbor RVB
(NNRVB) wave function j�ðgÞi for SUðgÞ spins on a
two-dimensional bipartite lattice. It is written as a uniform
amplitude superposition of all possible product states in
which each A-sublattice spin forms a SUðgÞ singlet state
with one of its B-sublattice neighbors [4]. Although the
g ¼ 2 wave function has been studied on the square lattice
for over 20 years now [3], we owe a detailed understanding
of its properties to much more recent work [5–7]: In
Refs. [5,6], spin- and bond-energy correlations were mea-
sured in the square lattice case using Monte Carlo methods
to establish that this state has an exponentially decaying
spin correlation function, jCSð~rÞj � expð�j~rj=�Þ, but
power-law bond-energy correlation functions at large j~rj:
jCEð ~rÞj � 1=j~rj�, with � � 1:20. While such a short-
ranged spin correlation function is a characteristic property
of spin liquids, the power-law form of the bond-energy
correlation functions strongly suggests that the NNRVB
wave function for SUð2Þ spins on the square lattice de-
scribes a critical state on the verge of a transition to an
ordered phase in which the bond energies order.

Here, we develop a precise nonperturbative mapping
that connects properties of j�ðgÞi on a two-dimensional
bipartite lattice to those of a classical fully packed dimer
model on the same lattice, which has a nontrivial interac-
tion potential V for the dimers in addition to the usual

nonoverlapping constraint. We define a cluster expansion
of V in terms of n-body potentials Vn, which are recur-
sively determined from the NNRVB wave function on
finite subgraphs of the original lattice. V1 reduces to a
constant due to the fully packed nature of the dimer
model, whereas the n-body interaction Vn (n > 1) is of

order Oðg�ðn�1ÞÞ for small g�1 and thus decreases with n.
The rate of decrease is controlled by the smallness of g�1,
which also controls, via this mapping, the exponential
decay of spin correlation functions in j�ðgÞi. The most
important interaction is the two-body interaction V2ðgÞ that
favors two parallel dimers on elementary plaquettes. Using
our calculated value for V2ðg ¼ 2Þ, we find that the long-
distance behavior of the bond-energy correlation function
in j�ðg ¼ 2Þi is dominated by an oscillatory term that
decays as 1=j~rj� with

� � 1:22: (1)

Our estimate above relies on results of earlier work [8–10]
on this interacting dimer model.
This result is in remarkable agreement with recent stud-

ies of the SUð2Þ NNRVB wave function [5,6] and provides
a quantitative understanding of the surprising coexistence
of short-ranged spin correlations and power-law bond-
energy correlations in j�ðg ¼ 2Þi. Our nonperturbative
mapping to an interacting fully packed classical dimer
model provides a theoretical basis for the phenomenologi-
cal height model description used by Tang, Sandvik, and
Henley [6], which was motivated by the connection be-
tween ground states [11] of large-N SUðNÞ antiferromag-
nets and fully packed dimer configurations that admit a
height description [12,13].
The RVB state j�ðgÞi is defined as

j�ðgÞi ¼ X
D

jDig; where jDig ¼
Y
e2D

j�0ðgÞie: (2)
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Here, the summation is over all fully packed dimer con-
figurations D, the product is over all edges e covered by a
dimer in D, and j�0ðgÞie is the SUðgÞ singlet state of the
two spins connected by edge e. j�0ðgÞie can be conven-
iently written in equivalent spin Sg ¼ ðg� 1Þ=2 language

as [14]

j�0ðgÞie¼ 1ffiffiffi
g

p
XSg

m¼�Sg

ð�1ÞðSg�mÞjSzeA¼m;SzeB¼�mi; (3)

where eA (eB) is the A (B) sublattice site of edge e. With
this natural choice of phase convention, it is easily seen
that all individual terms hD0jDig are positive in the ex-

pansion for the norm

h�ðgÞj�ðgÞi ¼ X
D;D0

hD0jDig: (4)

Furthermore, since the geometric overlap of two dimer
configurations D0 and D gives rise to a configuration of
fully packed loops (Fig. 1) in which each site belongs to
exactly one nonintersecting loop, which can either be a
doubled edge (consisting of a single edge traversed in both
directions) or a nontrivial loop (consisting of four or
more distinct edges which are each traversed once),
h�ðgÞj�ðgÞi defines the partition function ZðgÞ of a clas-
sical fully packed loop model with positive weights
wloopðg;LÞ

Z loopðgÞ ¼
X
L

wloopðg;LÞ: (5)

For the case of SUðgÞ spins, one obtains [14,15]
wloopðg;LÞ ¼ ðgÞndðLÞð2gÞnlðLÞ; (6)

where ndðLÞ is the number of doubled edges and nlðLÞ the
number of nontrivial loops in the loop configuration L
(Fig. 1). Expectation values of physical operators in
j�ðgÞi can also be related to probabilities of specific con-
figurations of the loop gas. In the SUð2Þ case, the spin
correlation function CSð ~rÞ ¼ hSð0Þ � Sð ~rÞi is proportional
to the probability that points 0 and ~r both lie on the same
loop, while the connected bond-energy correlation function

CE�ð ~rÞ¼hB�ð0ÞB�ð~rÞi�hB�ð0ÞihB�ð~rÞi, where B�ð ~rÞ ¼
½ ~Sð~rÞ � ~Sð~rþ �̂Þ� (�̂ ¼ x̂, ŷ represent elementary lattice
translations), is given [16] in terms of probabilities that the
four points 0, �̂, ~r, and ~rþ �̂ lie on the same loop or at
most on two different loops.
Since CSð ~rÞ is proportional to the probability of points 0

and ~r being on the same loop, the short-range nature of CS

implies that the g ¼ 2 loop model is in a ‘‘gapped’’ phase
with predominantly short loops. Indeed, sinceZloop defines

a conformally invariant loop model with a power-law
distribution of loop sizes for g ¼ 1 [17], we expect that
this distribution becomes exponential for g > 1. The most
natural scenario then is that the entire g > 1 short-loop
phase of Zloop is controlled (from a renormalization group

standpoint) by the g ¼ 1 fixed point.
It is easy to see that a loop gas with extremely short loops

can still have long-ranged correlations in the position and
orientation of loops. More precisely, at g ¼ 1, all loops are
trivial in that they have length 2, and correspond to doubled
edges. We represent doubled edges by dimers to map such a
loop configuration to a fully packed dimer configuration D
on the same lattice. The weights of all such loop configura-
tions are equal and define the partition function of a fully
packed dimer model. Since all loops are doubled edges in
this limit, CS is nonzero only for nearest-neighbor spins. On
the other hand, CE� maps to the connected dimer-dimer

correlation function in this limit. This is known to have a
power-law decay �1=j~rj2 on two-dimensional bipartite
lattices like the square and honeycomb lattice [18,19].
Thus, at g ¼ 1, we have jCE�j � 1=j~rj2, although all loops
are as short as they can possibly be.
For g <1, Zloop also gets contributions from more

general configurationsL consisting of both doubled edges
and nontrivial loops (with four or more edges). Each non-
trivial loop in such a finite-g configuration L can be
replaced in exactly two ways by a sequence of doubled
edges on alternating edges of this nontrivial loop. Thus, a
general loop configuration L with nl nontrivial loops and

nd doubled edges maps to 2nlðLÞ different loop configura-
tions made up purely of doubled edges, which we represent
by dimers. Each finite-g configuration L of the original

loop model thus maps to 2nlðLÞ dimer configurations D�

(� ¼ 1; 2; . . . ; 2nlðLÞ). Next, we distribute wloopðg;LÞ, the

Dimer in D

Dimer in D’

Doubled edge

....Part of nontrivial loop

....

FIG. 1. hD0jDig can be represented in terms of the loop
configuration L obtained from the overlap loops in the overlap
diagram generated from dimers in D and D0. Each overlap
loop contributes a factor of g to hD0jDig due to the overlap of

the SUðgÞ singlet states that make up jD0ig and jDig. By

convention, all overlap diagrams related by independent inter-
change of black and shaded dimers in each overlap loop are
identified with the same loop configuration L, and thereforeP

D1;D2
hD2jD1ig ¼ P

LðgÞndðLÞð2gÞnlðLÞ.
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original weight ofL, equally among theseD�. As a result,

each of these 2nlðLÞ different configurations D� acquire

an additional weight wðg;LÞ=2nlðLÞ. The total weight
wdimerðg;DÞ of a dimer configuration for g <1 is thus

wdimerðg;DÞ ¼ X
LjD

wloopðg;LÞ
2nlðLÞ ; (7)

where LjD denotes all loop configurations L obtained
from the overlap of D with any other fully packed dimer
configuration D0.

Equivalently, we may define wdimerðg;DÞ via
wdimerðg;DÞ ¼ h�ðgÞjDig: (8)

The original loop partition function Zloop is then equal to

the partition sum over all fully packed dimer configurations
D with weights wdimerðg;DÞ:

Z loop ¼ Zdimer ¼
X
D

wdimerðg;DÞ: (9)

The energy Vðg;DÞ of a dimer configuration D in this
classical interacting fully packed dimer model is defined as

Vðg;DÞ ¼ � log½wdimerðg;DÞ�: (10)

We now define a decomposition of the energy Vðg;DÞ into
a sum of n-body potential energies VnðDnÞ of subconfigu-
rations Dn consisting of n distinct dimers from D,

Vðg;DÞ ¼ X
n

X
Dn2D

VnðDnÞ: (11)

The Vn are determined recursively from computation

of the weight wGn

dimerðg;DnÞ of Dn in the interacting dimer

model on the finite subgraph GnðDnÞ of the square lattice.
Here, this weight is calculated via Eq. (7) from the loop
model defined on GnðDnÞ, and the subgraph GnðDnÞ
consists of the 2n vertices covered by dimers of the sub-
configuration Dn, along with all allowed edges between
these vertices.

In the first step of this recursive construction, we consider

any particular D1 and determine the weight wG1

dimerðg;D1Þ.
The original loop model on G1ðD1Þ has only one
valid configuration, which is a doubled edge on the only
edge of G1ðD1Þ. Using Eq. (7), we therefore have

wG1

dimerðg;D1Þ¼g. The logarithm of this weight defines the

one-body potential

With this in hand, Vn for arbitrary n can be obtained
recursively from the equation

�log½wGn

dimerðg;DnÞ�¼VnðDnÞþ
Xn�1

m¼1

X
Dm2Dn

VmðDmÞ; (13)

where Dm 2 Dn denotes all m-dimer subconfigurations
Dm of Dn, and GmðDmÞ denotes the corresponding sub-
graphs of GnðDnÞ.

For instance, to obtain V2, we consider any particular

D2 and determine wG2

dimerðD2Þ as follows: If G2ðD2Þ does
not form a plaquette of the square lattice, there is only one
valid configuration of the loop model on G2ðD2Þ and

Eq. (7) gives wG2

dimerðD2Þ ¼ g2. On the other hand, when

G2ðD2Þ does form a plaquette of the square lattice,

wG2

dimerðD2Þ gets contributions from two of the three valid

configurations of the loop model on G2ðD2Þ, and Eqn. (7)

gives wG2

dimerðD2Þ ¼ g2 þ g. Knowing wG2

dimerðD2Þ, V2 can

be obtained from the recursion relation Eq. (13) with
n ¼ 2. Clearly, V2 is nonzero only if the two dimers live
on the same plaquette of the square lattice, and in this
nontrivial case we obtain

Similarly, V3 is seen to be zero unless the three dimers
live on a pair of adjacent plaquettes, and in this nontrivial
case we obtain

and the symmetry-related counterparts of Eq. (15) obtained
by using lattice reflection and rotation symmetries.

It is clear that each Vn for n > 1 is of order Oðg�ðn�1ÞÞ
when the n dimers live on a contiguous set of plaquettes of
the square lattice (sharing edges with each other) and zero
otherwise. Our procedure thus expands V in the size of
clusters and is controlled by the smallness of g�1. It may
be viewed as a classical version of the ‘‘Schrieffer-
Wolff’’canonical transformation approach familiar in the
context of strongly interacting electronic systems; in the
usual [20] Schrieffer-Wolff transformation, the effects of
higher-energy states in a larger Hilbert space are encoded
in modifications to the effective Hamiltonian that acts in
the subspace of low-energy states, whereas in our classical
version of this approach, loop model configurations con-
taining nontrivial loops are accounted for by effective
weights wdimerðg;DÞ of dimer configurations D.

To calculate expectation values h�ðgÞjÔj�ðgÞi in dimer

language, we construct a modified estimator �P ÔðDÞ that
correctly encodes the contributions from all loop model
configurations, including those with nontrivial loops

�P ÔðDÞ ¼ 1

wdimerðg;DÞ
X
LjD

wloopðg;LÞP ÔðLÞ
2nlðLÞ ; (16)

where P ÔðLÞ denotes the contribution of L to

h�ðgÞjÔj�ðgÞi in loop-gas language [14,16].
Consider for instance the spin correlation function. To

zeroth order in g�1, the corresponding modified estimator
is nonzero only if 0 and ~r are connected by a dimer in D,
while the Oðg�1Þ correction gives an additional contribu-
tion if 0 and ~r belong to the same flippable plaquette ofD,
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and so on. In the case of the bond-energy correlation
function CE�ð~rÞ, we see that the large j~rj behavior is

dominated by the first Oðg0Þ term, which is obtained by
replacing each B�ð ~rÞ by the dimer occupation number

n�ð ~rÞ of the corresponding edge in the dimer model

CE�
ð ~rÞ � hn�ð0Þn�ð~rÞiV � hn�ð0ÞiVhn�ð ~rÞiV; (17)

where h. . .iV denotes averages computed in the dimer
model with energy V.

As is well-known, such fully packed dimer models (with
or without interactions) admit a microscopic height repre-
sentation [9,10,12,13], which upon coarse graining leads to
a coarse-grained height action that takes the form

S¼ ��
Z

d2rðrhÞ2 þ X
p¼4;8;12...

yp
Z

d2rcosð2�phÞ þ � � � ;

(18)

where the ellipses denote higher gradient terms and higher
powers of gradients consistent with symmetries [12] and
the bare coefficients � and yp are functions of g. The

renormalization group theory for this height action is stan-
dard [12,21]: In the present variables, it tells us that there
is a line of fixed points �� ¼ �, y�p ¼ 0with 0< � � 4. As

long as the bare values of �, yp, and the coefficients of

the omitted higher derivative and nonlinear terms are not
too large, the system flows to an attractive fixed point �ðgÞ
on this fixed line.

As mentioned earlier, the g ! 1 limit maps to a non-
interacting dimer model since all interactions (Vn with
n > 1) vanish and V1 simply represents the fugacity g of
each dimer. Therefore, we expect �ðg ! 1Þ ¼ 1=2 since
this is the known value of the stiffness for a noninteracting
dimer model on the square lattice [12]. As g is reduced from
g ¼ 1, the leading effect is an interaction V2 that favors
flippable plaquettes. The interacting dimer model with only
V2 present has been studied in detail in Refs. [8–10], which
established that the renormalized stiffness � increases
monotonically with the magnitude of V2 until it reaches
� ¼ 4, at which point the system undergoes a Kosterlitz-
Thouless-like transition to a columnar ordered state.

To access the qualitative behavior of correlations in the
NNRVB wave function of SUð2Þ spins, we note that the
magnitude of V2 is precisely equal to the inverse tempera-
ture parameter � of Ref. [9]. Setting g ¼ 2, we therefore
have � ¼ logð1þ g�1Þ � 0:405 [22]. This places us deep
in the high-temperature phase well above the transition to
columnar order, and from Fig. 31 of Ref. [9], we obtain the
estimate �ðg ¼ 2Þ � 0:82. Calculating the required dimer
correlation function from the fixed-point height action with
this value of � using the standard correspondence between
dimer occupation numbers and the height field [12,13], we
obtain the leading, large j~rj form of the bond-energy
correlation functions

CEx
ð ~rÞ � ð�1Þx

j~rj1=�ðgÞ ; CEy
ð ~rÞ � ð�1Þy

j~rj1=�ðgÞ ; (19)

which gives, upon setting g ¼ 2, the leading order estimate
advertised earlier. In addition, both these correlation
functions have a subdominant piece which goes as
ð�1Þxþy=j~rj2 independent of �ðgÞ.
What about subleading (higher order in g�1) corrections

to this leading order result? Note that higher-order correc-
tions arise from two sources—one is the modified estimator
mentioned earlier and the other is the effect of three-body
and higher interaction terms in the interacting dimer model.
It is easy to see that modifications to the estimator will affect
the prefactor but not the leading power-law behavior of the
energy correlators at long distances. On the other hand,
inclusion of three-body and higher interactions will change
the stiffness � of the interacting dimer model and thus the
exponent ��1 of the power-law decay. In the Supplemental
Material [24], we argue that these higher-order effects
come in with alternating signs in the expansion for ��1 as
a function of g�1. This is because the leading two-body
interaction favors columnar order of dimers and drives �
to higher values, whereas the subleading three-body inter-
action disfavors columnar order, leading to a slight reduc-
tion in �, and so on.
We conclude by noting that our approach generalizes in

an obvious way to include singlets between A- and
B-sublattice sites that are further apart on the square lattice,
as well as to the SUðgÞ NNRVB wave function on the
honeycomb lattice. Again, we expect the corresponding
loop models to be in a short-loop phase for all g > 1, and
this allows us to access the properties of these wave func-
tions for g � 2 by a mapping to an interacting dimer
model; on the honeycomb lattice, the leading interaction
terms will favor flippable hexagons, whereas the presence
of longer-range singlets in the square lattice case will
introduce additional interactions. Possible generalizations
to various three-dimensional bipartite lattices are more
intriguing, especially since the NNRVB wave function
for SUð2Þ spins appears to possess long-range antiferro-
magnetic spin order coexisting with power-law bond-
energy correlators in some cases, perhaps necessitating a
different approach for its description [25].
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