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ABSTRACT
We analyze the dynamics of an active tracer particle embedded in a thermal lattice gas. All particles are subject to exclusion up to third
nearest neighbors on the square lattice, which leads to slow dynamics at high densities. For the case with no rotational diffusion of the tracer,
we derive an analytical expression for the resulting drift velocity v of the tracer in terms of non-equilibrium density correlations involving
the tracer particle and its neighbors, which we verify using numerical simulations. We show that the properties of the passive system alone
do not adequately describe even this simple system of a single non-rotating active tracer. For large activity and low density, we develop
an approximation for v. For the case where the tracer undergoes rotational diffusion independent of its neighbors, we relate its diffusion
coefficient to the thermal diffusion coefficient and v. Finally, we study dynamics where the rotation of the tracer is limited by the presence of
neighboring particles. We find that the effect of this rotational locking may be quantitatively described in terms of a reduction in the rotation
rate.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5085769

I. INTRODUCTION

A rich variety of dynamics can occur in assemblies of par-
ticles which display independent persistent motion. Such collec-
tions, referred to as “active materials,” are realized in several natu-
ral contexts such as proteins or motors inside cells,1,2 monolayers
of migrating cells,3,4 bacterial suspensions,5 pedestrians at crowded
events,6 and even traffic jams. At moderate densities, active particles
with simple repulsive interactions can separate into inhomogeneous
regions of liquid and gas, a phenomenon termed Motility-Induced
Phase Separation or MIPS.7–9,46 When confined to even higher den-
sities, active materials can crystallize,10 become jammed,11 undergo
glass transitions,12–14 or even exhibit gelation.15,16 However, since
active particles strongly perturb (and are perturbed by) the motion
of the particles around them, predicting the collective dynamics of
such systems is difficult. In this paper, we address the simpler prob-
lem of a single active particle in a dense environment, in particular,

a system that exhibits glassy dynamics in the absence of activity due
to inherent geometric frustration.

Many physical phenomena may be described by simplified
theoretical models. Specifically, discrete lattice models have been
shown to be useful in understanding equilibrium phase transitions,
as well as non-equilibrium phenomena ranging from the glass tran-
sition17,18 to the dynamics of active matter.19 Lattice-gas models with
different sizes of the excluded-volume region around each particle
have a long history of study.18,20–31 As solid-liquid phase transi-
tions in real fluids are mediated by strong short-ranged repulsive
forces, hard-core exclusion models are useful first approximations,
and indeed, exhibit many of the same features found in simple fluids,
structural glasses, and granular materials.

In this paper, we study a lattice gas of hard cross-shaped parti-
cles on the square lattice. In this model, which is also termed the N3
model, each cross prevents the occupation of its first, second, and
third nearest neighbors;20,22 see Fig 1. It is the simplest lattice gas
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FIG. 1. Sites neighboring the center of a cross-shaped particle (purple) are num-
bered by their proximity to the center of the particle (site 0). Positions up to the third
nearest neighbors are excluded for centers of neighboring particles. Another par-
ticle can only sit at a fourth (green), fifth (blue), or higher-order nearest-neighbor
positions. With rotational locking, fourth-order neighbors prevent rotation. Dynam-
ics are shown for a passive particle (orange) with only the thermal rate RT , and
for the active tracer (red) with the thermal rate RT , active rate RA, and rotation
rate RR; small blue arrowhead at the center of the active tracer denotes its active
direction.

model which displays a first-order phase transition to a crystal with
increasing density, occurring at a melting density of ρm ≈ 0.16.26 Sev-
eral studies have focused on the glassy behavior which results when
the density of the system is quenched past this transition through
random packing.18,28 The supercooled branch is predicted to termi-
nate at ρg ≈ 0.17. The reason for this is that this model has competing
close-packed configurations with opposite chirality and is thus geo-
metrically frustrated. Conflicts between these incompatible ordered
structures in the same region lead to a strong suppression of the
dynamics.24

Here we introduce to this passive N3 model a single active
tracer particle, which in addition to taking thermal steps in each
of the four lattice directions also takes active steps along the direc-
tion in which it is oriented. Additionally, the tracer also performs
rotational diffusion. Although thermal tracer motion has been very
well studied experimentally and theoretically, much less is known
about active or driven tracers. Recent studies have focused on exter-
nally driven tracers,32–34 active tracer motion,35–37 as well as actively
moving particles near the jamming transition.11 Tracer motion in
an embedding fluid is also an important theoretical problem in
non-equilibrium statistical physics.38,39

We introduce activity to the N3 model because that model
exhibits glassy dynamics with increasing density. We, therefore,
expect our results to aid in the understanding of the interplay
between activity and slow dynamics in frustrated systems. Finally,
cross-shaped particles are also interesting since, owing to their
shape, it is possible for a particle to limit the rotation of its neigh-
bors (locking). In this paper, we study the system with and without
such rotational locking and find that it has a significant effect on the
tracer’s dynamics. Rotational locking should have important con-
sequences for collective effects in all-active systems, which we will
study in a subsequent publication.

The paper is organized as follows. In Sec. II, we introduce the
model and describe the simulation details. In Sec. III, we study the
case of an active tracer particle that does not change orientation.
We derive an analytical expression for its resulting steady-state drift
velocity in terms of nonequilibrium density correlations involving
the tracer and the passive particles in its vicinity. Surprisingly, we
find that the properties of the passive system are not enough to

fully describe the single active tracer, even in the low-activity and
low-density limit. However, we do develop a theory in terms of
equilibrium correlators, which is applicable in the low-density yet
strong-activity regime. In Sec. IV, we study the motion of the tracer
with free rotational diffusion, i.e., the active direction stochastically
changes orientation independent of its neighbors. We obtain a the-
oretical result for the self-diffusion of the rotating active tracer in
terms of the self-diffusion of a passive tracer and the drift velocity of
a non-rotating tracer. Finally, in Sec. V, we turn our attention to the
physically relevant but much less-studied case, where particle shape
affects the rotational diffusion of the tracer (rotational locking). We
show that many of the results from Sec. IV are still applicable with
a reduced effective “rotation rate” compared to the rotation attempt
rate. Since few studies have analyzed active or driven systems with
rotational locking, our present study of a single active tracer lays the
ground-work for the investigation of systems with a finite density of
such active particles.

II. MODEL
We study the lattice gas of particles with exclusion up to the

third nearest neighbor on the square lattice. Figure 1 shows the
equivalence of this exclusion to hard-core cross-shaped particles.
Particles attempt to move to each one of their four nearest-neighbor
sites at a fixed “thermal rate” RT . We introduce a single active tracer
particle into the system which is characterized by a self-propulsion
direction (north, south, east, or west), along which it attempts to
move with an “active rate” RA. This active motion of the tracer is
in addition to the thermal moves in all four directions. The active
particle attempts to rotate its active direction by ± π

2 , to either direc-
tion at a rotation rate RR; see Fig. 1. In active systems, the ratio of
active propulsion and thermal motion is usually referred to as the
Péclet number; thus, here we identify it as Pe = RA

RT
. In the absence

of rotational locking, the rotational diffusion is given by the rotation
rate RR. The dynamics of our model are equivalent to those used for
the simple exclusion active lattice gas studied in Ref. 40. However, as
we show below, the slightly extended range of the interactions gives
rise to new and interesting phenomena.

Moves to a new site are accepted if they do not create over-
laps between any two crosses, i.e., exclusion up to third nearest
neighbor. For rotation events, we consider two different versions
of the dynamics. In the first version, rotations are always allowed
whenever they are attempted, while in the second version, crosses
in fourth-order neighboring sites prevent one another from chang-
ing the direction. The rotational-locking case may be interpreted in
the following way: active particles that have a rigid structure must
physically rotate in order for the particle to change the direction.
Rotational locking may also be thought of as a useful approxima-
tion for active particle which are able to exert torques. We find that
analysis of the freely rotating case is helpful in understanding sys-
tems with rotational locking, where the particles can be described as
rotating with a modified rate.

Throughout this paper, we limit ourselves to the range of densi-
ties ρ< ρm ≈ 0.16 that is below the first-order phase transition; hence,
the bath of passive particles always reaches equilibrium and does
not get arrested in glassy states and, moreover, is in a homogeneous
state before the phase separation that occurs at higher densities.
We run dynamical Monte Carlo simulations on a periodic lattice of
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dimension L × L. We typically use L = 100, while for very low densi-
ties below ρ = 0.01 to get reasonable statistics with enough particles
in the lattice, we increased the system size to L = 500. We also
increased system size to verify convergence in situations with high
drift velocity, where the particle could cross the entire periodic lat-
tice without the environment being randomized by thermal moves.
We measure time in units of RT . We first allow the system to relax
for time t = 105, and then we start measuring the drift velocity or
diffusion coefficient, until t = 106.

III. NON-ROTATING ACTIVE TRACER
Here we consider the zero-rotation-rate limit RR = 0. This is

interesting in its own right, but as we will show in Secs. IV and V,
this limit serves as the basis for understanding the case of a rotat-
ing active particle. We will demonstrate that the motion of a rotat-
ing active particle may be described by a decoupling between rota-
tion events and the persistent motion during time intervals between
rotations. Thus, we first need to understand the dynamics without
rotation.

A. Exact theory using non-equilibrium correlators
To study the motion of a non-rotating active tracer, we note

that in order for the particle to move in its active direction, it needs
the five sites denoted a, b, c, d, and e in Fig. 2 to all be vacant. If we
denote the occupancy of each site i by the indicator random variable
ηi = 0, 1, then for a given configuration of the particles on the lattice,
the ability to move in the active direction is given by

W+ = (1 − ηa)(1 − ηb)(1 − ηc)(1 − ηd)(1 − ηe). (1)

This variable may be equal to zero or one, withW+ = 1 meaning that
the particle can move forward and W+ = 0 meaning that it cannot.
To analyze the net flow in the active direction, we consider also the
motion in the opposite direction, which in turn requires vacancy of
all sites ã, b̃, c̃, d̃, and ẽ. The ability to move in the opposite direction
is given by

W− = (1 − ηã)(1 − ηb̃)(1 − ηc̃)(1 − ηd̃)(1 − ηẽ). (2)

Now, the position r∥(t) along the active direction of this non-
rotating active tracer evolves according to the following stochastic

FIG. 2. Active tracer with its active direction denoted by a blue arrowhead. The
sites, which must be vacant along the active direction, are denoted by a, b, c, d,
and e and along the opposite direction by ã, b̃, c̃, d̃, and ẽ.

dynamics:

r∥(t + dt) =
�������������

value : probability:
r∥(t) + 1 p+
r∥(t) − 1 p−
r∥(t) 1 − p+ − p−,

(3)

where p+ = (RT + RA)W+dt and p− = RTW−dt are the probabilities
tomove in the forward and backward directions, respectively, during
an infinitesimal time interval dt. Averaging over Eq. (3), we see that
the average drift velocity of the active tracer is given by

v ≡ d�r∥(t)�
dt = (RA + RT)C+ − RTC−, (4)

where C± = �W±� are the probabilities that the moves in the forward
and backward directions are not blocked by other particles. Note
that these probabilities depend on non-equilibrium correlations that
develop in the close proximity of the active tracer due to its non-
equilibrium motion, and thus, depend not only on density but also
on activity.

We now expand the products in Eqs. (1) and (2). We note that
due to the model’s exclusion, some blocking sites may not be simul-
taneously occupied, for instance sites a and b. Therefore, ηa and ηb
may not be both equal to one; thus, �ηaηb� = 0. By canceling all such
terms that are identically zero, we may write

C+ = �1 − �ηa� − �ηb� − �ηc� − �ηd� − �ηe� + �ηaηc� + �ηaηd�
+ �ηaηe� + �ηbηe� + �ηcηe� − �ηaηcηe��. (5)

Sites a and e are symmetric and also b and d, so this may be further
simplified to the following form:

C+ = �1 − 2�ηa� − 2�ηb� − �ηc� + 2�ηaηc� + 2�ηaηd�
+ �ηaηe� − �ηaηcηe��, (6)

and for the backward direction, we similarly obtain

C− = �1 − 2�ηã� − 2�ηb̃� − �ηc̃� + 2�ηãηc̃� + 2�ηãηd̃�
+ �ηãηẽ� − �ηãηc̃ηẽ��. (7)

We note that Eq. (4) is exact. However, it requires the high-
order non-equilibrium density correlations which appear in Eqs. (6)
and (7). Even without a theoretical framework for analytically cal-
culating these correlations, we may obtain them from numerical
simulations. Figure 3 shows the perfect agreement between the direct
measurement of the drift velocity v in numerical simulations and
the evaluation of Eq. (4) using the correlations of Eqs. (6) and
(7) obtained in the same numerical simulations. Note that these
are non-equilibrium simulations which include the active tracer in
them.

Figure 3, and specifically its inset with normalized velocity vs
normalized activity, shows how the drift velocity exhibits a crossover
from a linear response at low RA to saturation to an asymptotic value
at high RA. We may fit this by the following functional form:

1
v
= 1
µRA

+
1

v∞RT
, (8)
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FIG. 3. The drift velocity of a non-rotating active tracer. Measuring the correlators
of Eqs. (6) and (7) from numerical simulation and plugging them in Eq. (4), lines,
perfectly agrees with direct measurement of the drift velocity in simulation, points.
Numbers next to each line indicate density values. Inset: normalized velocity vs
normalized activity perfectly collapse to a single curve. Colored lines correspond
to different densities as in the main plot. Black line is Eq. (8).

where µ is the mobility and v∞ is the asymptotic velocity. Character-
izing the entire dependence on RA thus boils down to understanding
these two limits. We will now see which parts of the behavior that
we observe here can be obtained using only equilibrium properties
of the passive system. Subsequently we will provide some theoretical
justification for the functional form of Eq. (8).

B. Tracer dynamics for low RA

Before proceeding, we note that if we ignore correlations, we
may obtain for the low-density limit a mean-field approximation.
To this end, we set in Eqs. (6) and (7), �ηi� = ρ, �ηiηj� = ρ2, and�ηiηjηk� = ρ3. Thus, we may write

C+ = C− = CMF = 1 − 5ρ+ 5ρ2 − ρ3, (9)

which yields the following mean-field drift velocity, vMF = RACMF.
As seen in Fig. 3, at low RA, by linear response, the drift velocity

v is linearly proportional to RA, and we may define the mobility as

µ = lim
RA→0

v

RA
. (10)

We first note that the mean-field mobility is equal to µMF = CMF,
which is given in Eq. (9) above.

Now, given Eq. (4), we expand C± to linear order in RA,

C±(ρ,RA) = C0(ρ) + C′±(ρ)RA, (11)

where prime indicates derivative with respect to RA at RA = 0.
Thus,

µ = C0 + RTδC, (12)
where δC ≡ C′+ − C′−. That is, the mobility depends not only on the
equilibrium value C0 but also on the forward-backward asymmetry
encoded in δC. Figure 4 first shows that the Stokes-Einstein relations
hold, namely, the mobility exactly coincides with the self-diffusion
coefficient, DT measured from the long-time mean-squared

FIG. 4. Mobility and its different components vs density. Mobility µ perfectly agrees
with the diffusion coefficient DT . Mean-field result CMF agrees with C0 at low densi-
ties. However, even there, the additional terms in Eq. (12), namely, δC = C′+ −C′−,
are significant.

displacement in a passive system, �∆r2� = 4DTt. Second, the figure
shows that the mean-field mobility CMF [Eq. (9)] describes well the
low-densities behavior of the equilibrium correlator C0. Finally, and
most importantly, Fig. 4 shows how δC causes the actual mobility
data to substantially deviate from C0, which encodes only equilib-
rium properties. We can say that C′+ < 0 since due to the active
motion, with increasing activity neighboring sites in the forward
direction are more likely to be occupied. Similarly C′− > 0 because
in the backward direction, with increasing activity sites are more
likely to be vacant. However, at this point, we do not have even a
low-density approximate theory for C′+ or C′−.

To emphasize the importance of non-equilibrium information
even at low activity and low density, we show in Fig. 5 the extremely
low-density behavior of each of the lines from Fig. 4. As expected,
all exhibit linear dependence on density, with C0 ≈ CMF ≈ 1 − 5ρ,
C+ ≈ −8ρ, and C− ≈ 2ρ. Thus, δC ≈ −10ρ, and µ ≈ 1 − 15ρ.
This numerically demonstrates the huge effect that non-equilibrium
behavior has on the near-equilibrium behavior of the system. The
equilibrium properties of the system are far from being able to
describe the small deviations from equilibrium encoded in the
mobility.

FIG. 5. Low-density behavior of the different components of the mobility. The non-
equilibrium part δC has a lager contribution than the equilibrium part C0.
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C. Tracer dynamics for high RA

At large activity, the drift velocity v of the tracer reaches
a density-dependent asymptotic value v∞, as seen in Fig. 3. For
extremely large RA, once the active tracer can move in its active
direction, it will immediately move. Hence, it spends almost all of
the time waiting for a thermal move to free it and so to enable the
active motion to resume. Here we develop a theoretical description
for this process that will be valid in the low-density limit. At large
RA, we assume that the tracer moves rapidly into a region which has
not been perturbed by its motion. The motion of the tracer involves
instantaneous active flights between obstructions, along with peri-
ods spent waiting for an obstruction to be removed by a thermal
move. We will begin by studying the case of infinite RA and then
discuss how to include finite RA.

We can describe this process as a continuous-time random-
walk with steps of length `i, along which the tracer moves in its
active direction without meeting any passive particles that block its
motion; see Fig. 6. At the end of each such flight, the tracer has to
wait for a time τi before it can begin its next flight. Assuming these
two events are uncorrelated, the asymptotic drift velocity is given
by the ratio between the average distance �`� traveled in each step
and the average waiting time �τ� at the end of each step. Note the
similarity of this approach to that used in Ref. 33.

We first compute the average distance between obstructions�`�, assuming the system around the active tracer to be in equilib-
rium. Therefore, �`� depends only on the equilibrium density ρ. For
low densities, at each new site the active tracer reaches, the prob-
ability that it will be able to continue to one more site is equal to
the equilibrium value C0(ρ), discussed above. So the probability of
encountering an obstruction is 1 − C0(ρ). Treating obstructions as
a Poisson process with density 1 − C0(ρ), the distribution of gaps
between them is given by p(`) = (1 − C0) exp[−(1 − C0)`]. Thus, the
average distance that the active tracer travels until reaching a passive

FIG. 6. Possible encounters of an active tracer (red) with a passive particle
(orange) in the low-density, high-activity limit. The faded red crosses indicate the
preceding position at which the active tracer encountered a passive particle. The
green arrows indicate the moves of the active tracer or of the passive particle that
would lead to unblocking and will enable the active tracer to continue moving along
its active direction.

particle that blocks it is equal to

�`� = 1
1 − C0(ρ) . (13)

Next, we compute the average waiting time �τ� at the end of
each active flight. Once the active tracer meets a passive particle, it
waits for a duration τ until it can continue its flight along its active
direction. Therefore, the active tracer must wait until the passive
particle moves out of its way or alternatively until the active par-
ticle itself moves laterally and the passive particle no longer blocks
its motion along the active direction. For the active particle to be
unblocked, the five sites a, b, c, d, and e in front of it should be vacant
(see Fig. 2). In the low-density limit, we may consider only single-
particle blocking mechanisms. We consider a blocking particle to be
in each one of the five blocking sites, a, b, c, d, or e. Each of these
cases can have different average waiting times; however, symmetry
dictates �τa� = �τe� and �τb� = �τd�. Since these cases all involve sin-
gle particle obstructions, each occurs with an equal probability that
depends only on ρ. Therefore, we can write the average waiting time
for unblocking as

�τ� = 2
5
�τa� + 2

5
�τb� + 1

5
�τc�. (14)

When the active tracer meets a blocking particle at site a, it has
to wait until either the active particle thermally moves downwards,
or the blocking particle thermally moves upwards; see Fig. 6(a). Each
one of these processes occurs at rate RT ; thus, the average time until
one of them occurs is equal to �τa� = 1

2RT
. Note that the parti-

cle at a can also move forward (to the right in the figure). How-
ever, then the active tracer would immediately move forward and
would still be blocked by this passive particle. We do not consider
that as an unblocking event because it merely increases ` by one.
Since ` is much larger than one, this move has a negligible effect
on �`�.

If the blocking particle is at site b, due to the same argument,
we ignore its motion in the forward direction and only consider the
lateral motion. For the active tracer to overcome the blocking by this
particle, these two particles should make two consecutive thermal
moves in the lateral direction—the thermal particle upwards and the
active particle downwards; see Fig. 6(b). Each single move occurs
at rate RT ; thus, the average time until either one moves one step
laterally is 1

2RT
, and the total time until two such lateral moves occur

is equal to �τb� = 1
RT
.

For site c, the first move can be one of four, see Fig. 6(c), and
thus, takes an average time 1

4RT
. It should then be followed by two

more moves, that each has two options, similarly to the sequence of
unblocking after meeting a particle at site b. This eventually leads to�τc� = 1

4RT
+ 2

2RT
= 5

4RT
. Plugging �τa�, �τb�, and �τc� in Eqs. (13)

and (14) leads to the following approximation for the asymptotic
drift velocity:

v∞ = �`��τ� = 20RT
17(1 − C0) . (15)

Figure 7 shows the agreement of this expression with the
numerical results. We emphasize that in the low-activity limit, we
could not obtain a result for the drift velocity purely in terms of
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FIG. 7. Asymptotic, infinite RA drift velocity of non-rotating active tracer. Theory
(lines) describes the low-density behavior of the simulation results (blue dots). In
this low-density range, using the numerically obtained correlation C0(ρ), Eq. (15)
does not differ that much compared to using the mean-field result, Eq. (16) or its
asymptotic behavior, Eq. (17).

properties of the equilibrium system. However, in the high-activity
limit studied here, we can further simplify Eq. (15) by substituting
the mean-field expression CMF from Eq. (9) to get

vMF∞ = 20RT
17(5ρ− 5ρ2 + ρ3) . (16)

In the low-density limit, this may be further approximated to the
following asymptotic form:

vAMF∞ = 4RT
17ρ . (17)

Since the theory developed here, and leading to Eq. (15), was valid
for low densities in the first place, the agreement with numerical sim-
ulations shown in Fig. 7 is only at low densities, where the differences
between the different expressions (15)–(17) are very small.

The theory developed here for the infinite RA limit can also
be extended to finite RA. In that case, a finite amount of time is
required for the motion of the tracer during active flights between
obstructions. In the zero-density limit, between such stops, the active
tracer moves freely at a speed RA; thus, the average time taken for
the tracer to travel the average flight length is equal to �`�RA

. How-
ever, we know from the low-RA analysis in Sec. III B that with
increasing density, the flight velocity is reduced to µ(ρ)RA. Thus,
Eq. (15) is generalized to give the following expression for the drift
velocity:

v = �`�
�`�

µ(ρ)RA
+ �τ� , (18)

which has the functional dependence on RA that we observed
numerically in Fig. 3. See also Eq. (8).

IV. ROTATION WITHOUT LOCKING

A. Zero-density limit
We will begin the derivation with the zero-density limit of a

single isolated tracer and will later introduce the effect of density. In

this limit, a passive tracer moves at rate RT to each one of its four
neighboring sites. Thus, the stochastic evolution of its position may
be written as

x(t + dt) =
�������������

value : probability:
x(t) + 1 RTdt
x(t) − 1 RTdt
x(t) 1 − 2RTdt.

(19)

Squaring and averaging over the stochasticity leads to

�x2(t + dt)� = �x2(t)� + 2RTdt; (20)

thus, �x2(t)� = 2RTt, and by symmetry, �r2(t)� = �x2(t) + y2(t)�
= 4RTt. Thus, the diffusion coefficient of this passive tracer equals
DT ≡ �r2(t)�4t = RT .

For an active tracer that rotates at rate RR without locking, we
divide time into intervals ∆ti between consecutive rotations. During
each time interval, we identify the direction parallel to the current
active direction and the direction perpendicular to that direction.
In the perpendicular direction, the active tracer performs a ran-
dom walk solely due to passive moves; thus, �∆r2⊥(∆t)� = 2RT∆t.
For the parallel direction, in the present zero-density limit, we
employ Eq. (3) with p+ = RT + RA and p− = RT . By averaging, we
get a drift �∆r∥(t)� = RAt. By squaring Eq. (3) and averaging, we
obtain

�r2∥(t + dt)� = �r2∥(t)� + (2RT + RA)dt + 2RA�r∥(t)�dt. (21)

By dividing by dt, substituting the drift expression obtained
above, and integrating over a time interval ∆t between rotations, we
get

�∆r2∥(∆t)� = (2RT + RA)∆t + R2
A∆t2. (22)

We now average over multiple such intervals. Each interval has
different parallel and perpendicular directions and different dura-
tions. Rotation to each one of the two directions occurs at rate RR;
thus, the time intervals between rotations have a Poisson distribu-
tion P(∆t) = 2RR exp(−2RR∆t). We may, therefore, write �∆t� = 1

2RR

and �∆t2� = 1
2R2

R
; thus, �∆t2� = �∆t�RR

. The different time intervals have
their parallel and perpendicular directions randomly in the positive
and negative x and y directions; thus, cross terms vanish and wemay
write

�∆r2� = �∆r2∥� + �∆r2⊥� = (4RT + RA)�∆t� + R2
A�∆t2�

= �4RT + RA +
R2
A

RR
��∆t�, (23)

and we obtain the following expression for the diffusion coefficient:

D0 = �∆r2�4�∆t� = RT +
RA

4
+

R2
A

4RR
, (24)

where subscript 0 indicates the zero-density limit assumed above.
We will discuss the different terms after extending this to finite
densities.

B. Including finite-density effects
For finite density, the attempt rates for motion are given by

RT and RA, but due to the occupation of neighboring sites, not all
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attempts succeed. The long-time behavior of a passive particle is dif-
fusive with the passive diffusion coefficient DT(ρ) discussed above
(see Fig. 4). Thus, we assume that our active tracer has probabilities
DT(ρ) per unit time to perform thermal moves to each one of its four
nearest neighbors. Similarly, during an interval between rotations,
the active moves yield the drift velocity v(ρ, RA) discussed above
(see Fig. 3), and we hence assume that the tracer has an additional
probability v(ρ, RA) per unit time to move in its active direction.
Under this assumption that ignores temporal correlations in the suc-
cess probabilities of attemptedmoves, wemay replaceRT in the zero-
density derivation [Eq. (24) above] by DT(ρ), and RA by v(ρ, RA),
leading to

D = DT(ρ) + v(ρ,RA)
4

+
v2(ρ,RA)

4RR
. (25)

We assumed that the passive and active motions are uncor-
related random processes; thus, the total diffusion coefficient we
obtained is equal to the diffusion coefficient in the passive case, plus
the diffusion coefficient resulting from the active process. The last
term is similar to what we would get for an active Brownian parti-
cle.14 However, the second term, which is linear in the drift velocity
is a result of the discrete nature of the motion on the lattice.41 One
way to understand this term is to consider the fast rotation limit,
RR � RA. In that limit, each time an active move is attempted, the
active direction has been completely randomized, and the added rate
RA may be thought to be uniformly distributed between the rates
of moving in all four directions; thus, the tracer undergoes passive
motion with an effective thermal rate RT + RA

4 .
Note that in the derivation of Eq. (25), we assumed that the

active tracer moves at velocity v(ρ, RA) between rotations. In prac-
tice, this velocity is obtained only after some time, and this deriva-
tion should be valid only for low enough rotation rate. To test this,
we show in Fig. 8 D − DT vs v for multiple ρ and RA values, where
each color corresponds to a different value of RR, as indicated in
the legend. The figure shows nice data collapse and agreement with
Eq. (25) even at high RR.

FIG. 8. Active part of the diffusion coefficient of an active tracer that rotates without
rotational locking, plotted vs the drift velocity, as obtained from simulations without
rotation. For each RA and RR values, we present results for densities ranging
between ρ= 0.01 and ρ= 0.13. The solid lines represent v

4 + v2

4RR
, as predicted by

Eq. (25).

V. ROTATIONAL LOCKING
When rotational locking is included, with increasing den-

sity not all rotation attempts succeed; thus, the rotational diffu-
sion coefficient, or the actual rotation rate QR, is slower than the
rotation attempt rate RR, and the diffusion coefficient is smaller,
in agreement with Eq. (25). We now show how this argument
may yield also a quantitative prediction. Namely, we measure the
actual rotation rate QR in simulations with rotational locking and
assume that we may generalize Eq. (25) to include QR, instead
of RR

D = DT(ρ) + v(ρ,RA)
4

+
v2(ρ,RA)

4QR
, (26)

where with lockingQR < RR, while without lockingQR = RR. Figure 9
shows that when plotted vsQR, results with and without locking per-
fectly agree. We could obtain numerical results only for densities
ρ ≤ 0.13 since at higher densities, the dynamics are extremely slow,
both due to the low drift velocity and due to rotational locking,
which dramatically slows down the eventual rotation rate. Nonethe-
less, we expect that even as the density increases, Eq. (26) should
describe the long-time diffusive behavior.

To complete the description of the rotational-locking case, we
now study the dependence of the rotation acceptance probability
PR = QR/RR on ρ, RA, and RR. In order for a rotation attempt
to succeed, all fourth-order neighbors of the active tracer should
be vacant. Using the notations of Fig. 2, we can formally write
this as

PR = �(1 − ηa)(1 − ηb)(1 − ηd)(1 − ηe)
×(1 − ηã)(1 − ηb̃)(1 − ηd̃)(1 − ηẽ)�. (27)

We now expand this product, and similarly to the process lead-
ing to Eq. (5), we note that not all fourth-order neighbors
may be occupied simultaneously. Assuming mean-field occupa-
tions, this leads to the following approximation for the rotation
probability:

PMF
R = 1 − 8ρ+ 20ρ2 − 16ρ3 + 2ρ4. (28)

FIG. 9. Agreement with Eq. (26) of data from simulations with (solid symbols)
and without (open symbols) rotational locking. Data collapses to the identity line,
while all three parameters, ρ, RT , and RR were varied for an arbitrary choice
of RT = 1.
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FIG. 10. Rotation acceptance rate PR = QR/RR vs density ρ for the passive case
(RA = 0) agrees with mean field theory (28) at low density. PR decreases with
increasing activity (RA > 0). Continuous lines correspond to the high RR limit
(RR = 100), and dashed lines correspond to the low RR limit (RR = 0.01).

Figure 10 shows that in the passive case (RA = 0), at low densities the
numerically obtained rotation probability PR agrees with this mean-
field approximation.

Following the arguments of Sec. III C above, with increasing
activity, the active tracer spends more of its time in denser regions,
waiting for passive particles to move out of its way. During that time,
its rotation probability is decreased. In Fig. 10, we indeed see how PR
decreases with increasing activity. In Fig. 11, we show the RR depen-
dence of PR. Specifically we see independence on RR at both low-
and high-RR limits. This may be understood as follows: At low RR,
there is a very long time between rotation attempts, and the tracer’s
environment gets randomized so that consecutive rotation events
are independent; thus, decreasing RR even more does not change
the success rate. Similarly, for large RR rotation attempts occur so
rapidly that the particle hardly moves between them; thus, increas-
ing RR further does not change PR. Note that at intermediate RR, we
may observe amodest dip in PR (see, for example, ρ= 0.01, RA = 10 in
Fig. 11). It would be interesting to get a better, quantitative under-
standing of the dependence of PR on ρ, RA, and RR. However, we
defer that to future publications.

FIG. 11. Rotation acceptance rate PR = QR/RR increases with increasing RR but
saturates both at low RR and at high RR.

VI. DISCUSSION

We consider the lattice-gas model with exclusion up to third-
order neighbors on the square lattice. Due to this exclusion, the
particles in this model are equivalent to hard, cross-shaped pen-
tamers. This model has an equilibrium first-order phase transition
with coexistence between fluid at density ρm ≈ 0.16 and crystal
at density ρx ≈ 0.19 and exhibits a glass transition at ρg ≈ 0.17.
We added activity to this model by assigning an active direc-
tion of self-propulsion to the particles. With time, this direction
may undergo rotational diffusion. The cross shape of the particles
enabled us to naturally introduce a locking mechanism that pre-
vents rotation due to the presence of neighboring particles. Our
ultimate goal is to use this model to study the interplay between
the activity and jamming. This will advance the understanding of
the cooperative phenomena that govern closely-packed activematter
systems.

In this paper, we focused on the case of a single active tracer in
a bath of thermal particles. At long times, this tracer undergoes dif-
fusive motion, and for the case without rotational locking, we could
write its self-diffusion coefficient in terms of (i) the diffusion coef-
ficient DT(ρ) of a passive particle, (ii) the drift velocity v(RA, ρ) of
a non-rotating active tracer, and (iii) the rotation rate RR. Remark-
ably, when rotational locking is introduced, it merely reduces the
rate of successful rotations, and when the rate QR at which rota-
tions occur is used, instead of the rate RR of rotation attempts, our
theoretical prediction perfectly matches the results of our numerical
simulations.

Interestingly, we showed that the properties of the passive sys-
tem are not enough to fully describe the drift velocity of a non-
rotating active tracer, not even in the low-activity and low-density
limit. Here, we expect the system to be close to equilibrium, yet we
could not describe the dynamics of the tracer using only knowledge
of the equilibrium properties of the system. Thus, even in the low-
density limit where equilibrium correlations vanish, the mean-field
approximation does not work. It is interesting to note that a similar
phenomenon has recently been studied in the context of bulk diffu-
sion in lattice-gas models.42–45 Nonetheless, we developed a theory
in terms of equilibrium correlators, which applies for low density
and strong activity.

There are several interesting directions to explore. We can add
a small but finite density of active tracers to the thermal lattice gas,
in which case interactions between the active particles, mediated
through the bath, can show interesting effects. Our study can also
serve as the basis for the investigation of this model when all the
particles are active. For such an all-active system, we also expect to
be able to understand the long-time diffusive behavior of a rotating
particle in terms of its drift velocity during intervals between rota-
tions. And we expect to be able to describe the effect of rotational
locking as reducing the rotation rate.

Finally, we note that in this paper we focused on a lattice gas
model, for which we can reach a very detailed theoretical under-
standing of the physical phenomena. We expect much of the insight
we gained in this model to also be applicable to more general con-
tinuous systems. Specifically, it would be interesting to consider in
other systems the separation between active drift velocity and rota-
tional diffusion, as well as the effects of rotational locking with
increasing density.
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