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We analyze the low temperature properties of a system of classical Heisenberg spins on a hexagonal lattice
with Kitaev couplings. For a lattice of 2N sites with periodic boundary conditions, the ground states form an
�N+1� dimensional manifold. We show that the ensemble of ground states is equivalent to that of a solid-on-
solid model with continuously variable heights and nearest neighbor interactions, at a finite temperature. For
temperature T tending to zero, all ground states have equal weight, and there is no order by disorder in this
model. We argue that the bond-energy bond-energy correlations at distance R decay as 1

R2 at zero temperature.
This is verified by Monte Carlo simulations. We also discuss the relation to the quantum spin-S Kitaev model
for large S, and obtain lower and upper bounds on the ground-state energy of the quantum model.
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I. INTRODUCTION

There has been a lot of interest in the Kitaev model in
recent years. The quantum-mechanical spin-1/2 Kitaev
model is exactly solved in two dimensions. The Hamiltonian
can be diagonalized exactly in terms of Majorana fermions
�1�. The model exhibits a phase transition from a phase with
finite correlation length to one with long-range correlations
as the ratios of coupling constants in different directions are
varied �2,3�. It has topological excitations, and their robust-
ness with respect to noise makes it an interesting candidate
for quantum computing �4�.

In a recent very interesting paper, Baskaran et al. studied
a generalization of this model with spin S at each site and
identified mutually commuting Z2 variables that are con-
stants of motion for arbitrary S �5�. For large S, the spins can
be approximated as classical O�3� vector spins. Baskaran et
al. showed that the classical ground state of the model has a
large degeneracy. They argued that though a naive averaging
over these ground-state configurations would suggest that the
system is disordered at zero temperature, for large S, the
quantum fluctuations of spins have lower energy for a subset
of the classical ground states. These states get more weight
in the quantum-mechanical ground state, and the quantum
model shows long-range order in the ground state, an ex-
ample of quantum order-by-disorder.

The finite-temperature fluctuations in the classical model
behave qualitatively like the zero-point fluctuations in the
quantum model, and it is interesting to ask if temperature
fluctuations can induce order-by-disorder in the classical
Heisenberg spins with Kitaev couplings, just as the quantum
fluctuations are expected to, in the large-S quantum model
studied by Baskaran et al. In this paper, we point out that
there is a qualitative difference between the classical and
quantum mechanisms of order-by-disorder. For the classical
Kitaev model, the contribution of nearby states to the re-

stricted partition function in the limit of very small tempera-
ture, with states summed only over the neighborhood of a
given classical ground state, is exactly the same for almost
all ground states. For the ensemble of ground states, we es-
tablish an exact equivalence to a solid-on-solid model with
nearest neighbor coupling at a finite temperature. We argue
that bond-energy bond-energy correlations decay as R−2 with
distance R at zero temperature. Our Monte Carlo simulations
also support this conclusion. We derive upper and lower
bounds on the ground-state energy of the quantum spin-S
model. We also study the ground-state energy of the quantum
system using variational wave functions, avoiding the diver-
gences present in the spin-wave expansion.

Kitaev’s pioneering work has led to a large amount of
further research. The spectrum of the different phases of this
model has been extensively studied �6�. Proposals for experi-
mentally realizing this model using polar molecules and ul-
tracold atoms trapped in optical lattices have recently been
made �7,8�. Alternate methods of solving this model using
Jordan-Wigner transformations have been proposed �2,9�,
while perturbative studies have also proved fruitful �10,11�.
The Kitaev model has also been studied on other two dimen-
sional lattices �12–17�. Exact solutions have been obtained
for the Kitaev model on certain three dimensional lattices
�18,19�. There is also a fair amount of earlier work on order-
by-disorder in classical systems �20,21�. It has been studied a
lot in the context of magnetic systems with frustration, such
as spin systems with nearest neighbor antiferromagnetic in-
teractions on different lattices �22,23�.

II. DEFINITION OF THE MODEL

We consider classical Heisenberg spins on a hexagonal
lattice. We consider a finite lattice, with periodic boundary
conditions. There are L hexagons in each row, and M rows of
hexagons �L and M both assumed even�. The total number of
hexagons is N=LM, and the number of sites is 2N. The
bonds of the lattice are divided into three classes, X ,Y and Z,
according to their orientation �Fig. 1�. The hexagonal lattice
consists of two sublattices denoted by A and B. We label
sites in the A sublattice by a�l ,m� and the corresponding B
sublattice site connected to it via a Z bond by b�l ,m�. We
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define three bond vectors ex, ey, and ez as the vectors from
any A site to its three neighbors via the X ,Y, and Z bonds,
respectively �Fig. 1�. Thus we have a�l ,m�+ex=b�l ,m−1�,
a�l ,m�+ey =b�l+1,m−1�, and a�l ,m�+ez=b�l ,m�. We de-
fine the hexagonal plaquette �l ,m� to be the hexagon whose
topmost point is a�l ,m�. A bond will be specified by the
�l ,m� coordinate of its A-lattice end point and its class X, Y,
or Z. For instance, �a�l ,m� ;x���l ,m ;x� is an X bond with
a�l ,m� at one of its ends. The periodic boundary conditions
are implemented by making a�l ,m�=a�l+L ,m�=a�l− M

2 ,m
+M�.

At each lattice site i there is a three dimensional vector

spin S� i= �Si
x ,Si

y ,Si
z� of unit magnitude. Thus Si

x2
+Si

y2
+Si

z2
=1

at every site. The Hamiltonian of the system is given by

H = − J �
a�A

�Sa
xSa+ex

x + Sa
ySa+ey

y + Sa
zSa+ez

z � . �1�

As the hexagonal lattice is bipartite, for classical spins, with-
out loss of generality we take J�0. The Hamiltonian does
not have rotational symmetry in the spin space, but it has a
local symmetry: for any bond �l ,m ;��, the Hamiltonian is
invariant under the transformation Sa�l,m�

� →−Sa�l,m�
� ,Sa�l,m�+e�

�

→−Sa�l,m�+e�

� .

III. FINITE-TEMPERATURE PARTITION FUNCTION

The partition function of the system at finite temperature
Z��� is given by

Z��� =� �
s
	dSs

�

4�

exp�− �H� �2�

where �−1=T. The index s runs over all sites of the lattice.
The integral over each B-site is of the form Wl,m

=�dS�b�l,m� exp�−�S�b�l,m� ·F� � where F� =Sa�l,m+1�î+Sa�l−1,m+1� ĵ

+Sa�l,m�k̂. This can in turn be evaluated as

Wl,m =
1

2
�

−1

1

d�cos ��exp�

− � cos ��Sa�l,m+1�
x 2 + Sa�l−1,m+1�

y 2 + Sa�l,m�
z 2� , �3�

where � is the angle between the vector S�b�l,m� and F� . This
immediately yields

Wl,m =
sinh���Sa�l,m+1�

x 2 + Sa�l−1,m+1�
y 2 + Sa�l,m�

z 2�

��Sa�l,m+1�
x 2 + Sa�l−1,m+1�

y 2 + Sa�l,m�
z 2

. �4�

Now

Z��� =� �
�l,m�

dS�a�l,m�

4�
�
�l,m�

Wl,m. �5�

We thus obtain the effective Hamiltonian for the spins on the
A-sublattice alone as

Hef f��S�a�,��

= −
1

�
�
�l,m�

F����Sa�l,m+1�
x 2 + Sa�l−1,m+1�

y 2 + Sa�l,m�
z 2�� ,

�6�

where

F�x� = log sinh�x�
x

� . �7�

For a given configuration of spins �S��, to each bond
�l ,m ;�� of the lattice, we assign a vector ��l ,m ;��e��, with
��l ,m ;�� given by

��l,m;�� = �Sa�l,m�
� �2 −

1

3
. �8�

We define the discrete divergence of the �-field on the A, and
B sublattices as

� · � � �
�

��a�l,m�;�� at site a�l,m� , �9�

� · � � �
�

��b�l,m� − e�;�� at site b�l,m� . �10�

Clearly, the divergence of the field � at any site on the
A-sublattice is 0. In addition, for ground-state configurations
�the proof of this assertion is given the next section�, even
for bonds meeting at any site, b�B, we have

�
�

��b�l,m� − e�;�� = 0, for all sites b � B . �11�

For non-ground-state configurations, the sum of � variables
at each B-site is no longer unity. We parametrize this devia-
tion using the new variable Q defined by

Qb�l,m� = − �
�

��b�l,m� − e�;�� . �12�

We can think of these variables Qb�l,m� as charges which are
placed on the sites of the B-sublattice; there are no charges

êz
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FIG. 1. �Color online� A hexagonal lattice depicting the labeling
scheme for sites, and the x, y, and z bond classes. Sites in the A- and
B-sublattices are denoted by filled and open circles respectively.
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on the A sites. We define Qa�l,m�=0, for all sites a�l ,m�.
Given the values of these charges, we can construct the cor-
responding electrostatic potential field � defined at all sites s
of the lattice such that

�2��s� = − Qs; for all sites s . �13�

Here �2 is the discrete Laplacian on the lattice. These equa-
tions can be solved explicitly, and determine the potential
��s� completely, up to an overall additive constant, so long
as the total charge in the system is zero. Explicitly, we have

��s� = �
s�

G�s,s��Qs�, �14�

where G�s ,s�� is the lattice Green’s function. Then, as
�2��s�=−Qs=−� ·��s�, we see that �+�� has no divergence
and can be expressed in terms of the curl of a new field f . We
define the scalar field f�l ,m�� f l,m attached to the hexagons
of the lattice �as shown in Fig. 2� such that the difference in
the f field between two neighboring plaquettes is equal to the
value of �+�� along the shared bond. This satisfies the
divergence-free condition for the field �+��. Let s be any
site on the A-sublattice. Its neighbors are sites s+ex ,s+ey ,s
+ez. Let the three hexagons to which s belongs be h1 ,h2 and
h3 �Fig. 2�. If the site s�a�l ,m�, then h1 will have coordi-
nates �l−1,m+1�, and similarly for other hexagons. Then,
for all sites s, the f-field is defined by

��s,x� = ��s� − ��s + ex� + f�h1� − f�h2� ,

��s,y� = ��s� − ��s + ey� + f�h2� − f�h3� ,

��s,z� = ��s� − ��s + ez� + f�h3� − f�h1� . �15�

Given the fields ��s ,�� and ��s�, we assign any fixed value
to f�l ,m� at one particular hexagon, then the value of the
f-field at neighboring hexagons is completely determined.
Thus for a given configuration of �S��, we can determine the
f-fields at all hexagons up to an overall additive constant.

We will use the values of �Qs� and �f�l ,m��, instead of
�S�2

� to specify the spin-configurations. The number of vari-

ables Ss
�2

are 3N in number, with N constraints between

them, thus there are 2N independent real variables. As the
variables Qs satisfy the constraint �sQs=0, there are N−1
independent parameters Qs. Also, there are only �N−1� inde-
pendent parameters f�l ,m�, as these are defined only up to an
overall additive constant. We need two additional linearly
independent variables to complete our new set of coordi-
nates. We choose these to be R1=�l��l ,m ;z�+��b�l ,m��
−��a�l ,m�� and R2=�m��l ,m ;y�+��b�l+1,m−1��
−��a�l ,m��, which lead to

f�l + L,m� = f�l,m� + R1,

f	l −
M

2
,m + M
 = f�l,m� + R2. �16�

Assuming that the �-field, obtained in Eq. �14� is periodic on
the torus, with ��a�l ,m��=��a�l+L ,m��=��a�l−M /2,m
+M��, R1 is independent of m �and R2 of l�, and these cor-
respond to fixing the boundary conditions for the f�l ,m�.

The condition 2 /3���s ,���−1 /3 at each bond implies
constraints on the allowed range of f�l ,m� and Q�l ,m�. Now,
given the values of the Q, f , and � fields, one can system-
atically reconstruct the � field �and thus the spin configura-
tion�. The value of � at any bond in the bulk can be evaluated
from the f’s at the neighboring plaquettes and the � at the
end of the bond as shown in Eq. �15�. The �’s at the edges of
the lattice are determined by the values of f at the plaquettes
next to the edge, which can be obtained from R1 �or R2�
using Eq. �16�. Thus, in the allowed range, the transforma-
tion from �Q , f ,R� to �S�2

� is invertible. We can now express
the partition function in terms of these new variables.

First, we analyze the phase space factors in the partition
function as we change variables from �S�� to �f ,Q�. The phase
space integral for each A-site spin is

� dS =� dSxdSydSz	�Sx2
+ Sy2

+ Sz2
− 1� . �17�

We change our integration variables from Ss
x to �Ss

x�2. We
have dSs

x=d�Ss
x�2 / �2��Ss

x�2� and similarly for the y and z
components. The f’s and Q’s are linear functions of the
�Ss

��2’s ��=x ,y ,z�, hence the Jacobian matrix of transforma-
tion for this change of variables is a 2N
2N constant ma-
trix. Also, the determinant is nonzero as the transformation is
invertible. The partition function at finite temperature, up to
an unimportant constant, is thus given by

Z��� = �Const.�� dR1dR2��
l,m
� dfl,m� dQb�l,m��


 �
bonds

	1

3
+ ��bond�
−1/2�exp�

l,m
F��1 + Qb�l,m��� ,

�18�

where, �bonds denotes the product over all bonds �l ,m ;�� of
the lattice, with the � variables defined in Eq. �8�, and F�x� is
defined by Eq. �7�.

h(s
,z

)
ε

s+e

s+e

s+e

s

h

h

2

31

yx

z

ε(s,
x) (s,y)

ε

FIG. 2. Figure depicting the definition of the � and h variables
on the bonds and plaquettes around an A-site s.
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IV. CHARACTERIZATION OF THE GROUND-STATE
MANIFOLD

Baskaran et al. defined Cartesian states as states where
each spin is aligned in the direction along a Cartesian axis �x,
y, or z� �5�. We can construct a Cartesian ground state of H,
by constructing a dimer covering of the hexagonal lattice.
Spins at the ends of a dimer of type � ��=X , Y, or Z�, are
aligned parallel to each other in the direction � �either both
having S�=+1, both having S�=−1�. This state has an energy
−NJ. Then corresponding to a dimer covering, there are 2N

Cartesian ground states. The number of dimer coverings of
the hexagonal lattice increases as 1.38N �24�, hence the num-
ber of Cartesian ground states increases as 2.76N. Baskaran
et al. also showed that for any two Cartesian states, there is a
one-parameter family of ground states that connects them,
thus forming a network of ground states.

However, they did not provide a proof that no states of
lower energy can be formed, or study other possible ground
states. In this section we characterize the entire set of ground
states of this model.

In the large � limit, F�x� can be replaced by x. Therefore
the ground state energy E0 of the system is given by

E0 = − J Max�
�l,m�

�1 + Q�l,m�� . �19�

As �x is a convex function of x, for all real positive xi, i
=1 to N, we have

− �
i

�xi � N	−��i
xi

N

 . �20�

With equality holding only when all the xi are equal. Using
this inequality in Eq. �19�, we get

Emin��S�a�� � − JN . �21�

This result can also be arrived at by noting that F���x� is a
convex function for all � ,x�0. As the equality sign in Eq.
�19� holds only when all the terms within the square root are
equal, the necessary and sufficient condition for the ground-
state configuration is

Qb = 0, for all sites b � B . �22�

Since the Q-field, and hence also the �-field are exactly zero
everywhere in the ground states, the manifold is described
only by the f-field. Correspondingly, the Eqs. �15� simplify
to

��s,x� = f�h1� − f�h2� ,

��s,y� = f�h2� − f�h3� ,

��s,z� = f�h3� − f�h1� . �23�

The set of states forms an N+1 dimensional manifold, pa-
rametrized by the variables �f�, with the boundary conditions
on these given by R1 and R2. It is a convex set whose ex-
tremal points correspond to the Cartesian states studied by
Baskaran et al.

We define the restricted partition functions for a fixed
�f�l ,m�� by integrating over the Q’s

Z��f �l,m��,�� = �
�l,m�

� dQb�l,m��exp�− �Hef f��f ,Q��� .

�24�

For large �, the integrand in Eq. �24� is sharply peaked at
Qs=0. We can use the method of steepest descent to find the
value of this integral �integrating over the N−1 Q variables�.
We expand Hef f in a power series in Q’s

Hef f = E0 + �
s

Qs
2 + ¯ . �25�

The linear term in Q in the function Hef f vanishes since the
�sQs=0. While the range of the Qs integrals depend on
�f l,m�, for large �, when the width of the peak is much
smaller than the range of integration, and the peak is away
from the end points of the range, each integration to leading
order is independent of �f l,m� and gives a factor C�−1/2 where
C is a constant. The restricted partition function Z��f� ,�� in
the limit of very small temperature to leading order in �, is
�−�N−1�/2Z0��f��. Where Z0��f�� is given by

Z0��f�� = lim
�→�

��N−1�/2Z��f�,��

= Const. �
bonds

1

3
+ ��bond��−1/2� . �26�

Thus for all fixed �f�l ,m��, the integration over fluctuations
in �Q� produces the same temperature dependent weight fac-
tor, in the limit of large �. For evaluating averages in the
limit of low temperatures, we can ignore the Q-degrees of
freedom, and set them equal to zero. Now, the zero-
temperature partition function, i.e., the partition function in
the limit �→� defined as

Z0 = lim
�→�

��N−1�/2Z���

= � dR1dR2��
�l,m�

� df�l,m��Z0��f�� �27�

can be expressed as

Z0 = � dR1dR2��
�l,m�

� df�l,m��exp− �
�i,j�

V�f i − f j�� ,

�28�

where

V�x� =
1

2
log	1

3
+ x
, for − 1/3  x  + 2/3;

= + �, otherwise. �29�

and the sum over �i , j� denotes the summation over all near-
est neighbor hexagons i and j.

V. EQUIVALENCE TO THE SOLID-ON-SOLID MODEL

We note that Z0 may be interpreted as the partition func-
tion of a solid-on-solid �SOS� model, with a real height vari-
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able f l,m located at sites �l ,m� of a triangular lattice and
interacting via an effective Hamiltonian HSOS. This Hamil-
tonian depends on the temperature T of the spin model. At a
finite temperature HSOS is determined by integrating over the
Q variables in the restricted partition in Eq. �24�. HSOS�T
�0� has some weak long range couplings. However at T
=0 the Q field is identically zero, which leads to a purely
nearest neighbor, but nonquadratic coupling between the
height variables given by

HSOS�T = 0� = − �
�l,m�

�V�f l,m−1 − f l−1,m� + V�f l,m − f l,m−1�

+ V�f l−1,m − f l,m�� . �30�

We note that the Hamiltonian has a term log� 1
3 +��bond��,

which diverges when ��bond� tends to −1 /3. Thus the Car-
tesian states of Baskaran et al. have a large relative weight,
which has a divergent density. However, this divergence is an
integrable divergence, and the actual measure of the Carte-
sian states in the ensemble of states at zero temperature is
zero.

The gauge symmetry of the model has a consequence that
all correlation functions of the type �Ss1

� Ss2
� � with sites s1 and

s2 not nearest neighbors are zero �27�. The simplest non-
trivial correlation functions, for non-neighbor s1 and s2 are of
the type ��Ss1

� �2�Ss2
� �2�. The convergence of the high-

temperature expansion of the partition function implies that
these correlations fall exponentially with distance, at small
�. As there is no phase transition as �→�, we expect this
behavior for all 0��� as well, with the correlation length
increasing as a function of �.

We now argue that, at zero temperature, this correlation
function decays as R−2 for large separations R. The SOS
model has the symmetry that changing all heights by the
same constant leaves the Hamiltonian unchanged. Though
the interaction is a strongly nonlinear function of fb�l,m�+e�

− fb�l,m�+e��
, one expects that in the high-temperature phase of

the SOS model, the long-wavelength hydrodynamical modes
in the system will still be soundlike, with effective Hamil-
tonian ��f �2, which gives rise to the spectrum given by �2

�k2. For two sites s1 and s2 separated by a large distance R

��fs1
− fs2

�2� � log R . �31�

This implies that

��fs1
· �fs2

� �
1

R2 . �32�

Since the energy density variables �Ss
��2 are proportional to

�f �at zero temperature�, we conclude that the connected part
of the bond-energy bond-energy correlation function

��Ss1

� �2�Ss2

� �2�c �
1

R2 . �33�

At infinite temperature, the spins at different sites are com-
pletely uncorrelated. This is not true for the f variables,
which have nontrivial correlations even for �=0. In the Ap-
pendix we calculate the leading behavior of ��fR− f0�2� at
large R for �=0. We have, at infinite temperature

��fR − f0�2��=0 =
2�3

45�
log�R� + O�1� for large R .

�34�

VI. MONTE-CARLO SIMULATIONS

In this section we present results from Monte Carlo stud-
ies of this model for the zero temperature as well as for
nonzero temperatures. We simulated the effective Hamil-
tonian Hef f �Eq. �6��, obtained by integrating out spins on the
B-sublattice. For the finite temperature simulations, two
kinds of moves were employed—single spin moves and clus-
ter moves.

We discuss single spin moves first. In any given state, we
choose a site, a�l ,m�. We generate a Gaussian random vector
r�= �rx ,ry ,rz�, whose variance is proportional to the tempera-
ture T. The proposed single spin move is then to change the
spin at site a�l ,m� from S�a�l,m� to S�a�l,m�, given by

S�a�l,m�� =
S�a�l,m� + r�s

�S�a�l,m� + r�s�
. �35�

If the change in the effective Hamiltonian by the move is
�H, the move is accepted with probability Min�1,e−��H�.
Clearly, this satisfies the detailed balance condition.

While these single spin moves, in principle, are sufficient
for correctly sampling the entire phase space, we also em-
ployed hexagon update moves to speed up the simulations at
low temperatures. Given any configuration, we randomly
choose a hexagon on the honeycomb lattice. To obtain the
new configuration of spins we move along this hexagon, al-
ternately adding and subtracting a quantity, �, to the bond
energies, and then computing the spin components which
give rise to these bond energies. In Fig. 3, suppose the top-
most A-site is s1, then �1= �Ss1

x �2− 1
3 and �2= �Ss1

y �2− 1
3 . Now

�1 is changed to �1+� and �2 to �2−�. This then fixes the
new Ss1

x and Ss1

y �up to a randomly chosen sign�, leaving Ss1

z

unchanged. Clearly, this leaves the sum of squares of the spin
components unchanged. This change is also made to the four
other bonds on the hexagon �Fig. 3�. The value of � is cho-
sen uniformly in the interval �−a ,a�, where a is a parameter.
The proposed move is rejected if any of the bond-energies
fall outside the interval �− 1

3 , 2
3 �. Since the sum of bond-

energies at each site �A and B� remains constant, these hexa-

6ε

1

3

45

ε6

1 ε2

5 4ε

3 +∆

−∆

−∆

ε

+∆

εε

ε

εε

ε

ε
2

−∆

+∆

FIG. 3. The hexagon update move in the Monte Carlo simula-
tions. The �’s depict the bond-energy variables associated with each
A-site �depicted by filled circles�. A random number uniformly dis-
tributed between −a and +a is alternately added to and subtracted
from the bond energies on the hexagon. The move is rejected if any
of the bond energies fall outside the interval �− 1

3 , 2
3 �.
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gon update moves leave the value of the effective Hamil-
tonian unchanged. These moves therefore play a crucial role
in efficiently sampling the configurations close to the ground
states at very low temperatures. We take the ratio of the
phase space factors of the two states and accept or reject the
proposed configuration according to the Metropolis rule.
Clearly, this also satisfies the detailed balance condition. For
the zero-temperature simulations only the hexagonal updates
were used.

Monte Carlo simulation data presented in this section has
been computed for L
L triangular lattices of A-sublattice
spins of various sizes, with L ranging from 30 to 256. 6

106 Monte Carlo updates were made per site of which the
first 6
105 were not used in computing the correlation func-
tions. Correlation functions were calculated after every six
updates per site.

We calculated the correlation function C�r��
= �Sa�l,m�

z 2Sa�l�,m��
z 2�- 1

9 for various lattice sizes and tempera-
tures. Here r� is the vector from site a�l ,m� to a�l� ,m��. We
find that this correlation decays quite fast, and at finite tem-
peratures, is very small except for a few points around the
origin. At zero temperature, C�r�� is oscillatory along the
�1,0� direction �and is periodically negative�. We observe a
clear 1

R2 behavior along the êz direction, as plotted in Fig. 4.
We looked for a signal of possible order in the ground-

state ensemble of the type proposed by Baskaran, et al. One
way of determining if there is any periodic order in the sys-
tem is to study the structure factor which we define as the
Fourier transform of C�r��

S�k�� =
1

�LM
�

�l�,m��
	�Sa�l,m�

z 2Sa�l�,m��
z 2� −

1

9

exp�ik� · r�� ,

�36�

where the summation is over all sites a�l� ,m�� for a fixed
a�l ,m� with r� as defined earlier. The structure factor
S�k�� would have a delta function peak at k� = � 2�

3 ,− 2�
3 � and

k� = �− 2�
3 , 2�

3 �, if there was an ordering of the type suggested
in �5�. On calculating the structure factor for various �k1 ,k2�

at zero temperature, we find that S�k��, apart from some fluc-
tuation all through, has two clearly visible peaks at wave
vectors � 2�

3 ,− 2�
3 � and �− 2�

3 , 2�
3 �, see Fig. 5. However, the

height of these peaks is only about three times the average
value, and they do not become sharper with system size.
Thus, we find no evidence of even incipient long-range order
�hexaticlike, with power-law decay of the two-point correla-
tion function� in the system at T=0.

We also computed correlations of the f and � fields at
various temperatures. At the end of each Monte Carlo step
the � field was generated from the spin configuration by
solving the discrete Poisson equation on the triangular lattice
�Eq. �A4��. This was done by inverting the Poisson equation
in Fourier space as shown in Eq. �A5�. The Fourier trans-
forms were calculated using the fast Fourier transform code
provided in �26�. The spin configuration and the � field was
then used to generate the f-field using Eq. �15�. In Fig. 6,
we have plotted the zero-temperature correlation function
��f l,m− f l�,m��

2����f�0�− f�r��2� versus log r where r is the

10-6

10-5

10-4

10-3

10-2

10-1

1 10

C
(r

)

r

FIG. 4. �Color online� Plot of the zero-temperature correlation

function C�r��= �SA
x2

�0�SA
x2

�r���− 1
9 versus distance, r along the êx di-

rection. These correlations follow a power law behavior with expo-
nent �−2. The line has a slope of −2.

FIG. 5. �Color online� Plot of �S�k���, the sA
z2

structure factor,

defined as S�k��= 1
�LM

�r���sA
z2

�0�sA
z2

�r���− 1
9 �exp�ik� ·r��, where the r�

summation extends over all lattice sites. Two prominent peaks are
visible at � −2�

3 , 2�
3 � and � 2�

3 , −2�
3 �. However, these peaks do not di-

verge with system size in our simulations.
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FIG. 6. �Color online� Graph of the zero-temperature correlation
function ��f�0�− f�r��2� versus distance, r, for different lattice sizes
L, showing a log�r� dependence in accordance with the mapping to
a height model at a finite temperature.
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distance between the two sites. We see that this correlation
function increases logarithmically with distance. Note that a
logarithmic dependence of this function implies a 1 /r2 de-
pendence of the bond-energy bond-energy correlation func-
tion �Eq. �33��. Figure 7 shows the correlation function
��f�0�− f�r��2� at various values of �. These correlations vary
as log r at all temperatures with the coefficient varying be-
tween �2.45�0.05�
10−2� 2�3

45� at �=0 and �4.12�0.05�

10−2 at �=�.

VII. LARGE-S QUANTUM KITAEV MODEL

In this section we would like to discuss the ground-state
energy of the quantum spin-S Kitaev model using a varia-
tional approach, which does not suffer from divergences. We
obtain upper and lower bounds on the ground-state energy.
Our quantum-mechanical Hamiltonian is normalized by the
size of the spins. So

H = −
J

S�S + 1� �
a�A

�Sa
xSa+ex

x + Sa
ySa+ey

y + Sa
zSa+ez

z � .

Using the operator inequality AB�−�A2+B2� /2, where A
and B are any commuting Hermitian operators, it is easily
seen that H satisfies the lower bound

Eground � − JN . �37�

A better bound may be proved as follows. We write H as

H =
1

S�S + 1� �
�l,m�

Hb�l,m�, �38�

where Hb�l,m� is a four-site spin Hamiltonian containing only
the couplings of the site b�l ,m� on the B-sublattice and its
neighbors

Hb�l,m� = − J�Ŝa�l,m+1�
x Ŝb�l,m�

x + Ŝa�l−1,m+1�
y Ŝb�l,m�

y + Ŝa�l,m�
z Ŝb�l,m�

z � .

�39�

The operators Hb�l,m� can be diagonalized in a Hilbert space
of four-spins, i.e., a �2S+1�4 dimensional Hilbert space. We

note that Ŝa�l,m+1�
x , Ŝa�l−1,m+1�

y , Ŝa�l,m�
z are operators that belong

to different sites, they commute among each other and with
Hb�l,m�. Hence we can move to a basis in which these are
diagonal. We now work in the subspace in which the basis

vectors are eigenvectors of Ŝa�l,m+1�
x , Ŝa�l−1,m+1�

y and Ŝa�l,m�
z

with eigenvalues sa�l,m+1�
x ,sa�l−1,m+1�

y ,sa�l,m�
z , respectively. Thus

the eigenvalues � of Hb�l,m� satisfy the relation

�2  �JS�2��sa�l,m+1�
x �2+ �sa�l−1,m+1�

y �2 + �sa�l,m�
z �2� . �40�

This is true for all eigenvalues sa�l,m+1�
x , sa�l−1,m+1�

y , sa�l,m�
z and

hence is valid as an operator inequality

Hb�l,m�
2 �41�

�JS�2��Ŝa�l,m+1�
x �2 + �Ŝa�l−1,m+1�

y �2 + �Ŝa�l,m�
z �2� . �42�

Therefore, for any wave function ��� of all the 2N spins on
the lattice we have

���Hb�l,m�
2 ���  �JS�2���Ŝa�l,m+1�

x �2� + ��Ŝa�l−1,m+1�
y �2�

+ ��Ŝa�l,m�
z �2�� , �43�

where ��Ŝa�l,m+1�
x �2�= ����Ŝa�l,m+1�

x �2��� and so on. Using the
fact that ���Hb�l,m����2 ���Hb�l,m�

2 ��� and taking the square
root we get

���Hb�l,m����

� − JS���Ŝa�l,m+1�
x �2� + ��Ŝa�l−1,m+1�

y �2� + ��Ŝa�l,m�
z �2� .

�44�

This immediately gives

���H���

� �
�l,m�

− JS���Ŝa�l,m+1�
x �2� + ��Ŝa�l−1,m+1�

y �2� + ��Ŝa�l,m�
z �2� ,

�45�

where the sum is over all the sites of the B-sublattice. Note
that the terms in each of the squareroots are all real numbers.

Using Eq. �20� in Eq. �45� and observing that for any site

on the A-sublattice �Ŝa�l,m�
x �2+ �Ŝa�l,m�

y �2+ �Ŝa�l,m�
z �2=S�S+1�

we get

���H��� � − JN� S

S + 1
. �46�

For large S,

EG

JN
� −

1

2
+

1

4S
+ O	 1

S2
 �47�

is a lower bound, which shows an increase in the ground-
state energy due to quantum fluctuations.

We now describe a variational upper bound for the
ground-state energy of the quantum model. We take a trial
wave function which is a direct product of two-site pair wave
functions,

0
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FIG. 7. �Color online� Graph showing the finite temperature
correlation function ��f�0�− f�r��2� versus distance, r for various
values of �=T−1. The correlations are logarithmic at all tempera-
tures, with the coefficient of log�r� varying between �2.45�0.05�

10−2� 2�3

45� at �=0 and �4.12�0.05�
10−2 at �=�.
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��� = ��l,m���a�l,m�b�l,m�� . �48�

Each of these two wave functions ��a�l,m�b�l,m�� is the ground-
state wave function of the two site Hamiltonian H2 given by

H2��� = − ���Sa�l,m�
x + Sb�l,m�

x � + Sa�l,m�
z Sb�l,m�

z � . �49�

Using � as the variational parameter we calculate the result-
ing ground-state energy of the full Hamiltonian.

Let �x���= �Sa�l,m�
x �H2

, and ezz���= �Sa�l,m�
z Sb�l,m�

z �H2
, where

� �H2
denotes average under the ground state of H2 �Eq.

�49��. Let E��� be the minimum eigenvalue of H2. Then,
clearly for the wave function ���, we have

���H��� = − NJ�ezz��� + �x���2� . �50�

It is straightforward to determine the minimum eigenvalue
E2��� by numerical diagonalization of the corresponding
�2S+1�2
 �2S+1�2 dimensional matrix for different values
of �. We can then also determine ���� and ezz��� numerically
from the corresponding eigenvector. The resulting upper
bound on the ground-state energy per site Evar

G was deter-
mined for different values of S by minimizing over �. Figure
8 shows a plot of �Evar

G +0.5� versus 1
S . We see that the energy

excess over the classical ground-state energy varies as 1 /S
for large S,

EG

JN
 Evar

G = −
1

2
+ 0.374

1

S
+ O	 1

S2
 . �51�

The value of the coefficient of the 1 /S correction term ob-
tained by us �0.374� should be compared with the estimate
0.289 by Baskaran, et al. �5� using the quadratic approxima-
tion. The latter underestimates the true answer, as the modes
that have frequency zero in the quadratic approximation
would actually have a finite contribution. In our calculation,
these corrections are not ignored. Also, the variational esti-
mate can be improved with better choice of trial wave func-
tion ���, say, in terms of six-site clusters.

The ground-state manifold of the classical problem has
several soft modes. This suggests that one can find local
ground states such that forming a product state with these as
a basis yields a good approximation to the ground state of the
full system. Then forming a linear superposition of such
states locally, and forming products, lifts the degeneracy par-

tially and gives a better variational ground state. We perform
such a calculation as follows.

The sites of the hexagonal lattice can be divided into dis-
joint hexagons. Thus the full Kitaev model Hamiltonian con-
sists of interaction terms between sites within the same hexa-
gon, and between different hexagons. We write H
=�hexHhex+�intHint, where the second sum is over the inter-
connecting bonds. Now some of the interconnecting bonds
are of X type, some Y type and some Z type. We can redefine
the directions x, y, and z at each site so that all the intercon-
necting bonds are of Z type. Then the couplings between
sites within a hexagon are alternating X and Y type, and the
Hamiltonian Hhex for a single hexagon, with sites labeled
1,2,…,6 is of the form

Hhex = −
J

S�S + 1�
�S1

xS2
x + S2

yS3
y + S3

xS4
x + S4

yS5
y + S5

xS6
x + S6

yS1
y� .

�52�

For the classical Hamiltonian Hhex, a state in which all spins
are aligned in the same direction � in the xy− plane are
classical ground states. The quantum state corresponding to
this state denoted by �������� may be written as a product
of single-site coherent states at the six sites

�������� = ���1 � ���2 � ���3 � ���4 � ���5 � ���6,

�53�

where ��� j represents the wave function of the spin at site j,
polarized in the direction � in the x-y plane, and can be
written as

��� j = 	1

2

S

e�e��Ŝj
−��S� j , �54�

where S−�Sx− �Sy is the angular momentum lowering opera-
tor at the site j, and �S� j is the state with Sj

z=S.
Since states for different � are classically degenerate, a

better quantum-mechanical trial state is a linear superposi-
tion of these states

��1� =
1

2�
�

0

2�

d�e−�6S��������� . �55�

The full wave function is a direct product of wave functions
for different hexagons. The matrix elements of the spin op-
erators are easy to calculate �28�. In this state, the expecta-
tion value of Hint vanishes. Therefore if A is the minimum
eigenvalue of Hhex, we have

EG 
1

6

��1�Hhex��1�
��1��1�

. �56�

The expectation value of Hhex is easily seen to be

��1�Hhex��1�
��1��1�

= − 3J1 −
11

12S
+ ¯� , �57�

which is a bit better than the variational bound for energy
−3J S

S+1 , using the state ��������.
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VIII. DISCUSSION

We have shown that the Kitaev model with classical spins
shows no order-by-disorder, while there are plausible argu-
ments that the quantum model does. This is because the
mechanism of order-by-disorder in classical and quantum
models is somewhat different.

Consider a classical model, whose ground states form an
M-dimensional manifold. Let G be one of the ground states.
We expand the energy in the coordinates orthogonal to the
manifold, and look for small perturbations about the ground
state. Keeping terms in the deviations from the ground state
to quadratic order, and going into the normal mode coordi-
nates, we get a quadratic approximation to the Hamiltonian
in the transverse coordinates as

	H = �
j
 1

2mj�G�
pj

2 + mj�G�� j�G�2qj
2� , �58�

where the sum over j extends over the n transverse degrees
of freedom. Then, the corresponding quantum-mechanical
partition function in the quadratic approximation is

Zquad � �
j

e−��j/2

1 − e−��j
. �59�

For low temperatures, the G having the minimum value of
the effective quantum-mechanical free energy is obtained by
minimizing the “zero-point energy” fq�G�=� j

1
2�� j. How-

ever, the classical partition function corresponds to the case
�� j �1, and at low temperature T is easily seen to be pro-
portional to Tn /�� j�G�. Thus the relative weights of differ-
ent points G on the manifold are determined by an effective
free energy fcl�G� proportional to � jlog � j. Clearly fq and fcl
are quite different, and states which are favored by one need
not be favored by the second. In particular, fcl depends more
sensitively on the low frequency modes.

If some of the � j’s are zero, in this approximation, the
classical partition function diverges, but the quantum weight
has no singularity. This problem of zero modes also occurs in
the calculation of �5�. In fact the zero frequency eigenvalue
has a large degeneracy.

More generally, finite � corrections in a quantum-
mechanical system correspond to a finite temperature classi-
cal model but in one higher dimension, and can be qualita-
tively different. A simple example of this is a system of
masses coupled by nearest neighbor springs in one dimen-
sion. In the classical case, the variance of displacements of
masses at distance R varies as TR for large R, and small T,
but this quantity grows only as log R, both in the quantum
case at zero temperature, and the classical case in two dimen-
sions.

In the path-integral formulation, the large-S quantum Ki-
taev model becomes a set of classical spins on a 2+1 dimen-
sional lattice, with Kitaev couplings in two spatial directions,
and ferromagnetic couplings in the time/inverse-temperature
direction. It is quite plausible that in this three-dimensional
model, there is long-range order for low “effective tempera-
ture,” but in the two-dimensional classical Kitaev model, the
destablizing effect of fluctuations is too strong.

There are several interesting classical two-dimensional
systems, where thermal order-by-disorder is expected. The
prototypical example is the system of Heisenberg spins on a
kagome lattice, with nearest neighbor antiferromagnetic cou-
plings. The expectation of order-by-disorder in this classical
system comes from theoretical and Monte Carlo studies, that
suggest that at low temperatures, the spins lie on a single
plane as T→0 �29,30�. This model can also be related to the
height model at its critical point, within the quadratic ap-
proximation, suggesting that a single long-range ordered
state �the �3
�3 state� is selected over the coplanar ones
�31,32�. It would be interesting to identify the main reason
for the difference in the behaviors in these models and the
case studied here.

We have mapped the finite and zero-temperature problem
of classical spins onto a height-model interacting via an ef-
fective Hamiltonian HSOS. This effective Hamiltonian de-
pends on the temperature of the spin model. We have shown
that the correlations of the height variables vary as log r,
where r is the distance between the sites, for all temperatures
of the spin model. The discrete height model with a pinning
potential in 2D undergoes a roughening transition from a
phase in which it is ordered to one with logarithmic correla-
tions between the height variables �33�. In the rough phase
�T�TR� of the height model, the coefficient of log r gives us
a measure of the temperature �34,35�. So we see that the
range of temperature �0,�� of the spin model maps onto a
range of temperature of the height model which is in the
rough phase. Note that as the temperature of the Kitaev
Hamiltonian is decreased, ��f�0�− f�r��2� in the SOS model
increases. The increased fluctuations in f are accompanied by
a decrease in fluctuations of the � field, and the fluctuations
of the spins �S�� decrease with temperature, as expected.
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APPENDIX

In this appendix we calculate the asymptotic behavior of
the f-f correlation functions at infinite temperature. There are
two independent degrees of freedom at each A-site. We can
choose these to be ��l ,m ;z� and ��l ,m ;y�. Then ��l ,m ;x� is
clearly −��l ,m ;z�−��l ,m ;y�. At infinite temperature

���l,m;z���l�,m�;z�� =
4

45
	l,l�	m,m�,

���l,m;y���l�,m�;z�� =
− 2

45
	l,l�	m,m�. �A1�

For a field ��l ,m� on the lattice, we define the Fourier and
inverse Fourier transforms as follows:
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��k�� =
1

�LM
�

r�
exp�ik� · r����r�� ,

��r�� =
1

�LM
�

k�
exp�− ik� · r����k�� . �A2�

The vector r� denotes the point �l ,m� in real space and k�

��k1 ,k2� denotes the point � u
2�L , v

2�M � in Fourier space, with
k� ·r�= ul

2�L + vm
2�M . The charge Qb�l,m� at each B-sublattice site is

given by

Qb�l,m� = − ��l,m;z� − ��l − 1,m + 1;y� + ��l,m + 1;z�

+ ��l,m + 1;y� . �A3�

The discrete Poisson equation that determines the poten-
tial fields � is

�a�l,m� + �a�l − 1,m + 1� + �a�l,m + 1� − 3�b�l,m�,

= − Qb�l,m�

�b�l,m� + �a�l + 1,m − 1� + �a�l,m − 1� − 3�a�l,m�,

= 0 �A4�

where �a�l ,m����a�l ,m�� and �b�l ,m����a�l ,m�+ez�.
Equation �A4� can be inverted in Fourier space as

�a�k��

�b�k��
� =

− 1

9 − h�k��h��k��
3 h�k��

h��k�� 3
� 0

− Qb�k��
� ,

�A5�

where h�k��=1+exp�i�k2−k1��+exp�ik2�. Now, the difference
in the f variables along the z axis is given by

f�l + R,m + 1� − f�l,m + 1�

� fR − f0 = �
r=1

R

��l + r,m;z� + �
r=1

R

��b�l + r,m�

− �a�l + r,m�� . �A6�

We can write this in terms of the Fourier components as
follows �taking �l ,m�= �0,0��:

�fR − f0� =
1

LM
�
r=1

R

�
k�

��k���k� ;z� + �k���k� ;y��exp�− ik1r� ,

where �k� = 1 +
h�k�� − 3

9 − h�k��h��k��
�1 − exp�− ik2�� ,

and �k� =
h�k�� − 3

9 − h�k��h��k��
�exp�ik1� − 1��exp�− ik2�� .

�A7�

Summing over r first and using Eq. �A1�

��fR − f0�2��=0 =
1

LM
�

k�
�1 − exp�− ik1�R + 1��

1 − exp�− ik1�
�2


 ����k���k� ;z� + �k���k� ;y��2�� . �A8�

The term within the square brackets can be shown to be
equal to 6

45�
1−cos k1

3−cos k1−cos k2−cos�k1−k2� �. Thus the correlation func-
tion simplifies to

��fR − f0�2��=0 =
6

45

1

LM
�

k�

1 − cos�k1�R + 1��
3 − cos k1 − cos k2 − cos�k1 − k2�

.

�A9�

We note that the factors of 1−cos k1 cancel out in the
expression. In the limit L ,M→� this summation becomes
an integral giving

��fR − f0�2��=0 =
6

45
G�0,R� , �A10�

where G�0,R� is the lattice Green’s function on the triangu-
lar lattice between the points �0,0� and �0,R� which is equal
to 1

��3
log�R� at large R �25�. Thus we have

��fR − f0�2��=0 =
2�3

45�
log�R� + O�1� for large R.
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