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Amorphous solids exhibit an excess of low-frequency vibrational modes beyond the Debye predic-
tion, contributing to their anomalous mechanical and thermal properties. Although a ω4 power-law
scaling is often proposed for the distribution of these modes, the precise exponent remains a subject
of debate. In this study, we demonstrate that boundary-condition-induced instabilities play a key
role in this variability. We identify two distinct types of elastic branches that differ in the nature of
their energy landscape: Fictitious branches, where shear minima cannot be reached through elastic
deformation alone and require plastic instabilities, and True branches, where elastic deformation
can access these minima. Configurations on Fictitious branches show a vibrational density of states
(VDoS) scaling as D(ω) ∼ ω3, while those on True elastic branches under simple and pure shear
deformations exhibit a scaling of D(ω) ∼ ω5.5. Ensemble averaging over both types of branches
results in a VDoS scaling of D(ω) ∼ ω4. Additionally, solids relaxed to their shear minima, with
no residual shear stress, display a steeper scaling of D(ω) ∼ ω6.5 in both two and three dimensions.
We propose two limiting behaviors for amorphous solids: if the system size is increased without
addressing instabilities, the low-frequency VDoS scales with an exponent close to 3. Conversely, by
removing residual shear stress before considering large system sizes, the VDoS scales as D(ω) ∼ ω6.5.

Introduction

Low-frequency vibrations in solids influence various
mechanical and thermal properties, including their low-
temperature specific heat and thermal conductivity [1–
4]. In crystalline structures, vibrational modes (phonons)
follow a low-frequency vibrational density of states
(VDoS) described by the Debye model as D(ω) ∼ ωd−1 in
d dimensions, which explains the observed specific heat
and thermal conductivity in crystals [5, 6]. Conversely,
amorphous solids exhibit anomalous mechanical and
thermal properties compared to their crystalline counter-
parts, attributed to an excess of low-frequency modes be-
yond the Debye prediction [3, 7–15]. The intrinsic struc-
tural disorder in these solids gives rise to low-frequency
modes localized in space, termed quasi-localized excita-
tions (QLEs), which coexist with phonons. The displace-
ments of particles in QLEs decay as 1/rd−1 in d dimen-
sions, where r represents the distance from the core of
the vibration [16, 17]. Recent numerical studies consis-
tently identify a D(ω) ∼ ω4 scaling behavior in various
models of amorphous solids [17–24]. This quartic law
has been observed in simulated glasses across different
dimensions [25], as well as in glasses obtained through dif-
ferent annealing protocols [26]. Several mean-field argu-
ments [27, 28] and phenomenological studies [29, 30] sup-
port the quartic scaling D(ω) ∼ ω4 for the distribution
of low-frequency QLEs in disordered solids. However,
effective medium theories, such as the “Fluctuating Elas-
ticity Theory”, propose deviations from the D(ω) ∼ ω4

law [31–33]. While various aspects of the quartic law have
been tested in simulations of amorphous solids, several
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studies have also observed deviations from this behavior.
Poor annealing and small system sizes have been shown
to yield power-law exponents less than 4 [34–36]. Recent
studies have reported exponents of 3 and 3.5 in the low-
frequency regime for two and three dimensions, respec-
tively [37–39]. Additionally, confined three-dimensional
thin films exhibit a low-frequency vibrational density of
states following D(ω) ∼ ω3 [40].

Numerical studies of amorphous solids often employ
periodic simulation boxes to investigate bulk behaviors.
While this approach is useful, it introduces residual shear
stresses that can lead to solid arrangements that are un-
stable under boundary deformations [41, 42]. Although
the influence of boundary conditions has been studied
for various properties of amorphous solids, their effect
on the low-frequency vibrational spectrum remains rela-
tively underexplored. Recently, it has been shown that
periodic solids strained to their simple shear minima,
where they are inherently stable to simple shear defor-
mation, exhibit D(ω) ∼ ω5 in their low-frequency VDoS
in both two and three-dimensional systems [43]. Ad-
ditionally, solids prepared under open boundary condi-
tions, which allow relaxation in all degrees of freedom
and stability under all perturbations, contain fewer low-
frequency quasi-localized modes compared to those with
periodic boundary conditions [44]. This is reflected in
the vibrational spectrum, where D(ω) ∼ ω4 changes to
D(ω) ∼ ωδ with δ = 5 in two dimensions and δ = 4.5 in
three dimensions. Notably, modes localized near the sur-
faces of these solids tend to be softer, leading to a reduc-
tion in the scaling exponent for the VDoS. A recent study
revealed distinct scaling behaviors in the distribution of
low-frequency modes between solid configurations that
are stable under boundary deformation and those that
are unstable [45]. Specifically, configurations unstable to
deformation exhibit a power-law scaling of D(ω) ∼ ω3.3,
independent of dimensionality. In contrast, stable con-
figurations show a dimension-dependent scaling, with
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FIG. 1: (a) Schematic diagram illustrating the behavior of
amorphous solids generated using standard simulation pro-
tocols with periodic boundary conditions. These boundary
conditions often lead to solids residing on Fictitious elas-
tic branches (blue), where shear minima are inaccessible
through elastic deformation alone and undergo irreversible
plastic events while straining towards the minima. Solids on
the True elastic branch (red) can access shear minima via
elastic deformations alone. Configurations at shear minima
with zero residual shear stress are shown as open circles. Pan-
els (b) and (c) display the energy as a function of strain in the
cyclic AQS protocol for a typical configuration in two dimen-
sions with a system size N = 1024 residing on the True and
Fictitious elastic branch under simple shear deformations, re-
spectively. The inset in (c) illustrates the nature of the plastic
event when transitioning from the Fictitious to the True elas-
tic branch.

D(ω) ∼ ω5.5 in two dimensions and D(ω) ∼ ω6.5 in three
dimensions. The stability of these configurations against
boundary deformations is indicated by a positive value
of the lowest eigenvalue of the ‘Extended Hessian’ (EH)
matrix, which accounts for contributions of boundary de-
grees of freedom [42].

In this study, we investigate the influence of shear
instabilities on the vibrational spectrum of amorphous
solids. The main contribution of this study is the identifi-
cation of two distinct elastic branches - True (T ) and Fic-
titious (F ) that arise due to the effect of boundary condi-
tions and differ in the nature of their energy landscapes.
These branches significantly influence vibrational sta-
bility. Configurations generated under periodic bound-
ary conditions often reside on Fictitious elastic branches,
where shear minima cannot be accessed through elastic
deformation alone. Instead, plastic instabilities are nec-

Simple shear Pure shear Ensemble Classification VDoS Power-Law

Fictitious Fictitious SF + PF ω3

Fictitious Either SF ω3.5

Either Fictitious PF ω3.5

True Fictitious ST + PF ω4.5

Fictitious True SF + PT ω4.5

True Either ST ω5

Either True PT ω5

True True ST + PT ω5.5

Minima Either Smin ω5

Either Minima Pmin ω5

Minima Minima Smin + Pmin ω6.5

TABLE I: Power-law exponents for different ensembles of
amorphous solids. Solids classified as SF are on the Ficti-
tious (F ) elastic branch under simple (S) shear deformations,
where shear minima cannot be reached through elastic de-
formation alone and require a plastic event to transition to
a lower-energy elastic branch. Similarly, solids on the Ficti-
tious elastic branch under pure (P) shear deformations are
classified as PF . Solids on the True (T) elastic branch, where
shear minima can be reached via elastic deformation, are clas-
sified as ST and PT for simple and pure shear deformations,
respectively. Smin and Pmin denote solids at their simple
and pure shear minima, respectively, exhibiting zero residual
shear stresses.

essary to transition the system to a lower-energy elastic
branch (see Fig. 1 (a)). By applying zero-temperature
simple and pure shear deformations, we identify these
states and observe that their low-frequency VDoS fol-
lows a power-law distribution, D(ω) ∼ ωδ, with δ ≈ 3. In
contrast, configurations on True elastic branches, where
shear minima are accessible through elastic deformation,
exhibit a lower propensity for quasi-localized excitations.
These vibrationally stable solids display a low-frequency
VDoS scaling as D(ω) ∼ ω5.5. When considering all con-
figurations together, the ensemble-averaged distribution
conforms to D(ω) ∼ ω4. Importantly, solids on True
elastic branches may undergo plastic instabilities when
deformed away from their shear minima, potentially ap-
pearing unstable in an EH analysis. Conversely, solids
that appear stable with an EH analysis can still reside on
Fictitious branches, as EH identifies configurations prone
to plastic instability only within a limited range of defor-
mations. A steeper power-law behavior, D(ω) ∼ ω6.5, is
observed for solids that are both EH-stable and reside on
True elastic branches. Additionally, solids fully relaxed
to their shear minima, with no residual shear stress, sta-
ble under all deformations, and residing on True elas-
tic branches are characterized by the same scaling be-
haviour. Interestingly, while the fraction of solids unsta-
ble to boundary deformations within the EH framework
decreases with system size, the prevalence of Fictitious
branch states increases. This leads to two limiting sce-
narios for the low-frequency VDoS: If system size is in-
creased without addressing instabilities, the VDoS will
scale as D(ω) ∼ ω3. Conversely, by removing residual
shear stress before increasing system size, we expect the
VDoS to scale as D(ω) ∼ ω6.5 across both two and three
dimensions.
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(a) (b) (c)

FIG. 2: Low-frequency vibrational density of states (VDoS) for two-dimensional, amorphous solids with system size N =
1024, categorized by elastic branch type under simple and pure shear deformations. (a) VDoS for solids under simple shear
deformation. Configurations classified as SF are on Fictitious elastic branches and exhibit D(ω) ∼ ω3.5, indicating a high
density of low-frequency modes. In contrast, configurations on the True elastic branch (ST ) show a more stable D(ω) ∼ ω5

behavior at their initial state (γxy = 0), with non-zero residual shear stresses (inset). When combining ST and SF solids,
the resulting VDoS exhibits a scaling behavior of D(ω) ∼ ω4. (b) VDoS for solids under pure shear deformation. Similar to
simple shear results, solids on Fictitious elastic branches (PF ) exhibit D(ω) ∼ ω3.5, while those on True branches (PT ) show
D(ω) ∼ ω5. The ensemble of PT and PF configurations display D(ω) ∼ ω4 behavior. (c) VDoS for ensembles combining solids
from different elastic branches under both shear deformations. Solids that reside on Fictitious elastic branches in both types
of shear deformations (SF and PF ) exhibit a pronounced low-frequency mode density with a scaling behavior of D(ω) ∼ ω3.
Intermediate scaling of D(ω) ∼ ω4.5 is observed in ensembles of ST and PF , or SF and PT . Solids that are on True elastic
branches under both shear deformations (ST and PT ) exhibit a steeper power-law D(ω) ∼ ω5.5, indicating a significant
suppression of low-frequency modes and increased stability.

Results
We study the canonical Kob-Andersen Lennard-Jones

mixture [46] in both two-dimensional (2D) and three-
dimensional (3D) systems. The model consists of binary
particle mixtures with a composition ratio of 65 : 35 and
a number density of 1.15 in 2D, and a composition ra-
tio of 80 : 20 at zero pressure in 3D. The interaction
potential between particle types is described by a mod-
ified Lennard-Jones potential, enhanced with additional
polynomial terms to smooth the potential at the trun-
cation distance (see Appendix A for details). Initially,
we equilibrate the liquid states at a high temperature
(T = 0.55 for both 2D and 3D) using constant tem-
perature molecular dynamics simulations under periodic
boundary conditions. Solid configurations are then gen-
erated via conjugate gradient minimization [47]. Sim-
ulations of solids at their shear minima are performed
using LAMMPS [48]. Statistics for all system sizes are
performed, generating at least 105 configurations in the
initial ensemble for both 2D and 3D. Configurations are
classified as follows: ‘ST ’ for True elastic branches under
simple shear, ‘SF ’ for Fictitious elastic branches under
simple shear, ‘PT ’ and ‘PF ’ for True and Fictitious elas-
tic branches under pure shear, respectively, and ‘Smin’
and ‘Pmin’ for solids strained to their simple and pure
shear minima, respectively. The distribution of solids
across these branches leads to variations in the power-law
behavior of the ensemble-averaged low-frequency VDoS,
as summarized in Table I.

Classification of Elastic Branches

Elastic Branches Under Simple Shear : Amorphous
solids created under periodic boundary conditions con-

tain residual shear stresses, leading to such solids being
unstable to deformations [41, 45, 49]. Recent studies sug-
gest that changes in this macroscopic shear stress modify
the low-frequency VDoS, with the power-law being modi-
fied to D(ω) ∼ ω5 when simple shear is applied to create a
zero stress state [43]. Although the residual shear stresses
decrease with system size, the power-law observed in un-
strained systems deviates from such a D(ω) ∼ ω5 behav-
ior. These observations suggest a deeper underlying con-
nection between the shear stability of amorphous solids
and their low-frequency VDoS, which we explore in detail
below.

We begin with amorphous solids in orthogonal peri-
odic cells exhibiting residual shear stresses and apply sim-
ple shear deformations to reach the shear minima (where
σxy = 0 in 2D). In each configuration, we measure the
global shear stress (σxy) and incrementally strain the sys-
tem towards the shear minima. This process involves ap-
plying small strain steps, followed by energy minimiza-
tion using Lees-Edwards boundary conditions while ad-
justing the strain steps until the global shear stress mag-
nitude falls below 10−8.

To classify configurations as either ST or SF un-
der simple shear, we perform cyclic shear deformations
that return the system to zero strain (γxy = 0) from
the shear minimum. Configurations that undergo plas-
tic events during the Athermal Quasi-Static (AQS) pro-
cess to their shear minima, are identified by computing
the mean squared displacement (MSD) between the ini-
tial and cyclically deformed configurations at γxy = 0,
MSD = 1

N

∑N
i |r⃗ i

f − r⃗ i
0 |2. Here, r⃗ i

0 and r⃗ i
f represent the

position of the i-th particle in the initial and cyclically
deformed configurations, respectively. Configurations on
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the True elastic branch, undergoing only reversible elas-
tic events, exhibit MSD = 0 and are classified as ST . In
contrast, configurations that undergo irreversible plastic
events, transitioning from Fictitious elastic branches to
the True elastic branch, result in a finite MSD and are
classified as SF in their initial state at γ = 0. Fig. 1
(b) and (c) illustrate the energy per particle as a func-
tion of strain in the cyclic AQS protocol for typical ST
and SF configurations, respectively, in a 2D system with
N = 1024. The inset in Fig. 1 (c) shows the plastic event
associated with the transition from a Fictitious to a True
elastic branch, with the displacement field displaying a
characteristic quadrupolar pattern [50].

We then filter out the ST and SF configurations from
the initial ensemble. Fig. 2 (a) shows the low-frequency
VDoS of these two classes of solids. Solids residing on
the higher-energy Fictitious elastic branches SF exhibit
a lower scaling exponent, D(ω) ∼ ω3.5, indicative of a
greater propensity for low-frequency vibrational modes.
In contrast, configurations on the True elastic branch are
more stable, following a D(ω) ∼ ω5 scaling, although
they retain non-zero residual shear stresses (as shown in
the inset of Fig. 2 (a)). An ensemble combining both ST
and SF solids results in D(ω) ∼ ω4.

Elastic Branches Under Pure Shear : We next inves-
tigate solids subjected to pure shear deformations, fo-
cusing on fluctuations in the diagonal stress compo-
nents. Starting with constant pressure (P ) configura-
tions, which exhibit diagonal stress fluctuations such that
σxx + σyy = P , resulting in a finite tensile stress com-
ponent (σxx − σyy ̸= 0). To control these fluctuations,
we expand along the x-direction and compress along the
y-direction (or vice versa) in small steps, followed by en-
ergy minimization to make each diagonal stress constant
(σxx = σyy = P ). This process maintains constant pres-
sure while introducing slight changes in area (or volume).
Although this differs from conventional pure shear, it can
be considered a similar protocol.

Fig. 2 (b) illustrates the low-frequency VDoS based on
response to pure shear deformations. Solids that do not
incur plastic rearrangements while straining to the min-
ima are classified as PT , while solids that undergo plas-
tic rearrangement (as indicated by a finite MSD when
we rescale the box dimensions to their initial values)
are identified as PF . We observe similar behavior in
the low-frequency VDoS, solids in the PT category show
D(ω) ∼ ω5 behavior, whereas PF solids show a lower
exponent, D(ω) ∼ ω3.5 behavior. When both PT and
PF configurations are considered together, the ensemble
displays D(ω) ∼ ω4 behavior.

Scaling Behavior Combining True and Fictitious Elas-
tic Branches: In the previously discussed ensembles,
solids were categorized based on their response to either
simple or pure shear deformations. Hence the classifi-
cations based on relaxation to shear minima under sim-
ple shear do not distinguish between configurations that
may undergo plastic rearrangements under pure shear,
and vice versa. Consequently, the vibrational spectra of

the ((ST and SF )) ensembles include contributions from
configurations that may or may not undergo plastic re-
arrangements under pure shear. Similarly, the spectra of
PT and PF reflect contributions from solids on different
elastic branches under simple shear. We now examine
ensembles categorized by stability under both shear de-
formations, defined through combinations of ST , SF ,
PT , and PF . As illustrated in Fig. 2(c), these ensembles
display distinct scaling behaviors in the VDoS, revealing
the influence of True and Fictitious elastic branches on
the low-frequency vibrational spectrum under both sim-
ple and pure shear deformations.

Solids residing on Fictitious elastic branches in both
shear deformations-SF and PF -exhibit a large propen-
sity of low-frequency modes, characterized by the lowest
scaling exponent, D(ω) ∼ ω3. This behavior suggests
that the observed scaling of D(ω) ∼ ω3 in experiments
on quasi-two dimensional confined systems may be at-
tributed to the prevalence of solids on Fictitious elastic
branches resulting due to confinement effects [40]. More-
over, the exponent close to 3 reported in large ensembles
of two- and three-dimensional amorphous systems may
arise from a significant fraction of configurations residing
on Fictitious branches at the system sizes studied [37–39].

In contrast, ensembles containing solids that reside on
the True elastic branch under either simple shear or pure
shear, while being on a Fictitious branch under the other
deformation, exhibit intermediate VDoS behavior. These
configurations-ST and PF , or SF and PT -display a scal-
ing of ω4.5. Finally, we consider the ensemble of solids
classified as ST and PT . This ensemble represents con-
figurations that reside on the True elastic branches under
both simple shear and pure shear deformations. These
solids exhibit a scaling behavior of D(ω) ∼ ω5.5, indicat-
ing a significant suppression of low-frequency modes, re-
flecting the enhanced stability of these solids. We exam-
ined this power-law behavior by rescaling the box lengths
and applying additional strain in the simple shear direc-
tion. Solids on the True elastic branches in both sim-
ple and pure shear are characterized by shear minima
that are accessible purely through elastic deformation
across all shear directions and show zero mean-squared
displacement (MSD = 0) between the initial configura-
tions and those obtained through reverse deformations,
as discussed in Appendix B.

Importantly, the ensembles we have discussed so far are
characterized by whether the solids reside on True elas-
tic branches or Fictitious elastic branches. This classifi-
cation is determined by the presence of shear minima or
the occurrence of plastic jumps to lower energy branches.
Solids on the True elastic branch may still have nearby
plastic instabilities when deformed in the opposite di-
rections. Thus, these ensembles include solids that are
prone to plastic instabilities when deformed away from
their shear minima.

Stable Configurations with Zero Residual Shear
Stresses

Next, we examine the low-frequency vibrational spec-
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(a)

(b)

FIG. 3: VDoS for amorphous solids with zero residual shear
stresses. (a) Two-dimensional solids with N = 1024 parti-
cles. For solids at the minima of either simple or pure shear
deformations, denoted as Smin or Pmin, the VDoS follows a
scaling of D(ω) ∼ ω5, indicative of solids on a True elastic
branch in any single shear direction. Solids achieving shear
minima across all directions, where all residual shear stress
components are zero, exhibit even greater stability with a
VDoS scaling of D(ω) ∼ ω6.5. This suggests that complete
relaxation under various shear deformations results in a more
stable state, characterized by a higher exponent in the VDoS
scaling. (b) Three-dimensional solids with N = 1000 par-
ticles. In configurations where all macroscopic stress com-
ponents fluctuate, leading to Fictitious elastic branches, the
VDoS scales as D(ω) ∼ ω4. When all simple shear compo-
nents are constrained to zero, the VDoS scales as D(ω) ∼ ω5.
The same scaling is observed when all pure shear compo-
nents are constrained to zero. The VDoS follows a scaling
of D(ω) ∼ ω6.5 for ensembles of solids stable under all shear
deformations.

trum of solids residing at their shear minima, denoted
as Smin for simple shear and Pmin for pure shear. At
these minima, the solids exhibit no residual tensile stress
components, indicating that the system has fully relaxed
under the applied deformation. Consequently, they are
stable under all perturbations and reside on the true elas-
tic branches of all shear degrees of freedom.

To achieve configurations at shear minima, which are
also energy minimized in the position degrees of freedom,
we deform the periodic cell during energy minimization.
In d dimensions, there are d(d+1)

2 − 1 independent shear
directions. In two dimensions, this includes one simple
shear direction and one pure shear direction. In three
dimensions, there are five such shear directions: three
simple shear directions (σxy, σyz, and σzx) and two pure
shear components (σxx − σyy) and (σxx + σyy − 2σzz).
To achieve configurations where all shear stress compo-
nents are minimized, we rescale the box lengths and apply
additional straining in the simple shear direction, iterat-
ing this process until fluctuations in all stress compo-
nents fall below 10−8. Simulations are performed using
LAMMPS [48], with macroscopic stress components con-
trolled via the box/relax’ command [51], as described in
Appendix A.

Fig. 3 (a) shows the low-frequency VDoS for two-
dimensional solids with N = 1024 particles. Solids at the
minima of either simple or pure shear deformations Smin

or Pmin exhibit a VDoS scaling of D(ω) ∼ ω5, character-
istic of solids on a True elastic branch in any single shear
direction. Interestingly, when solids reach shear minima
across all shear directions, i.e., all residual shear stress
components are zero, they exhibit even greater stability,
with the VDoS scaling as D(ω) ∼ ω6.5. This suggests
that complete relaxation under various shear deforma-
tions leads to a more vibrationally stable state, character-
ized by a higher exponent in the VDoS scaling. Fig. 3 (b)
presents the low-frequency VDoS for three-dimensional
solids with N = 1000 particles. When all macroscopic
stress components are allowed to fluctuate, resulting in
configurations on Fictitious elastic branches, the VDoS
follows a D(ω) ∼ ω4 power law. When all simple shear
components are constrained to zero, the VDoS scales as
D(ω) ∼ ω5. Similar scaling is observed when all pure
shear components are constrained to zero. In ensembles
of solids at minima for all shear directions, and thus sta-
ble under all shear deformations, the VDoS exhibits a
scaling of D(ω) ∼ ω6.5.

At this point, we would like to compare and contrast
our findings with a recent study by Xu et al. [45], where
stable two-dimensional solids were shown to exhibit an
ω5.5 scaling behavior, while stable three-dimensional
solids demonstrated an ω6.5 scaling behavior. In their
study, the distinction between stable and unstable con-
figurations was made by examining the eigenvalues of
the EH, which accounts for boundary deformations (dis-
cussed in Appendix C). Such an EH analysis explores
small domains in boundary deformations, identifying
configurations close to plastic instabilities as unstable.
As discussed, the ensembles we previously considered
may have plastic instabilities when deformed away from
their shear minima. Thus, solids on True elastic branches
may appear unstable within such an EH analysis, as
shown in Appendix C. Similarly, the EH analysis iden-
tifies stable solids from both True and Fictitious elastic
branches, as the analysis is conducted within a restricted
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FIG. 4: Low frequency VDoS for solids stable under EH anal-
ysis, categorized by their respective elastic branches. EH-
stable solids residing on the True elastic branch for both sim-
ple and pure shear deformations exhibit a steeper power-law
behavior with D(ω) ∼ ω6.5, similar to the scaling behavior
observed in solids at shear minima. In contrast, those on
Fictitious branches demonstrate power-law scaling with ex-
ponents less than 5.5. This suggests that while these con-
figurations are stable according to EH analysis, they do not
posses the same degree of vibrational stability as those on the
True branches. Considering solids from both branches, the
overall scaling behavior for the EH-stable ensemble is charac-
terized by D(ω) ∼ ω5.5.

domain. For the two-dimensional solids in our study, our
EH analysis identified a fraction 9×10−3 of configurations
as unstable, and after removing them from the ensemble,
these EH-stable solids exhibit a D(ω) ∼ ω5.5 behaviour.
Among these EH-stable configurations, roughly half of
them reside on Fictitious branches of either simple or
pure shear. Grouping EH-stable configurations by their
respective elastic branches, we observe that solids stable
under an EH analysis in True elastic branches exhibit an
ω6.5 scaling in their low-frequency VDoS, as illustrated in
Fig. 4. In contrast, EH-stable solids on Fictitious elastic
branches result in a scaling exponent less than 5.5. When
considering all EH-stable solids together, the overall scal-
ing behavior tends to ω5.5. This leads us to speculate
that in three dimensions, where more shear directions
are present, EH-stable solids that are not prone to plas-
tic instabilities are likely to be on True elastic branches
for both simple and pure shear directions. This is sup-
ported by the observed ω6.5 scaling of solids residing at
the shear minima in both two and three dimensions (Smin

and Pmin). Solids with residual shear stress equal to
zero, which are stable under all deformations and reside
on True elastic branches, exhibit an ω6.5 behavior across
both two and three dimensions.

System Size Dependence

The distribution of low-frequency vibrations in amor-

FIG. 5: System size dependence of two-dimensional solids
residing on True and Fictitious elastic branches under sim-
ple and pure shear deformations. As system size increases,
the fraction of solids residing on Fictitious branches, where
shear minima are inaccessible via elastic deformations, also
increases. This suggests that with increasing system size, even
infinitesimal residual shear stress leads to a larger proportion
of solids on Fictitious branches. To generate solids on True
elastic branches, the limit of zero residual shear stress must
be taken first. Inset shows the behavior of solids stable under
an EH analysis.

phous solids exhibits finite-size effects. In very small sys-
tems, an excess of quasilocalized vibrations is character-
ized by scaling behavior D(ω) ∼ ωδ, where δ < 4 [35, 45],
likely due to a higher prevalence of EH-unstable config-
urations. As system size increases, the fraction of EH-
unstable configurations decreases, which is expected to
result in a vibrational spectrum more characteristic of
stable solids. However, even in EH-stable solids, the
regime characterized by D(ω) ∼ ω6.5 becomes suppressed
in three-dimensional systems as size increases, gradually
transitioning towards ω4 behavior [45]. Furthermore,
studies have reported exponents below 4 in large two-
and three-dimensional ensembles at system sizes where
EH-instabilities are expected to be negligible [37–39].

To explore these effects, we investigate how system
size influences the fraction of solids residing on True
and Fictitious elastic branches in two-dimensional solids.
Fig. 5 illustrates the dependence of these solids on elas-
tic branches under both simple and pure shear deforma-
tions. As system size increases, the fraction of solids on
Fictitious elastic branches-where shear minima cannot be
achieved through elastic deformations and require plastic
instabilities for transitions to lower energy states-also in-
creases, despite a decrease in residual shear stresses. The
inset of Fig. 5 depicts this behavior for solids that are
stable under the EH analysis. Notably, with increasing
system size, the fraction of solids classified as unstable
under the EH analysis and prone to plastic instabilities
decreases [45]. This observation suggests a significant
shift in the nature of instabilities as system size increases.
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(a)

(b)

FIG. 6: System size analysis of low-frequency VDoS scaling
behavior for solids stable under all shear deformations. (a)
Two-dimensional systems and (b) three-dimensional systems,
both exhibiting a VDoS scaling of D(ω) ∼ ω6.5 across various
system sizes.

Specifically, instabilities associated with Fictitious elastic
branches begin to dominate the low-frequency vibrational
spectrum in the ensemble-averaged distribution. Beyond
a characteristic system size (approximately N ∼ 104 par-
ticles for this model in two dimensions), the power-law
exponent is expected to approach a value near 3 due to
the substantial fraction of solids on the Fictitious elas-
tic branch. However, at larger system sizes, phononic
modes become increasingly dominant, complicating the
detection of QLEs. As a result, a significant number of
configurations are required to achieve good statistics and
a clear observation of the power-law behavior.

Next, we conduct a system size analysis of the low-
frequency VDoS for solids at their shear minima in both
two and three dimensions. In ensembles of solids that
are at the minimum of all shear directions and thus stable
under all shear deformations, the VDoS exhibits a scaling
behavior of D(ω) ∼ ω6.5. Fig. 6 (a) and (b) illustrates
the D(ω) ∼ ω6.5 scaling of the low-frequency VDoS for
various system sizes in both two and three dimensions.

These observations have significant implications for

real stable solids. If we consider the limit N → ∞ with
all instabilities present, the observed power law will ap-
proach an exponent close to 3. This is because, as the
system size increases, the propensity for solids to reside
on Fictitious elastic branches increases despite decreas-
ing residual shear stress. Even small residual shear stress
can lead to Fictitious elastic branches in large systems.
Conversely, if we first take the limit of zero residual shear
stress and then N → ∞, we expect to observe ω6.5 be-
havior in the low-frequency VDoS of amorphous solids in
both two and three dimensions.

Discussion
In summary, our study contributes to the emerging

understanding of the distribution of non-phononic vibra-
tions in amorphous solids. While previous research has
suggested a D(ω) ∼ ω4 distribution for low-frequency vi-
brations, independent of interatomic interactions, ther-
mal history, and spatial dimensionality, the exact scal-
ing exponent remains debated. In this study, we have
explored the critical role of boundary-condition-induced
instabilities on the vibrational spectrum of amorphous
solids. Our findings reveal the existence of two distinct
elastic branches-True and Fictitious- that significantly
impact the scaling behavior of the vibrational density
of states at low frequencies. Configurations on Ficti-
tious branches, where shear minima cannot be reached
through elastic deformations alone and plastic instabil-
ities are required to relax these configurations to their
shear minima, exhibit a scaling of D(ω) ∼ ω3. The
prevalence of such configurations increases as the sys-
tem size grows. In contrast, solids residing on True elas-
tic branches, where shear minima are accessible via elas-
tic deformations, display a more stable vibrational spec-
trum, scaling as D(ω) ∼ ω5.5. Ensemble averaging across
both types of branches leads to the frequently observed
D(ω) ∼ ω4 behavior. Moreover, we show that solids re-
laxed to their shear minima, with no residual shear stress,
exhibit the most stable vibrational spectra, characterized
by D(ω) ∼ ω6.5 in both two and three dimensions. This
same scaling is also observed in solids on True elastic
branches that are not prone to plastic instabilities under
small external perturbations. These findings emphasize
the importance of controlling boundary conditions and
residual stresses in simulations and experiments to study
amorphous materials’ vibrational properties .

In conclusion, we propose that the scaling behavior of
low-frequency non-phononic vibrational modes in amor-
phous solids, arises from the aggregation of solids belong-
ing to different types of elastic branches, with differing
limiting behaviors in the N → ∞ limit. If instabilities
are not addressed, the VDoS approaches a ω3 scaling
in large systems. However, by first eliminating residual
shear stress before taking the large system size limit, we
predict a ω6.5 scaling for the low-frequency in both two-
and three-dimensional amorphous solids. Our findings
also have measurable experimental consequences, as con-
trolled shear deformations of amorphous materials can be
used to achieve a relaxation to their respective shear min-
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ima. The changes produced in the vibrational density of
states can, therefore, be extracted using inelastic neutron
scattering, as has been routinely used to study the boson
peak in glasses [40, 52]. Recent advances in strain con-
trol and energy minimization techniques [53, 54] therefore
make it increasingly feasible to verify the different scaling
behaviors in the VDoS of stable amorphous solids.
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Appendix A: Model

We study the canonical Kob-Andersen Lennard-Jones
mixture [46] in both two-dimensional (2D) and three-
dimensional (3D) systems. The model consists of binary
particle mixtures with a composition ratio of 80 : 20 in 3D
and 65 : 35 in 2D, respectively. The interaction potential
between particles is given by,

Vαβ(r) = 4ϵαβ

[(σαβ

r

)12
−

(σαβ

r

)6
+

2∑
i=0

c2i

(
r

σαβ

)2i
]
.

Here, α, β ∈ A,B denote the two types of particles,
yielding three distinct interaction pairs. The potential
is truncated at rαβc = 2.5σαβ . The length scale is de-
fined by σAA = 1, and the energy scale by ϵAA = 1 (with
Boltzmann’s constant set to unity). The remaining pa-
rameters are ϵAB = 1.5, ϵBB = 0.5, σAB = 0.8, and
σBB = 0.88.

To prepare solids at their shear minima, we use the
LAMMPS package [48], employing a triclinic periodic
simulation box. During energy minimization, macro-
scopic stress components are controlled using LAMMPS
box/relax’ command [51]. This protocol incorporates six
(3D) or three (2D) box degrees of freedom in addition
to interparticle potentials in the Hamiltonian, adjusting
the box dimensions to achieve the desired diagonal stress
values while tilting to control the off-diagonal stresses.
Configurations at the minimum with respect to all shear
degrees of freedom are obtained by constraining both off-
diagonal (σαβ = 0) and diagonal (σαα = 0) stress com-
ponents.

The vibrational properties of the solids are investigated

FIG. 7: Low-frequency vibrational density of states (VDoS)
for two-dimensional solids with system size N = 1024 under
simple and pure shear deformations. Configurations within
the True elastic branch, where shear minima are accessible
in all shear directions, exhibit a VDoS scaling behavior of
ω5.5, indicative of a stable state. Conversely, configurations
within the Fictitious elastic branch, where shear minima are
inaccessible without plastic rearrangements, display a VDoS
with a low-frequency power-law distribution, characterized by
an exponent of approximately 4.

using the standard Hessian matrix, defined as

Hij ≡
∂2V (r1, r2, . . . rn)

∂ri∂rj

∣∣∣∣
{ri}

, (A1)

where V (r1, r2, . . . , rn) is the total potential energy of
the system, and ri denotes the position of particle i.
The eigenvectors of the Hessian matrix correspond to
the cooperative displacements of the particles involved
in the vibrations (referred to as normal modes), while
the eigenvalues represent the vibrational energy, equal to
ω2, where ω is the vibrational frequency. Eigenvalues are
computed using the sparse solver mkl_sparse_d_ev from
the Intel Math Kernel Library [55].

Appendix B: Stability of Two-Dimensional Solids
Under All Shear Deformations

We analyze the stability of two-dimensional solids un-
der both simple and pure shear deformations. To achieve
configurations where all shear stresses are constrained to
zero, we iteratively rescale the box lengths and apply ad-
ditional straining in the simple shear direction until fluc-
tuations in all shear stress components fall below 10−8.

Configurations within the True elastic branch of both
simple and pure shear are those where shear minima are
accessible through deformation in all shear directions.
In contrast, configurations that reside in the Fictitious
elastic branch of any shear direction have inaccessible
shear minima, requiring transitions to a lower-energy



9

(a) (b)

(c) (d)

FIG. 8: Energy versus strain response for a typical solid
configuration with system size N = 1024, generated using
standard numerical protocols with periodic boundary condi-
tions in two dimensions under the Athermal Quasistatic Shear
(AQS) protocol. The blue line represents the response when
straining toward the shear minima, while the red line shows
straining in the opposite direction. (a) The configuration
does not exhibit plastic deformation as δγ → 0. EH analy-
sis confirms it as stable, and the shear minimum is accessi-
ble through elastic deformation, classifying this configuration
as ST . (b) A configuration that remains stable (no plastic
event) as δγ → 0, as confirmed by an EH analysis. However,
the shear minimum cannot be accessed through elastic defor-
mation alone, requiring an irreversible plastic rearrangement
to reach a lower energy branch. These configurations are EH-
stable but reside on a Fictitious branch, classified as SF . (c)
The behavior of a configuration on a True simple shear elas-
tic branch, which undergoes a plastic event when strained in
the opposite direction from the shear minimum. This con-
figuration is identified as unstable in the EH analysis. (d)
A typical configuration on the Fictitious simple shear elastic
branch, also classified as unstable in the EH analysis.

branch via plastic rearrangements. This distinction is de-
termined by measuring the mean squared displacement
(MSD) between the initial configurations and those ob-
tained by performing AQS in the reverse direction, i.e.,
from σxy = 0 to γxy = 0, followed by rescaling the box
dimensions to their original values.

Configurations with MSD = 0 exhibit a VDoS scal-
ing behavior of ω5.5, while those with a non-zero MSD
display a low-frequency power-law distribution with an
exponent of approximately 4, as illustrated in Fig. 7.

Appendix C: Extended Hessian

The elements of a standard Hessian matrix capture
the local curvature of the energy landscape by consid-
ering only the particle positions as variables. Minima
in this landscape correspond to stable, energy-minimized
packings. However, when solids are prepared under peri-
odic boundary conditions, the system may appear stable

FIG. 9: (a) Low-frequency vibrational density of states
(VDoS) for stable and unstable solids with system size N =
1024 in two dimensions, as identified via an EH analysis. Sta-
ble solids exhibit a scaling behavior of D(ω) ∼ ω5.5, while
unstable solids show D(ω) ∼ ω3.3. An ensemble comprising
both stable and unstable solids presents a scaling behavior of
D(ω) ∼ ω4.

if only particle positions are considered, while it might
actually be unstable when boundary deformations (such
as shear strains, compressions, or expansions) are al-
lowed [41]. These instabilities arise because the solid
may not have fully relaxed with respect to macroscopic
degrees of freedom. To properly assess the stability of a
solid under periodic boundary conditions, an Extended
Hessian (EH) matrix is introduced [41, 42]. This EH ma-
trix incorporates not only the particle positions but also
the d(d+1)/2 degrees of freedom for boundary deforma-
tions. The EH matrix can be represented as,

He =

[
He

rr He
rϵ

He
ϵr He

ϵϵ

]
. (C1)

where ϵ corresponds to different strain components. We
can represent the individual elements of the matrix as,

He
rai ,r

b
j
=

∂2Vij

∂rai ∂r
b
j

,

He
rai ,ϵbc

=

N∑
j=1

∂2Vij

∂rai ∂ϵbc
,

He
ϵab,ϵcd

=
1

2

N∑
i=1

N∑
j=1

∂2Vij

∂ϵab∂ϵcd
.

(C2)

In certain packings, the EH matrix may exhibit neg-
ative eigenvalues, indicating unstable configurations un-
der infinitesimal boundary deformations. Solids on True
elastic branches may undergo plastic instabilities when
deformed away from their shear minima, potentially ap-
pearing unstable in EH analysis. Conversely, solids that
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appear stable under EH analysis can still reside on Fic-
titious branches, as EH identifies configurations prone
to plastic instability only within a limited range of de-
formations. Fig. 8 illustrates these different scenarios,
showing the energy versus strain behavior for a typical
solid configuration with system size N = 1024, generated
using standard numerical protocols with periodic bound-
ary conditions in two dimensions under the AQS proto-
col. The red line represents the response when strain-
ing toward the shear minima, while the blue line shows
straining in the opposite direction. (a) The configuration
does not exhibit plastic deformation as δγ → 0, and EH
analysis confirms it as stable. The simple shear minimum
is accessible through elastic deformation, classifying this
configuration as ST . (b) shows the behavior of a solid
that does not undergo a plastic event as δγ → 0, with
EH analysis indicating stability. However, the shear min-
imum cannot be reached via elastic deformation alone,
requiring irreversible plastic rearrangement to access a
lower energy branch. These configurations are EH-stable
but reside on a Fictitious branch, thus classified as SF .
(c) depicts the behavior of a configuration on the True

simple shear elastic branch, which undergoes a plastic
event when subjected to shear in the opposite direction
from the shear minimum. This configuration is identified
as unstable in the EH analysis. (d) shows a typical con-
figuration on the Fictitious simple shear elastic branch,
also classified as unstable in the EH analysis.

A recent study by Xu et al. [45] has demonstrated that
EH-stable and unstable solids exhibit distinct power-law
scaling behaviors in their low-frequency VDoS. In Fig.9,
we present similar power-law scaling for solids classified
as stable or unstable based on EH analysis, specifically
for a system size of N = 1024 in two dimensions. Stable
solids exhibit a scaling behavior of D(ω) ∼ ω5.5, while
unstable solids D(ω) ∼ ω3.3. Furthermore, the influence
of instabilities from solids residing on Fictitious elastic
branches-an aspect that EH analysis may not capture due
to its restricted deformation domain-further modify the
power-law behavior. EH-stable solids on the True elastic
branch, under both simple and pure shear deformations,
show a steeper power-law behavior with D(ω) ∼ ω6.5. In
contrast, solids on Fictitious branches exhibit power-law
scaling with an exponent greater than 5.5.
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