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Abstract
We show through simulations of amorphous solids prepared in open-boundary conditions that they possess significantly fewer low- 
frequency vibrational modes compared to their periodic boundary counterparts. Specifically, using measurements of the vibrational 
density of states, we find that the D(ω) ∼ ω4 law changes to D(ω) ∼ ωδ with δ ≈ 5 in two dimensions and δ ≈ 4.5 in three dimensions. 
Crucially, this enhanced stability is achieved when utilizing slow annealing protocols to generate solid configurations. We perform an 
anharmonic analysis of the minima corresponding to the lowest frequency modes in such open-boundary systems and discuss their 
correlation with the density of states. A study of various system sizes further reveals that small systems display a higher degree of 
localization in vibrations. Lastly, we confine open-boundary solids in order to introduce macroscopic stresses in the system, which are 
absent in the unconfined system and find that the D(ω) ∼ ω4 behavior is recovered.
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Glasses have long been known to display anomalous dynamical properties, originating from a complex energy landscape that also 
determines their stability. Much of the research into its origin utilizes computational analysis of their vibrational density of states. 
Such studies have so far simulated systems with periodic boundary conditions which introduce artificial macroscopic stresses into 
the system. Our study shows that glasses prepared in open-boundary conditions, which faithfully capture the isolated nature of 
real amorphous solids, are significantly more stable as compared to their confined counterparts. We find that reduced macroscopic 
stresses, as well as slow annealing, contribute to this surprising enhanced stability. This sheds new light on the nature of the energy 
landscape of glasses and real amorphous solids.
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Introduction
In contrast to crystalline solids, whose vibrational states are well 
described by the Debye model, amorphous solids exhibit anomal-
ous mechanical and thermal properties (1–6). For a system in d di-
mensions, the Debye model predicts a vibrational density of states 
(VDoS), D(ω) ∼ ωd−1 arising from phonons (7). On the other hand, 
disordered and anharmonic systems possess an excess of low- 
frequency modes above the Debye prediction, termed the “Boson 
peak” (8–11). It has been suggested that the large specific heat of 
glasses and the plastic failure of amorphous solids are intimately 
related to these low-frequency nonphononic vibrational modes 
(12–16). However, a complete understanding of the structural 
and statistical properties of these vibrational modes has been elu-
sive and remains an important current topic of interest in the field 
of disordered solids.

Several theoretical frameworks for the vibrations in disordered 
systems seek to model amorphous solids as an ensemble of an-
harmonic oscillators. Such a treatment is motivated by a disor-
dered arrangement of particles containing local “soft spots” 
where the stiffness associated with a collective vibration is very 

small. The phenomenological “soft potential model” (SPM) treats 
these regions as noninteracting oscillators and predicts a VDoS 
D(ω) ∼ ω4 for the lowest frequencies of stable inherent structures 
(17–19). An extension to the SPM that includes effects of interac-
tions between the anharmonic oscillators continues to retain 
the ω4 behavior of the VDoS (20–22). Other recent theoretical stud-
ies also predict a D(ω) ∼ ω4 at the lowest frequencies (23–25). 
“Fluctuating Elasticity Theory” on the other hand predicts a low- 
frequency regime composed of extended modes that scale as 
D(ω) ∼ ωd+1 in d dimensions (26, 27). More recent work suggests 
nonaffine displacements as the source of such non-Debye behav-
ior (28, 29). Certain mean field theories such as the “Perceptron 
Model” (30) and the “Effective Medium Theory” (31) predict non-
phononic vibrations with a D(ω) ∼ ω2 dependence. In this context, 
numerical investigations of amorphous solids in order to ascer-
tain the nature of the low-lying excitations of such systems are 
of crucial importance.

Recent numerical studies of amorphous solids have identified a 
universal D(ω) ∼ ω4 scaling in the low-frequency regime of the 
VDoS across a broad class of simulated model systems (32). The 
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universality of this nonphononic power law at low frequencies 
has been established in two dimensions (2D), three dimensions 
(3D), and four dimensions (33–35). In order to extract this behav-
ior, studies have focused on small system sizes, where the lowest 
frequency quasilocalized vibrations are well separated in energy 
from the first system-spanning phonon. This suggests that these 
quasilocalized modes (QLMs) are primarily responsible for the 
power-law tail in the VDoS (33, 36). Further, suppression of 
system-spanning vibrations using random pinning protocols has 
been shown to enhance the nonphononic spectra, thereby dis-
playing a pronounced D(ω) ∼ ω4 behavior (37). Yet other studies 
have utilized measures such as participation ratios in order to iso-
late such QLMs that have been shown to contribute to the ob-
served power-law behavior (38). Simulations of various systems 
including ultrastable glasses (39), silica models (40), long-ranged 
models (41), finite-temperature systems (42), and random matrix 
models (43), all provide significant evidence of the ubiquity of the 
ω4 regime of the VDoS. However, other studies simulating 
amorphous solids report deviations from the universal quartic 
law. High parent temperatures, poor annealing, and small system 
sizes have each been shown to result in power-law exponents that 
are less than 4 (44–46). Recent studies have further identified ex-
ponents of 3 and 3.5 in the low-frequency regime (47–49). 
Confined three-dimensional thin films have also been shown to 
possess a low-frequency VDoS of ω3 (50).

A crucial aspect often overlooked in simulations of amorphous 
solids is the residual shear stresses arising due to periodic bound-
ary conditions (PBC) (51). This implies that energy-minimized con-
figurations of disordered systems under PBC are unstable to shear 
deformations. It has recently been shown that the low-frequency 
regime of the VDoS is modified to D(ω) ∼ ω5 when considering en-
sembles stable to simple-shear perturbation (52). Significantly, 
such an increase in the exponent points to a correlation between 
the shear stability of the system and a reduction in the propensity 
for localized vibrations. Given these observations, a natural 
question that arises pertains to the consequences of stabilization 
against all possible deformations. Solids formed under 
open-boundary conditions (OBC) are a suitable candidate since all el-
ements of their pressure tensor are identically zero for each con-
figuration. Such a state is permitted by a lack of confinement at 
the boundaries. It is important to note that the OBC system is 
no longer isotropic and introduces possible radial heterogeneity 
in structure as well as relaxation dynamics. Furthermore, 
unlike systems under PBC, phonons in OBC are not required to 
obey the artificial symmetries enforced by the periodicity. 
Consequently, solids under OBC can accurately capture features 
of natural solids, including surface as well as system-size effects.

In this paper, we report a characterization of the VDoS of open- 
boundary amorphous solids. The low-frequency vibrational prop-
erties of open systems remain relatively unexplored (53), and our 
study forms the first such computational examination of the lo-
calized modes of open-boundary amorphous solids. We observe 
the low-frequency vibrational spectrum of a simulated model 
amorphous solid under OBC to be of the form D(ω) ∼ ωδ with 
δ > 4, both in 2D and 3D. Since an increase in the exponent implies 
a reduction in the degree of vibrational localization, the corre-
sponding solid ensemble may be said to possess enhanced stabil-
ity. Notably, the model system displays such a VDoS only when 
configurations are annealed to their inherent structures. On the 
other hand, commonly used quenching protocols lead to ensem-
bles with δ ∼ 4. Interestingly, at large enough system sizes, the ex-
ponent saturates to a value δ = 5 in 2D and δ = 4.5 in 3D. A detailed 
investigation of the average stress profile of the solids allows us to 

identify a surface layer that suggests a source of the system-size 
effects. Lastly, we also observe that confining open-boundary sol-
ids under a harmonic trap recovers the D(ω) ∼ ω4 behavior of PBC 
systems, confirming the role of stresses in the stability of solids.

The outline of the paper is as follows. The first section describes 
the numerical protocol we use to generate stable open-boundary 
solids. In the second section, we demonstrate the effect of differ-
ent minimization protocols to generate stable solids. In the third 
section, we present data to demonstrate the effect of the system 
size on the vibrational spectrum. In the fourth section, we provide 
an analysis of the source of the stabilization. In the fifth section, 
we examine the effect of confinement on the vibrational spectrum 
of solids. Finally, we conclude and provide directions for future 
research.

Model and simulation details
In order to simulate the behavior of amorphous solids in OBC, we 
use models with attractive interactions between the particles. 
Specifically, we use variants of the canonical Kob–Andersen 
Lennard–Jones model (54, 55) in 2D and 3D. The model consists 
of binary mixtures of particles in number ratios 65:35 in 2D and 
80:20 in 3D, with an interaction potential:

Vαβ(r) = 4ϵαβ
σαβ

r

􏼐 􏼑12
−

σαβ

r

􏼐 􏼑6
+
􏽘2

i=0

c2i
r

σαβ

􏼒 􏼓2i
􏼢 􏼣

, (1) 

where α, β ∈ {A, B} correspond to the two types of particles result-
ing in three types of interactions. The potential is cut off at a dis-

tance rαβ
c = 2.5σαβ. σAA = 1 is the unit of length, and ϵAA = 1 is the 

unit of energy (Boltzmann’s constant being unity). The remaining 
parameters are ϵAB = 1.5, ϵBB = 0.5, σAB = 0.8, and σAB = 0.88 with all 
masses set to unity m = 1.0. We equilibrate liquid configurations at 
high temperatures (T = 0.55 in both 2D and 3D) by performing con-
stant temperature molecular dynamics simulations under PBC. 
The liquid is then cooled to a low temperature (T = 0.2) at a rate 

Ṫ = 10−4. In order to achieve a density close to that of a system 
under OBC, we perform zero-pressure molecular dynamics simu-
lations using the isobaric ensemble.

Finally, in order to study solid droplets under OBC, we begin by 
cutting out a circular (spherical in 3D) region of the zero-pressure 
liquid. We ensure that all the droplet samples contain a fixed 
number of particles, say N, by selecting the N closest particles to 
the center of mass of the corresponding liquid sample referred 
to henceforth as a “cutout” sample. Solids are configurations 
that resist deformations, which correspond to the inherent struc-
tures of the amorphous configuration of particles. We generate 
such structures by performing an energy minimization of the 
particle-position degrees of freedom using three different proto-
cols, namely: (i) Molecular dynamics simulations in the presence 
of dissipative viscous drag in the athermal limit (damped dynam-
ics, DD) (56), (ii) fast inertial relaxation engine (FIRE) (57), and (iii) 
the nonlinear conjugate gradient (CG) algorithm (58). Note that we 
do not equilibrate the cutout sample but instead directly quench 
or anneal through the energy minimization protocol.

Simulations of the largest system-size three-dimensional zero- 
pressure PBC liquids are performed using LAMMPS (59). The vibra-
tional properties of the solid configurations are probed through 
the Hessian matrix as defined in Eq. 4. We perform eigenvalue 
computations using the Intel Math Kernel Library (60) sparse solv-
er routine mkl_sparse_d_ev. Below, we discuss the three proto-
cols we employ in order to find the minimum-energy 
amorphous configurations.
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Damped dynamics
In the DD protocol, a dissipative viscous drag in the absence of a 
temperature bath or other energy input serves as a method to 
find the stationary state of the conservative force fields. Such an 
evolution of the system is described by the equation of motion

d􏿻vi

dt
=􏿻Fi − γ􏿻vi, (2) 

where 􏿻Fi is the conservative force on particle i due to interactions 
with other particles, 􏿻vi is the instantaneous velocity of the particle 
i and γ is the viscous damping parameter. A stable steady-state so-
lution of these equations corresponds to a minimum-energy con-

figuration of the system of particles with 􏿻Fi = 0 and 􏿻vi = 0 for all 
particles. We employ a velocity Verlet integration scheme modi-
fied to incorporate velocity-dependent accelerations. These 
damped equations of motion allow the system to traverse the ba-
sins of multiple inherent states before selecting and settling in a 
more stable minimum. We employ small damping constants so 
that the system is able to execute such a relaxation. At large val-
ues of γ, the dynamics would be equivalent to a steepest-descent 
minimization of the energy. Unless explicitly mentioned the value 
of the damping constant γ is 0.1.

FIRE minimization
The FIRE is an efficient protocol designed to find local minima of 
multidimensional functions (57). The procedure involves numer-
ically integrating a dynamical equation with variable viscous 
damping and, additionally, a gradient director. The equation of 
motion for each particle is

d􏿻v
dt

= 􏿻F(t) − γ(t)|v(t)|[v̂(t) − F̂(t)], (3) 

where F̂(t) refers to unit vector along 􏿻F(t). These two aspects of the 
FIRE algorithm that lend it its speed also prevent the system from 
leaving its original energy basin. Therefore, the inherent structure 
obtained is primarily a function of the equilibrium sampling and is 
not dependent on the stability of the minimum of the basin.

CG minimization
We also test the stability of configurations obtained via a CG mini-
mization scheme (58). We implement the nonlinear CG for the 
open boundary system using the Polak-Ribiere method to obtain 
the updated direction and the secant minimization method in or-
der to determine the step size of the line search. As in the case of 
the FIRE algorithm, the CG leads the system to its nearest 
minimum.

Stable vibrational modes
Harmonic vibrations of a solid can be probed by diagonalizing the 
“Hessian matrix,” defined as

Hij ≡
∂2U(r1, r2, . . . rn)

∂ri∂r j

􏼌
􏼌
􏼌
􏼌
􏼌
{r0

i
}

, (4) 

where U(r1, r2, . . . rn) is the total potential energy of the system 
and ri denotes the position of particle i. The eigenvectors (ψk) of 
the Hessian matrix correspond to the cooperative displacements 
of the particles participating in harmonic vibrations (termed nor-
mal modes), and the corresponding eigenvalues (λk) represent the 
frequency of that vibration. The system, when perturbed along a 
normal mode, will perform a pure oscillation with a frequency 

ωk =
���
λk
√

. The Hessian matrix evaluated at an energy minimum 
of the landscape is positive semi-definite with zero modes corre-
sponding to the global invariants of the Hamiltonian (Goldstone 
modes). For example, a 3D system under PBC possesses three 
translational degrees of freedom, and the corresponding 
Hessian, therefore, has three zero modes. Systems under OBC, 
on the other hand additionally also possess rotational degrees of 

freedom. In general, in d dimensions, such a solid has d(d+1)
2 

zero modes corresponding to d translational modes and d(d−1)
2 

rotational modes. The VDoS of a system of N particles in d dimen-
sions is defined as

D(ω) =
1

Nd

􏽘Nd

i=1

δ(ω − ωi). (5) 

In Fig. 1a and b, we display a typical open-boundary 2D solid con-
figuration of N = 400 particles and its first nonzero mode corre-

sponding to a frequency ω = 3.24107 × 10−1 with a participation 

ratio (defined in Eq. 16) of 1.313714 × 10−1. Similarly, in Fig. 1c 
and d, we show a typical 3D solid of N = 4, 096 particles and it’s 

first mode corresponding to a frequency ω = 4.039514 × 10−1 and 

participation ratio of 6.792794 × 10−3. These low-frequency modes 
are quasilocalized with a small number of particles displaying 
large participation by forming the core of the vibration. 
Interestingly, these eigenmodes resemble the quadrupolar modes 
observed in the low-frequency regime of the vibrational density of 
states of structural glass formers under PBC (32).

Anharmonic stability analysis
While the Hessian characterizes the curvature of the energy min-
imum and, thereby, the frequency of vibrations, an anharmonic 
analysis is necessary in order to understand the vicinity of the en-
ergy minimum better. The energy near the minimum may be ap-
proximated up to the fourth order as

δU(s) =
1
2!

B2s2 +
1
3!

B3s3 +
1
4!

B4s4, (6) 

where s is the scalar distance of particles from the minimum 
along a given direction in the energy landscape. If the particles 
are displaced along an eigenvector (ψ) of the Hessian (H),

B2 = ψ · H · ψ (7) 

is the eigenvalue of the Hessian, and

B3 = ψi
∂3U

∂ri∂rj∂rl

􏼢 􏼣

ψlψj, (8) 

B4 = ψiψl
∂4U

∂ri∂rl∂rk∂rj

􏼢 􏼣

ψkψj (9) 

quantify the nonlinearity of the energy landscape along that mode.
Given a vibration in the energy landscape as defined by an 

eigenvector, the corresponding energy minimum is said to be “sta-
ble” provided that the minimum is the deepest in its neighbor-
hood. Under the quartic approximation of the energy near the 
minimum, such stability is achieved when (18)

B2
3 ≤ 3B2B4. (10) 

Effect of minimization protocol
Simulated models studying the properties of amorphous solids 
have typically been systems under periodic boundaries. It has 
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been shown that in such systems, the CG minimization protocol 
generates configurations with stable minima, provided that con-
figurations are obtained from a sufficiently low parent tempera-
ture (32). However, the open-boundary configurations obtained 
by quenching the cutouts of zero-pressure PBC systems contain, 
among them, some inherent structures at unstable minima. We, 
therefore, explore an energy-minimization protocol that anneals 
the system into an ensemble comprised of primarily stable 
minima.

We find that different energy-minimization protocols drive the 
system to different minima. In Fig. 2a, we show the displacements 
incurred by each particle from a particular liquid configuration 
when undergoing energy minimization through two different pro-
tocols, namely DD and CG. While both procedures yield inherent 
structure configurations, they do not correspond to the same min-
imum. Most significantly, DD finds minima in a relatively ex-
panded region in the energy landscape as compared to CG and 
FIRE. In Fig. 3a, we present corroborating numerical evidence 
with particles undergoing relatively larger displacements in the 
case of DD. In order to qualify this difference, we compute the dis-
tance between the cutout liquid configuration and the energy- 
minimized solid configuration as

dc =

����������������
􏽘N

i=1

|􏿻r L
i − 􏿻r S

i |
2

􏽶
􏽵
􏽵
􏽴 , (11) 

where 􏿻r L
i and 􏿻r S

i represent the position of particle i in the liquid 
and solid configurations, respectively. In terms of the radial and 

tangential displacement incurred by particles at different radial 
distances,

d2
c = ∫

R

r=0r dr(|ur(r)|2 + |uθ(r)|2), (12) 

where ur(r) and uθ(r) are the radial and tangential displacement of 
particles at a radial distance r from the center of mass of the liquid 
droplet. In Fig. 3, we show the average (b) radial and (c) tangential 
displacement at different radial distances of the liquid configura-
tions. For the case of DD minimization, particles near the surface 
undergo comparatively larger displacement in the tangential dir-
ection, which results in a stable inherent structure. Since the vis-
cosity of the surrounding medium determines the exact extent of 
this search space, we use an appropriately chosen damping, opti-
mizing for both improved search area as well as speed.

We now consider the vibrational properties of the minima ob-
tained through the various energy minimization protocols. In 
Fig. 2, we show the lowest frequency vibrational mode of a solid con-
figuration obtained via (b) CG and (c) DD minimization of the same 
liquid configuration. Although both modes show signatures of simi-
lar quadrupolar vibrations, the inherent structure corresponding to 
(a) does not satisfy the stability criterion defined in Eq. 10.

An important difference between the ensembles of minima ob-
tained via the various protocols lies in their vibrational stability as 
defined in Eq. 10. Through Fig. 4, we assess the stability of each of 
the open-boundary solid configurations across the different mini-
mization protocols. We use the quartic Taylor expansion as illus-
trated in Eq. 6 along the direction specified by the lowest 

a b c d

Fig. 1. a) A two-dimensional solid generated from a 400 particle, circular “cutout” of a liquid configuration, via damped dynamics (DD) minimization 
under OBC. b) The first nonzero vibrational mode of the two-dimensional solid with a participation ratio of approximately 0.26 and a frequency 
ω ≈ 4.34 × 10−1, displaying typical quasilocalized characteristics. c) A three-dimensional solid configuration of 4, 096 particles under OBC generated using 
DD energy minimization. d) The first nonzero vibrational mode of the three-dimensional solid with a participation ratio of 0.0068 and a frequency 
ω ≈ 4.04 × 10−1. Note that the solid borders of the figures are to aid depth perception, especially in 3D. The systems themselves have no boundaries.

a b c

Fig. 2. a) Displacements incurred by each particle from the same liquid configuration when undergoing energy minimization through two different 
protocols, namely CG and DD. The eigenvectors corresponding to the lowest frequency vibrational modes of the solid configuration obtained via b) CG 
and c) DD minimization protocols. Under a quartic Taylor expansion of the landscape along the modes, the energy-minimized configuration achieved via 
b) CG is unstable and by c) DD is stable.
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frequency mode in order to extract the stability of the minimum. 
Interestingly, the CG and FIRE minimization protocols present 
many unstable inherent structures indicated by the data points 
above the stability line corresponding to (B2

3 = 3B2B4). At the 
same time, the DD minimizer produces predominantly stable in-
herent structures as shown by the data points being well within 

the regime of stability. This suggests that the DD minimizer allows 
the system to find a locally deeper minimum.

Since the choice of minimization protocol affects the stability of 
minima, we next examine its effects on the vibrational spectrum. In 
Fig. 5, we plot the distribution of the low-lying vibrational frequen-
cies of two-dimensional solid ensembles. While the VDoS of CG 
and FIRE minimized ensembles display the erstwhile universal low- 
frequency power law D(ω) ∼ ω4 (32, 34), ensembles generated via the 
DD minimizer show a power law of ω5 in the low-frequency regime, 
as has been seen previously in shear-stabilized systems (52). 
Generically the smaller the lowest frequency mode, the closer the 
system is to instability. An increase in the power of the VDoS from 
4 to 5 corresponds to a reduction in the proportion of such small- 
valued modes. Therefore, such a change is a signature of a trans-
formation to a more stable solid ensemble enabled by an appropri-
ate choice of an annealing energy minimizer.

In the inset of Fig. 5, we plot the distribution of

β =
B3
�������
3B2B4
√ , (13) 

where states within the dashed lines (|β| < 1) correspond to stable 
minima. We find that the stability condition is best satisfied by 
configurations obtained via DD minimization. Thus, we observe 
that the model system, under OBC, displays a correlation between 
stable minima and the vibrational stabilization of the correspond-
ing solid ensembles.

System size effects
It is well known that the low-frequency vibrational spectrum of 
amorphous solids contains system-spanning phonons in addition 
to localized vibrations (32). The long-wavelength phonons in a solid 
with linear dimension L, under PBC, possess a frequency that varies 
with system size as L−1. This decrease in the frequency of the pho-
nons with increasing system size leads to difficulty in the character-
ization of quasilocalization at low frequencies. At the same time, the 
regime of the VDoS that is most amenable to the study of quasilocal-
ized behavior are the frequencies below the first phonon (61). As the 
phonon frequencies become comparable to the frequencies of QLMs 
at larger system sizes, it is then necessary to perform a disorder aver-
aging over an increasingly large number of samples in order to distin-
guish these modes. This becomes computationally infeasible at very 
large system sizes. Additionally, QLMs also display finite-size effects 
when the extent of these modes becomes comparable to the size of 
the system (44). The softness of QLMs, therefore, becomes independ-
ent of system size once it surpasses the length scale of the localized 
vibration. In this context, very small system sizes have been shown to 
possess an excess of quasilocalized vibrations with D(ω) ∼ ωδ where 
δ < 4 (44–46), as the finite-size effects dominate in such situations.

Solids prepared under OBC can display additional surface ef-
fects in their low-frequency vibrational spectrum, as boundary ef-
fects not present in PBC systems also play a role. The stiffness of 
particle motion near the surface of the solid is small compared 
to the bulk of the material. Therefore, the eigenmodes are softer 
near the boundary of the solid. It is thus natural to expect that 
in small open-boundary solids, there will be stronger surface ef-
fects than in larger solids. This occurs in addition to the finite-size 
effects arising from the interplay between the size of the system 
and the size of the QLMs. It is therefore important to study the 
variation of the VDoS with system size under OBC in order to iden-
tify regimes of validity of the enhanced stability.

A quantitative characterization of the surface effects may be per-
formed through a measurement of the stress distribution within 

a

b c

Fig. 3. a) Distribution of the distances between the open-boundary liquid 
and solid configurations for different minimization protocols. Particles in 
configurations that underwent DD minimization show relatively larger 
displacements. (Inset) The distribution plotted in log-scale to highlight 
the difference at large dc. Average b) radial and c) tangential 
displacements incurred by particles at different radial distances. DD 
produces a large displacement of the particles in the tangential direction, 
further enhanced near the surface of the liquid as compared to other 
minimization protocols.

Fig. 4. Scatter plot of B2
3 against B2B4 with a sample size of 2 × 105 solid 

configurations. The dashed line corresponds to B2
3 = 3B2B4 with the region 

of stability lying below. CG and FIRE minimization protocols produce 
some inherent structures at unstable minima, whereas DD primarily 
generate stable minima.
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such solids. Moreover, since the low-lying VDoS is crucially sensitive 
to the macroscopic stress in the amorphous structure (52), it is rea-
sonable to assume that the finite-size effects displayed by the stress 
profiles also carry over to the VDoS. In PBC systems, the average 
stress displays homogeneity over the sample, and therefore the lo-
cal elastic behavior is also independent of the location in the solid. 
However, as the macroscopic stress is precisely zero in open- 
boundary solids, any bulk stress is necessarily counterbalanced by 
the stresses on a “boundary layer.” Such a distinct surface region 
possessing a typical thickness is yet another source of finite-size ef-
fects. Additionally, the local elasticity properties of the material are 
correlated with the local stress distribution, with particles near the 
boundary displaying lower stiffness in their interaction. In this con-
text, we study the boundary stress layer in solids prepared under 
OBC, in order to systematically analyze the finite-size effects pre-
sent in their low-frequency VDoS.

Stress distribution and the boundary layer
In Fig. 6, we describe the stress distributions which highlight 
the existence of a surface layer in an open-boundary solid. 
Specifically, in Fig. 6a and b, we plot the spatial distributions 
of the pressure and shear stress, respectively, as seen in open- 
boundary solids comprised of 900 particles. These stress pro-
files are constructed by averaging over 105 amorphous configu-
rations and using coarse-graining boxes each of dimension 
0.28 σAA × 0.28 σAA. The typical radius of a configuration is ap-
proximately 15 σAA resulting in about 9, 000 bins. Figure 6c 
plots the radial distribution of the pressure for amorphous sol-
ids of various sizes. The stress distributions display clear indi-
cations of a boundary layer, with the effects of the surface 
spanning over approximately 5 σAA. We also find that while 
the pressure in bulk is sensitive to the total size of the droplet, 
the thickness of the boundary layer is largely independent of 
the system size.

The microscopic stress field (σij(r)) can be expressed as

σij(r) = σ0
ij(r) + δσij(r), (14) 

where σ0
ij(r) represents the stress tensor of the initial liquid config-

uration and δσij(r) is the change in the stress tensor which results 

from the process of energy minimization. The original distribution 

of stress σ0
ij in the liquid is dependent on the preparation protocol. 

The effect of removing a circular cutout from the zero-pressure li-
quid configuration gives rise to a nontrivial stress distribution 
near the boundaries of the cutout. This excess stress causes the 
particles near the edges to be displaced further inwards (due to 
the attractive nature of the interaction) near the boundaries. 
This leads to a new stress-balanced state,

∂iσij(r) = 0, (15) 

with δσij displaying larger changes near the boundary. The condi-

tion of mechanical equilibrium at the boundary of the solids is sat-
isfied when the normal force acting on the surface due to the 
internal pressure exactly balances the surface tension force. Our 
numerical observations suggest that the stress profile within the 
surface layer is largely independent of the system size, leading 
to a constant surface tension across different system sizes. This 
suggests the bulk pressure will decrease as the radius of the solid 
is increased. In Fig. 6d, we plot the bulk pressure for different 

system-size solids. We observe a P ∼ 1
R scaling of the bulk pressure 

with the radius of the solid droplet R, which is consistent with a 
“Laplace law” for the pressure in a droplet (62).

Vibrational density of states
Having characterized the boundary stress layer, we next turn to the 
system size dependence of the VDoS. We expect the effects of the 
boundary to be significant only in system sizes for which the width 
of the boundary is comparable to the radius of the droplet. In order 
to discern the lengthscales corresponding to such a crossover, we 
analyze solids of various system sizes with particle numbers ranging 
from N = 144 to 1600 in 2D and from N = 216 to 10,000 in 3D.

In Fig. 7, we report the effect of system size on the low- 
frequency vibrational spectrum of open-boundary solids in 2D. 

Fig. 5. Distribution of the low-frequency vibrational modes of a 
400-particle system in 2D under OBC. The histogram is generated by 
sampling the first 100 nonzero eigenvalues of 3 × 105 configurations. The 
solid ensembles generated using CG and FIRE minimizers display a 
low-frequency behavior of ω4, whereas using the DD minimizer displays 
ω5. (Inset) Distribution of the stability factor β = B3/

�������
3B2B4
√

for solids 
obtained via the various minimization protocols. The dashed vertical 
lines correspond to |β| = 1, with the enclosed regions containing stable 
configurations.

a b

c d

Fig. 6. Spatial distribution of the a) pressure and b) shear stress in solids 
of system size N = 900. The stress profile is constructed by coarse-graining 
over bins of dimension 0.28 σAA × 0.28 σAA and averaging over 105 solid 
configurations. c) Radial distribution of pressure at different system sizes. 
Boundary layers approximately five particles thick are observed in all 
systems, independent of size. d) Bulk pressure as a function of system 
radius. We observe a 1R scaling of the bulk pressure where R is the radius of 
the solid droplet.
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The small systems (N = 144, 256) display a higher degree of soft-
ness in their vibration, as can be seen from their low-frequency 
behavior of D(ω) ∼ ω4.5. The VDoS of systems with particle num-
bers equal to and larger than 400 appear to exhibit a low- 
frequency regime of D(ω) ∼ ω5. This shows a crossover as the 
size of the system is increased beyond a length scale, with the low- 
frequency VDoS showing a significant change in the power law, 
with the exponent varying from 4.5 to 5 in 2D.

The enhanced stability in the VDoS at large system sizes sug-
gests that QLMs in the bulk result in the power law ω5, whereas 
modes localized on the surface are much softer and more un-
stable. We show further analysis comparing bulk and boundary 
localization in the next section. Finally, such behavior in the 
thermodynamic limit of the OBC systems under consideration is 
consistent with earlier studies in PBC systems (52).

In Fig. 8, we plot the VDoS for different system sizes in 3D. Here we 
observe a low-frequency behavior of D(ω) ∼ ω4.5 in contrast to the re-
sults in 2D. In the next section, we perform further analyses to exam-
ine this behavior. Moreover, as may be seen in the inset of Fig. 8, we 
further confirm the robustness of this result by examining the VDoS 
of solids generated at a much higher degree of annealing by utilizing 
a damping constant that is one order of magnitude smaller (γ = 0.01).

Eigenmode localization—surface vs bulk
In this section, we provide further analysis of the lowest frequency 
vibrational modes in 2D in order to determine the potential source 
of the stable vibrations achieved under OBC.

The spatial extent of a mode may be evaluated by measuring 
the participation ratio (PR),

PR =
(
􏽐N

i=1 〈ψi ∣ ψi〉)
2

N
􏽐N

i=1 (〈ψi ∣ ψi〉)
2 , (16) 

where |ψk
i 〉 denotes the d-dimensional component of the eigen-

mode ψk, corresponding to particle i. System-spanning modes pos-
sess a PR close to unity, while spatially localized modes display a 
PR ∼ 1/N.

The contribution of the particles on the surface of the solid to a 
particular mode may then be estimated through the “Surface 
Participation” (SP) as defined below:

ψ2
s (k) =

􏽘

i∈surface
〈ψk

i ∣ ψk
i 〉. (17) 

The surface is defined as encompassing all the particles belong-
ing to the boundary layer as determined by the stress analysis de-
scribed in the previous section. Modes localized on the surface of 
the solid display an SP close to 1, whereas a vibration that is local-
ized deeper within the bulk of the solid incurs an SP closer to 0. In 
Fig. 9a, we plot the probability distribution of SP for the lowest fre-
quency modes in two-dimensional solids of system size N = 400. 
The peak of the distribution corresponds to modes with extended, 
system-spanning vibrations that all particles participate in. By ob-
servation, we consider modes with an SP ≤ 0.7 to be predominant-
ly bulk-localized vibrations and modes with an SP ≥ 0.8 to be 
predominantly surface-localized. In Fig. 9b and c, we plot histo-

grams of the lowest frequency divided by ωδ
min in order to extract 

the power law. We find that bulk-localized modes (Fig. 9b) display 
the stabilized δ ≈ 5 while the surface-localized modes (Fig. 9c) pre-
sent a more unstable δ ≈ 4.5. This points to the possibility that the 
low-stress environment of the bulk contributes stable vibrations, 
while the large stresses at the surface result in modes of lower sta-
bility. Furthermore, such a separation potentially explains the 
large degree of softness observed in the vibrational spectrum at 
small system sizes.

We now provide a characterization of the lowest frequency vi-
brational modes in three-dimensional open-boundary solids. We 
study the contribution of surface particles on these modes 
through their “surface participation” (SP) as defined in Eq. 17. In 
Fig. 10a, we plot the probability distribution of SP corresponding 
to the lowest frequency modes in three-dimensional solids of vari-
ous system sizes. The modes with a value of SP corresponding to 

Fig. 7. System size dependence of the low-frequency vibrational 
spectrum of open-boundary solids in 2D. We have sampled the first 100 
nonzero eigenvalues of 2 × 105 configurations for system sizes N = 144 
and 256. The histograms for the larger system sizes are constructed using 
5 × 105 configurations. At small system sizes, the surface effects are more 
pronounced leading to more soft modes in their vibrational spectrum. 
They display a D(ω) ∼ ωδ with δ < 5 in the low-frequency regime. Such 
effects are reduced upon increasing the size with large systems displaying 
a D(ω) ∼ ω5.

Fig. 8. System size dependence of the low-frequency vibrational 
spectrum of three-dimensional open boundary solids generated by 
annealing (γ = 0.1). We sample the first 100 nonzero eigenvalues of 2 × 105 

configurations for system sizes N = 512, 2,197, and 4, 096. For the larger 
system of size N = 10,000, the histogram is generated by sampling 8 × 104 

configurations. (Inset) Distribution of low-frequency modes of various 
system sizes of three-dimensional solids generated via much slower 
annealing (γ = 0.01). These distributions are drawn by sampling the first 
100 low-frequency modes of at least 80,000 configurations for each 
system size. Solids corresponding to all the system sizes and degrees of 
annealing studied display a D(ω) ∼ ω4.5 in the low-frequency regime of 
their VDoS.
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the peaks of the distributions are extended, system-spanning vi-
brations. In the case of the distribution corresponding to a system 
size N = 4, 096, we define the modes with SP ≤ 0.82 as being pre-
dominantly bulk-localized vibrations and modes with ≥ 0.9 as 
predominantly surface-localized. In Fig. 10b and c, we plot histo-
grams of the lowest frequency for bulk and surface-localized 
modes, respectively. We find that bulk-localized modes display a 
δ ≈ 4.5 and surface-localized modes show a δ ≈ 4.

Effect of confining stresses
In this section, we show that the vibrational properties of systems 
under periodic boundaries can by reproduced by imposing macro-
scopic stresses on open-boundary solids.

The stresses in a system are described through the force mo-
ment tensor, defined as

Σαβ =
􏽘

i

􏽘

j

f ij
α rij

β = σαβA, (18) 

where f ij
α is the α-component of the force on particle i by particle j, 

rij
β is the β-component of the vector distance between the particles 

i and j, σαβ is the macroscopic stress tensor and A is the area of the 
two-dimensional system. Solids prepared under OBC have pre-
cisely zero macroscopic stresses, i.e. σxx = σyy = σxy = 0. As de-

scribed in the previous sections, such systems display a 

D(ω) ∼ ωδ with δ > 4, in contrast to PBC systems where δ = 4. It is, 

therefore, interesting to analyze the effects of re-introducing 
stresses on the vibrational spectrum of solids.

In order to accomplish this, we have studied the vibrational 
modes of solids confined in a radially symmetric harmonic trap 
centered at the center of mass (CM) of the system, as follows:

U(r1, r2, . . . rn) = V(r1, r2, . . . rn) +
1
2

􏽘N

i=1

κ|ri − rCM|
2, (19) 

where κ is the spring constant of the trap, rCM is the location of 
the CM and V(r1, r2, . . . rn) represents the pair-wise particle 
interaction. We then perform DD to obtain energy-minimized 
solid configurations. Since the center of the harmonic trap is 
fixed, it breaks translational symmetry. However, it being radi-
ally symmetric, the system retains one zero mode correspond-
ing to global rotations. The translational zero modes are 
substituted with eigenvalues corresponding to the stiffness of 
the confining harmonic potential. We, therefore, sample the 
low-frequency modes while excluding the zero modes as well 
as this trivial addition to the spectrum. In Fig. 11, we display 
the effect of confinement on the low-frequency vibrational 
spectrum at various strengths of the harmonic trap. 
Remarkably, we find that confinement results in a higher de-
gree of softness in the vibrational spectrum of the solids. 
Increasing the stiffness constant results in large shear stresses 
in the solid ensemble with a corresponding change in the VDoS 

from D(ω) ∼ ω5 to D(ω) ∼ ω4.

a

b c

Fig. 9. a) Distribution of “Surface Participation” (SP) for the lowest 
frequency modes in two-dimensional solids of system size N = 400. Modes 
localized on the surface of the solid display an SP of 1, whereas when 
SP = 0, the vibration is limited to the inner bulk. The peak of the 
distribution corresponds to extended modes spanning the whole solid. 
The distribution of the lowest frequency modes with predominantly b) 
bulk and c) surface localizations. Here, modes corresponding to an SP ≤ 
0.7 are considered to be bulk-localized vibrations and modes with an SP ≥ 
0.8 are considered surface-localized vibrations. Both histograms are 
constructed using 105 lowest frequency modes. The bulk-localized modes 
display a δ = 5, whereas surface-localized modes show a δ = 4.5.

a

b c

Fig. 10. a) Distribution of SP for the lowest frequency modes in 
three-dimensional solids of system sizes N = 2, 197, 4, 096, and 10,000. 
(Inset) Radial distribution of pressure for three-dimensional solids of 
various system sizes. In b) and c), we plot P(ωmin) divided by ωδ

min for 

bulk and surface localized modes, respectively. Modes corresponding to 
SP ≤ 0.82 are considered bulk-localized vibrations, and modes with SP ≥ 
0.9 are considered to be surface-localized. Both histograms are 
constructed using samples of the lowest frequency modes from 5 × 104 

configurations. Bulk-localized modes display a δ ≈ 4.5, whereas 
surface-dominated modes show δ ≈ 4.
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Conclusion and discussion
In this paper, we have performed a detailed characterization of the 
vibrational modes of amorphous solids prepared under OBC in both 
2D and 3D. We showed that structures prepared under OBC differ 
crucially in their stability properties in comparison to solids pre-
pared with PBC. Specifically, we observed that the D(ω) ∼ ωδ with δ = 
4 seen in systems under PBC is modified to a δ ≈ 5 in 2D and δ ≈ 4.5 
in 3D, for solids under OBC. This points to the fact that open- 
boundary solids which lack any macroscopic stresses are inherently 
more stable than their periodic boundary counterparts. These results 
reinforce the phenomenon observed by Krishnan et al. (52) where 
shear-stabilized (σαβ = 0 ∀α ≠ β) configurations under PBC display 
an increase in the exponent to δ ≈ 5. Further, we probed the nature 
of energy minima of systems under OBC through an analysis of the 
anharmonic coefficients associated with their lowest frequency vi-
brational mode. Surprisingly we have found that the anharmonic 
stability of the minimum is sensitive to the protocols employed in 
generating solid configurations. Moreover, the nature of the minima 
under consideration is also correlated with a change in the exponent 
of the VDoS. Specifically, the ensembles with unstable minima cor-
respond to a D(ω) ∼ ω4, whereas ensembles with stable minima 
show larger exponents. In particular, we observed clear enhance-
ments in the stability of configurations resulting from dissipative 
dynamical processes that anneal the system when compared to 
those obtained via quenching minimization protocols. Next, we 
also characterized the dependence of the low-frequency modes on 
the system size. Solids at small systems sizes show a higher degree 
of softness in their low-frequency vibrations, as evidenced by a de-
crease in the exponent of the VDoS. We also performed an analysis 
of eigenmode localizations on the boundary and bulk of the system 
in order to decipher the source of the enhanced stabilization in sys-
tems under OBC. We found strong indications that the bulk of the 
solid predominantly contains stable vibrations, whereas the surface 
supports unstable modes. Finally, in order to isolate the cause of in-
stability under PBC, we studied the vibrational spectrum of confined 
solids using a harmonic trap that introduces finite macroscopic 

stresses in the solid. We indeed showed that the D(ω) ∼ ω4 behavior 
of the VDoS is recovered with an increase in the strength of the con-
finement. This is consistent with recent work where it has been 
shown that an increasing strain corresponds to an increase in the 
propensity for low-frequency modes (63).

Our study highlights aspects of the protocols used to create 
amorphous structures that have direct consequences on the nature 
of the sampled energy minima. We showed that various energy- 
minimization procedures populate qualitatively different minima 
of the landscape, as has also been observed in previous studies 
(64, 65). Our work in the context of open-boundary solids sheds light 
on the sparse nature of stable minima in such realistic systems. 
These results further raise important questions about the limits of 
stability that may be achieved through sufficient annealing.

Through our analysis of the stress profiles of solids under OBC, 
we found that the crossovers between the stable and unstable be-
haviors of the VDoS are well described by a bulk-boundary decom-
position of the solids. The enhanced stability is derived from the 
low-stress environment of the bulk of the solid supported by con-
stant boundary stress. These results point to the fact that the 
frozen-in stresses are crucial in determining the stability of the 
amorphous solids as well as their VDoS. It would be interesting to 
use the characterization of the boundary layer and stress distribu-
tions that appear in such confined systems to understand the corre-
lations between the macroscopic stress tensor and the distribution 
of eigenmodes.

Notably, our ensembles exhibit liquid-like surface tensions, as 
seen by the conformance of bulk pressures to the Laplace law. 
This observation bares further examination in order to probe 
any correlation to the enhanced stability of open-boundary solids. 
Although our results for the cutout protocol reveal striking prop-
erties of vibrations in solids under OBC, it would be intriguing to 
further characterize this behavior with other preparation proto-
cols, such as by evaporation and deposition, which is of direct ex-
perimental relevance. Finally, our results in three-dimensional 
systems regarding their smaller power-law exponent D(ω) ∼ ω4.5 

in comparison to two-dimensional systems is surprising in the 
context of earlier work displaying a universal ω5 behavior in 
shear-stabilized systems under PBC. This points to the possibility 
that systems in higher dimensions support more localization of vi-
brations. It would be interesting to explore aspects of this nonun-
iversality in open-boundary systems.
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Fig. 11. Effect of confinement on the vibrational spectrum of 
two-dimensional solids of system size N = 900. We have sampled 
eigenvalues of 105 configurations for different stiffness constants. (Inset) 
Shows the sample-to-sample distribution of shear stress of the solids for 
different stiffness of the harmonic interaction. Area A of the confined 
solids is chosen from the radial stress distribution of the solids. Increasing 
the stiffness constant results in large shear stress fluctuation on the solid 
ensemble, which changes the VDoS from D(ω) ∼ ω5 to D(ω) ∼ ω4 in the 
low-frequency regime of the solids.
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25 Ji W, Popović M, de Geus TWJ, Lerner E, Wyart M. 2019. Theory for 

the density of interacting quasilocalized modes in amorphous 

solids. Phys Rev E. 99(2):023003.
26 Marruzzo A, Schirmacher W, Fratalocchi A, Ruocco G. 2013. 

Heterogeneous shear elasticity of glasses: the origin of the boson 

peak. Sci Rep. 3(1):1–7.
27 Schirmacher W. 2011. Some comments on fluctuating-elasticity 

and local oscillator models for anomalous vibrational excitations 

in glasses. J Non Cryst Solids. 357(2):518–523.
28 Baggioli M, Zaccone A. 2022. Theory of sound attenuation in 

amorphous solids from nonaffine motions. J Phys Condens 

Matter. 34(21):215401.
29 Szamel G, Flenner E. 2022. Microscopic analysis of sound attenu-

ation in low-temperature amorphous solids reveals quantitative 

importance of non-affine effects. J Chem Phys. 156(14):144502.
30 Franz S, Parisi G, Urbani P, Zamponi F. 2015. Universal spectrum 

of normal modes in low-temperature glasses. Proc Natl Acad Sci 

USA. 112(47):14539–14544.
31 DeGiuli E, Lerner E, Brito C, Wyart M. 2014. Force distribution af-

fects vibrational properties in hard-sphere glasses. Proc Natl Acad 

Sci USA. 111(48):17054–17059.
32 Lerner E, Bouchbinder E. 2021. Low-energy quasilocalized excita-

tions in structural glasses. J Chem Phys. 155(20):200901.
33 Kapteijns G, Bouchbinder E, Lerner E. 2018. Universal nonpho-

nonic density of states in 2D, 3D, and 4D glasses. Phys Rev Lett. 

121(5):055501.
34 Lerner E, Düring G, Bouchbinder E. 2016. Statistics and properties 

of low-frequency vibrational modes in structural glasses. Phys 

Rev Lett. 117(3):035501.
35 Richard David, et al. 2020. Universality of the nonphononic vibra-

tional spectrum across different classes of computer glasses. 

Phys Rev Lett. 125(8):085502.
36 Paoluzzi M, Angelani L, Parisi G, Ruocco G. 2020. Probing the 

Debye spectrum in glasses using small system sizes. Phys Rev 

Res. 2(4):043248.
37 Angelani L, Paoluzzi M, Parisi G, Ruocco G. 2018. Probing the 

non-Debye low-frequency excitations in glasses through random 

pinning. Proc Natl Acad Sci USA. 115(35):8700–8704.
38 Mizuno H, Shiba H, Ikeda A. 2017. Continuum limit of the vibra-

tional properties of amorphous solids. Proc Natl Acad Sci USA. 

114(46):E9767–E9774.
39 Wang L, et al. 2019. Low-frequency vibrational modes of stable 

glasses. Nat Commun. 10(1):1–7.
40 Bonfanti S, Guerra R, Mondal C, Procaccia I, Zapperi S. 2020. 

Universal low-frequency vibrational modes in silica glasses. 

Phys Rev Lett. 125(8):085501.
41 Das P, Hentschel H, Lerner E, Procaccia I. 2020. Robustness of 

density of low-frequency states in amorphous solids. Phys Rev 

B. 102(1):014202.
42 Das P, Procaccia I. 2021. Universal density of low-frequency 

states in amorphous solids at finite temperatures. Phys Rev Lett. 

126(8):085502.

10 | PNAS Nexus, 2023, Vol. 2, No. 9

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/2/9/pgad289/7259990 by Tata Institute of Fundam

ental R
esearch user on 02 O

ctober 2023

https://doi.org/10.48550/arXiv.2303.07147
https://doi.org/10.48550/arXiv.2303.07147
https://github.com/csurajit/Open_boundary_Amorphous_VDoS/
https://github.com/csurajit/Open_boundary_Amorphous_VDoS/


43 Stanifer E, Morse PK, Middleton AA, Manning ML. 2018. Simple 
random matrix model for the vibrational spectrum of structural 
glasses. Phys Rev E. 98(4):042908.

44 Lerner E. 2020. Finite-size effects in the nonphononic density of 
states in computer glasses. Phys Rev E. 101(3):032120.

45 Lerner E, Bouchbinder E. 2017. Effect of instantaneous and con-
tinuous quenches on the density of vibrational modes in model 
glasses. Phys Rev E. 96(2):020104.

46 Lerner E, Bouchbinder E. 2022. Nonphononic spectrum of two- 
dimensional structural glasses. J Chem Phys. 157(16):166101.

47 Wang L, Fu L, Nie Y. 2022. Density of states below the first sound 
mode in 3D glasses. J Chem Phys. 157(7):074502.

48 Wang L, Szamel G, Flenner E. 2021. Low-frequency excess vibra-
tional modes in two-dimensional glasses. Phys Rev Lett. 127(24): 
248001.

49 Wang L, Szamel G, Flenner E. 2023. Scaling of the non-phononic 
spectrum of two-dimensional glasses. J Chem Phys. 158:126101.

50 Yu Y, 2022. The ω3 scaling of the vibrational density of states in 
quasi-2D nanoconfined solids. Nat Commun. 13(1):3649.

51 Dagois-Bohy S, Tighe BP, Simon J, Henkes S, Van Hecke M. 2012. 
Soft-sphere packings at finite pressure but unstable to shear. 
Phys Rev Lett. 109(9):095703.

52 Krishnan VV, Ramola K, Karmakar S. 2022. Universal non-Debye 
low-frequency vibrations in sheared amorphous solids. Soft 
Matter.18:3395–3402.

53 Tanguy A, Wittmer JP, Leonforte F, Barrat J-L. 2002. Continuum 
limit of amorphous elastic bodies: a finite-size study of low fre-
quency harmonic vibrations. Phys Rev B. 66:174205.

54 Brüning R, St-Onge DA, Patterson S, Kob W. 2008. Glass transi-
tions in one-, two-, three-, and four-dimensional binary 

Lennard–Jones systems. J Phys Condens Matter. 21(3):035117.

55 Kob W, Andersen HC. 1995. Testing mode-coupling theory for a 

supercooled binary Lennard–Jones mixture I: the van Hove cor-

relation function. Phys Rev E. 51(5):4626–4641.
56 Mandal R, Bhuyan PJ, Chaudhuri P, Dasgupta C, Rao M. 2020. 

Extreme active matter at high densities. Nat Commun. 11(1):1–8.
57 Bitzek E, Koskinen P, Gähler F, Moseler M, Gumbsch P. 2006. 

Structural relaxation made simple. Phys Rev Lett. 97(17):170201.
58 Shewchuk JR. 1994. An introduction to the conjugate gradient 

method without the agonizing pain. Pittsburgh, USA.
59 A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. 

M. Brown, P. S. Crozier, P. J. in ′t Veld, A. Kohlmeyer, S. G. 

Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. 

Trott, S. J. Plimpton. 2022. LAMMPS - a flexible simulation tool 

for particle-based materials modeling at the atomic, meso, and 

continuum scales. Comp Phys Comm. 271:10817.
60 Intel. 2021. Math Kernel Library.
61 Gartner L, Lerner E. 2016. Nonlinear modes disentangle glassy 

and Goldstone modes in structural glasses. SciPost Phys. 1(2):016.
62 Behroozi F. 2022. A fresh look at the Young-Laplace equation and 

its many applications in hydrostatics. Phys Teach. 60(5):358–361.
63 Kriuchevskyi I, Sirk TW, Zaccone A. 2022. Predicting plasticity of 

amorphous solids from instantaneous normal modes. Phys Rev E. 

105(5):055004.
64 Angelani L, Ruocco G, Sampoli M, Sciortino F. 2003. General fea-

tures of the energy landscape in Lennard–Jones-like model 

liquids. J Chem Phys. 119(4):2120–2126.
65 Nishikawa Y, Ozawa M, Ikeda A, Chaudhuri P, Berthier L. 2022. 

Relaxation dynamics in the energy landscape of glass-forming 

liquids. Phys Rev X. 12(2):021001.

Chakraborty et al. | 11
D

ow
nloaded from

 https://academ
ic.oup.com

/pnasnexus/article/2/9/pgad289/7259990 by Tata Institute of Fundam
ental R

esearch user on 02 O
ctober 2023


	Enhanced vibrational stability in glass droplets
	Introduction
	Model and simulation details
	Damped dynamics
	FIRE minimization
	CG minimization

	Stable vibrational modes
	Anharmonic stability analysis
	Effect of minimization protocol

	System size effects
	Stress distribution and the boundary layer
	Vibrational density of states

	Eigenmode localization—surface vs bulk
	Effect of confining stresses
	Conclusion and discussion
	Acknowledgments
	Funding
	Author contributions
	Preprints
	Data availability
	References




