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We analyze the fluctuations in particle positions and interparticle forces in disordered crystals composed
of jammed soft particles in the limit of weak disorder. We demonstrate that such athermal systems are
fundamentally different from their thermal counterparts, characterized by constrained fluctuations of forces
perpendicular to the lattice directions. We develop a disorder perturbation expansion in polydispersity
about the crystalline state, which we use to derive exact results to linear order. We show that constrained
fluctuations result as a consequence of local force balance conditions, and are characterized by non-
Gaussian distributions, which we derive exactly. We analytically predict several properties of such systems,
including the scaling of the average coordination with polydispersity and packing fraction, which we verify
with numerical simulations using soft disks with one-sided harmonic interactions.
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Introduction.—Disorder in solids can originate from
various sources including quenched impurities, polydisper-
sity in particle sizes, as well as their random thermal motion
[1–3]. In thermal systems, temperature introduces a natural
disorder strength that governs the scale of microscopic
fluctuations [4], and consequently controls macroscopic
properties. However, many disordered systems when
cooled to low temperatures begin to display marked
deviations from thermal behavior [5], with temperature
playing only a weak role in global properties. Examples of
such “athermal” materials include systems displaying
glassy behavior [6,7], and jammed packings of particles
[8]. Jammed packings arise in a variety of natural contexts
and have been the subject of intense scrutiny in recent years
[9–12]. At low temperatures such systems are governed
purely by the constraints of mechanical equilibrium, with
disorder arising from their many possible arrangements.
Although their properties have been sought to be modeled
within thermal frameworks [13,14], including with temper-
ature-like quantities such as angoricity [15,16], construct-
ing a statistical mechanical theory for such materials has
remained elusive. While many studies have focused on the
statistical properties of jammed soft particles [17,18], in
particular close to the unjamming transition [19–23], a clear
understanding of the nature of the jammed phase and its
description within a microscopic framework is still lacking.
It is therefore important to develop exact theoretical
techniques with which to treat such systems.
In this Letter we present exact results for fluctuations and

distribution functions in jammed soft particle packings. We
show that athermal disorder characterized by polydisper-
sity, induces fundamentally different statistical properties in
jammed systems as compared to thermal disorder. In order
to make analytic predictions we make use of a well-known

paradigm where exact results are obtainable: that of
crystals. The stability and response of crystals to disorder
has been an enduring problem in physics, and several
frameworks have focused on thermal fluctuations in crys-
tals, as well as properties of asperities, disinclinations and
defects [1,24]. However the properties of crystals com-
posed of jammed particles, where polydispersity introduces
an athermal disorder have been relatively less studied
[25–27]. We demonstrate that in such athermal crystals
the constraints of mechanical equilibrium lead to highly
constrained fluctuations of the interparticle forces, in
comparison to thermal fluctuations which violate these
local constraints. We introduce a disorder perturbation
expansion about the crystalline state which allows us to
predict several properties of the system including the
fluctuations in positions, forces, and bond angles. We
use this theory to analytically predict non-Gaussian dis-
tributions for the components of forces orthogonal to the
original lattice directions, a feature absent from thermal
fluctuations.
We consider a system of frictionless disks in two

dimensions interacting through a pairwise one-sided poten-
tial that is now paradigmatic in the study of soft particles
and deformable foams [19,28]. The interaction is given by

Vσijðr⃗ijÞ ¼
ϵ

α

�
1 −

jr⃗ijj
σij

�
α

for rij < σij;

¼ 0 for rij ≥ σij: ð1Þ

Here r⃗ij ¼ r⃗i − r⃗j is the vector distance between the
particles i and j located at positions r⃗i and r⃗j, respectively,
and σij ¼ σi þ σj is the sum of the radii σi and σj of the two
particles. Since the interaction potential only depends on
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the scalar distance jr⃗ijj, the system can only sustain normal
forces. In this Letter, we present results for the harmonic
case α ¼ 2; however, our techniques can be generalized to
systems with different α. The forces are determined by

f⃗ij ¼
ϵ

σij

�
1 −

jr⃗ijj
σij

�
α−1

r̂ij; ð2Þ

where r̂ij is the unit vector along the r⃗ij direction. The
ground states of the system consist of configurations in
mechanical equilibrium; i.e., each particle is in force
balance withX

j

fxij ¼ 0;
X
j

fyij ¼ 0; ∀ i: ð3Þ

Here fxðyÞij are the xðyÞ components of the forces between
particles i and j, and the sum extends over all particles j in
contact with particle i.
When all the radii are equal, the minimum energy

configuration is a crystalline state with the positions of
the centers fr⃗i;0g forming a triangular lattice (see Fig. 1).
The distribution of the forces in the crystalline system is
given by

pðf⃗ijÞ ¼
1

6f0
δðjfj − f0Þδðθ − θ0ijÞ; ð4Þ

where the magnitude of the force f0 depends on the
packing fraction ϕ, and θ0ij is the angle between the
particles i and j in the triangular lattice arrangement.
Choosing the equal radii to be σi ¼ σ0 ¼ 1=2, the magni-
tude f0 is given by (see the Supplemental Material for
details [29])

f0 ¼ 1 −

ffiffiffiffiffi
ϕc

ϕ

s
: ð5Þ

Here ϕc is the packing fraction of the marginal crystal
with no overlaps between particles, with ϕc ¼ π=

ffiffiffiffiffi
12

p
≈

0.9069. The force vanishes for the marginal crystal
Δϕ ¼ ϕ − ϕc ¼ 0.
Thermal versus athermal fluctuations.—We begin by

analyzing the differences in the force distributions pro-
duced by thermal disorder (characterized by a temperature
T), and athermal disorder (characterized by a polydispersity
η). For the thermal case, we perform finite temperature
Monte Carlo simulations. We begin at the ground state, by
creating a triangular lattice of N equal sized disks in a
commensurate rectangular box (Ly ¼ ð ffiffiffi

3
p

=2ÞLx). The
fluctuations in the positions are then sampled using the
interactions given by Eq. (1) at a finite temperature T. As
the temperature is increased from T ¼ 0 to a finite value,
the distribution of the forces deviate from the pure
crystalline delta function peaks in Eq. (4), with a mean
f0 and a standard deviation ∝

ffiffiffiffi
T

p
. This broadening in the

force distribution occurs in the components of the forces
along the lattice directions fjj as well as orthogonal to the
lattice directions f⊥. Both these distributions display
Gaussian behavior as shown in Figs. 2(a) and 2(b).

FIG. 1. A section of a disordered crystal composed of jammed
soft particles. The particles are colored according to their
incremental size Δσi ¼ σi − σ0, where σi are their radii and
σ0 ¼ 1=2. When Δσi ¼ 0 the system settles into a triangular
lattice. The black arrows represent the change in the interparticle
forces from their values in the pure crystal in response to the
change in radii. For small disorder (polydispersity) the forces
fluctuate primarily along the lattice directions.

(a) (b)

(c) (d)

FIG. 2. (a) Two-dimensional distributions of the forces
pðfx; fyÞ in the thermal crystal. (b) Scaled distributions of the
fluctuations of the components of forces along (δfjj) and
orthogonal (δf⊥) to the original lattice directions. Both display
Gaussian fluctuations (marked with solid lines) with a variance
proportional to the temperature T. (c),(d) In contrast pðfx; fyÞ for
the athermal system displays highly constrained fluctuations
orthogonal to the original lattice directions as the polydispersity
(η) is increased. Here ϕ ¼ 0.92 and the number of particles is
N ¼ 2500.
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Similarly, we can characterize the fluctuations in forces
in the athermal system with increasing polydispersity. In
this case the temperature is set at T ¼ 0, and the system
samples only the ground state for every realization of the
disorder, i.e., states in mechanical equilibrium. Disorder is
introduced into the system by varying the radii of particles.
Starting from the state with all radii equal σi ¼ σ0 ¼ 1

2
(i.e.,

all σij ¼ 1), the radii are incremented as

σi ¼ ð1þ ηξiÞσ0; ð6Þ

where ξi are independent identically distributed (i.i.d.)
random variables chosen from an underlying distribution
pðξÞ. We choose this to be a uniform distribution in the
interval ½− 1

2
; 1
2
� [26]. The polydispersity parameter η quan-

tifies the amount of athermal disorder. For each realization of
the noisefξig, the system is allowed to settle into aminimum
energy configuration as a response to the change in radii. As
η is increased from zero, the forces once again deviate from
their pure crystalline values. We measure the distribution of
the components of forces parallel to the original lattice
directions pðfjjÞ as the strength of the disorder is increased.
This distribution is well fit by a Gaussian with the mean f0,
and standard deviation∝ η. This seems to suggest that these
fluctuations can be modeled by an effective thermal
Hamiltonian, with the polydispersity playing the role of a
temperature T ∝ η2. However, a striking difference between
thermal and athermal fluctuations emerges when one con-
siders the two dimensional distributions of the forces [as
shown in Figs. 2(c) and 2(d)]. The distribution of the
orthogonal componentspðf⊥Þ is highly confinedwithwidth
σ⊥ ≪ σjj. On this scale the fluctuations perpendicular
to the unperturbed lattice directions are negligible in
comparison to the fluctuations along the lattice directions.
Since the forces in the system are normal, these constrained
fluctuations also imply highly constrained fluctuations
in the bond angles θij. Moreover,pðf⊥Þ displays significant
non-Gaussian behavior with increasing polydispersity.
Remarkably, as we show below, this distribution can be
predicted theoretically. The non-Gaussian nature of this
distribution, along with the exact prediction is displayed
in Fig. 3.
Disorder perturbation expansion.—In order to theoreti-

cally characterize athermal fluctuations, we analyze the
response of the crystalline state in the limit of weak
disorder. This allows us to treat the polydispersity as a
perturbation about the crystalline state. Here we present an
outline of the computation, with details provided in the
Supplemental Material [29]. The radii in Eq. (6) can be
expressed as σi ¼ σ0 þ δσi, with δσi ∼OðηÞ. As a
response, the positions of the particles deviate from their
crystalline values fxi;0; yi;0g to a new mechanical equilib-
rium configuration fxi; yig. These positions can also be
expressed as an expansion in the disorder strength η, which
to lowest order is

xi ¼ xi;0 þ δxi;

yi ¼ yi;0 þ δyi: ð7Þ

Here δxi and δyi are small perturbations of OðηÞ. The
forces in Eq. (2) can then be expressed in terms of these
variables as an expansion, which to linear order is given by

δfxij ¼ Cxx
ij δxij þ Cxy

ij δyij þ Cxσ
ij δσij;

δfyij ¼ Cyx
ij δxij þ Cyy

ij δyij þ Cyσ
ij δσij: ð8Þ

Hereδxij¼δxi−δxj, δyij¼δyi−δyjwhereas δσij¼δσiþδσj.

The coefficients Cαβ
ij can be expressed purely in terms of the

positions of the crystalline state, and are translationally
invariant. We can exploit this invariance by considering
the equations of mechanical equilibrium [Eq. (3)] in
Fourier space. Using the forces in Eq. (8), the equations
for force balance can be expressed in Fourier space as

�
Axxðk⃗Þ Axyðk⃗Þ
Ayxðk⃗Þ Ayyðk⃗Þ

��
δxðk⃗Þ
δyðk⃗Þ

�
¼ δσðk⃗Þ

�
Dxðk⃗Þ
Dyðk⃗Þ

�
: ð9Þ

Here k⃗≡ ðkx; kyÞ ¼ ð2πl=2N; 2πm=NÞ are the reciprocal
latticevectors of the triangular lattice. The above equation can
be interpreted as the change in the position fields in response
to the “charges” introduced by the variation in the particle
radii. The inversion of this equation in Fourier space yields

FIG. 3. The distribution of f⊥ in the athermal system, display-
ing near-perfect agreement with the theoretical prediction in
Eq. (12) (solid lines). Here ϕ ¼ 0.92 and N ¼ 2500. This
distribution exhibits pronounced non-Gaussian behavior as the
disorder strength is increased, in contrast to the thermal system in
Fig. 2(b). (Inset) The distribution of fjj displays Gaussian
behavior. The predictions from the theory are displayed with
solid lines.

PHYSICAL REVIEW LETTERS 124, 168004 (2020)

168004-3



δxðk⃗Þ ¼ αðk⃗Þδσðk⃗Þ; δyðk⃗Þ ¼ βðk⃗Þδσðk⃗Þ: ð10Þ

The exact expressions for αðk⃗Þ and βðk⃗Þ are rather
cumbersome and we provide a detailed derivation in the
Supplemental Material [29].
We are now in a position to derive the fluctuations in the

positions of the particles in response to the athermal
disorder. For example, the fluctuations in x are given by

hδx2i i ¼
1

2L2

X
k⃗

αðk⃗Þαð−k⃗Þhδσ2i; ð11Þ

where N ¼ L2 is the number of particles in the system. The
fluctuations in the radii are i.i.d. variables with
hδσ2i ¼ η2=48. We note that this expression provides the
exact leading order coefficient of the variance in the
positions. In the Supplemental Material [29] we show
the excellent agreement between the above theoretical
prediction and our numerical simulations.
Non-Gaussian force distributions.—One of the surpris-

ing characteristics of athermal fluctuations in disordered
crystals is the appearance of non-Gaussian probability
distributions in the components of the forces perpendicular
to the lattice directions. Remarkably, these distributions can
be derived analytically using the perturbation theory in
polydispersity as we show below. The fluctuations in the

force magnitudes jfj¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2jjþf2⊥

q
≈fjj can be obtained from

the position fluctuations using Eq. (8) (see Supplemental
Material for details [29]). As the inversion in Fourier space
expresses the forces in the system as a linear combination
of the fluctuations in the radii, the distribution of jfj can be
shown to be a Gaussian with mean f0 and standard
deviation 0.157η. The distribution of fjj for various poly-
dispersities is shown in the inset of Fig. 3, along with the
theoretically predicted Gaussian distributions showing
excellent agreement. Following a similar argument as for
fjj, the fluctuations in the positions can also be used to
derive the fluctuations in the bond angles δθij ¼ θij − θ0ij.
The distribution of sinðδθÞ is once again a Gaussian
distribution with mean 0, and standard deviation
0.0813η. At linear order, the correlations between these
variables is small in comparison to their individual fluc-
tuations, and we may treat them as uncorrelated (see the
Supplemental Material [29]). These distributions can then
be used to derive the distribution of f⊥ ¼ jfj sin ðδθÞ. Since
the product of two Gaussian variables with nonzero means
exhibits non-Gaussian behavior [34], we find that the
distribution of f⊥ indeed begins to deviate from a
Gaussian distribution at large polydispersities. This distri-
bution is given by (with s≡ sin δθ)

pðf⊥Þ ¼
Z

∞

0

djfj
Z

1

−1
dspðjfjÞpðsÞδðf⊥ − jfjsÞ; ð12Þ

and can be evaluated analytically [35] (see the
Supplemental Material [29]). The pronounced non-
Gaussian behavior of the distribution pðf⊥Þ computed
using the above expression is displayed in Fig. 3, showing
near-perfect agreement with distributions obtained from
direct numerical simulations.
Average coordination.—Finally, we use the microscopic

predictions from our theory to compute a macroscopic
property of the system, namely the dependence of the
average coordination on other global parameters such as the
polydispersity and packing fraction. Since the magnitude of
the forces in the system can only take positive values, the
negative regions in the theoretical distribution of pðjfjÞ
represent the broken contacts in the system. Consequently
the average coordination to lowest order in η is given by
z ¼ 6

R∞
0 pðjfjÞdjfj. However, we have shown that the

distribution of jfj ≈ fjj is a Gaussian with mean f0, and
standard deviation 0.157η. The dependence of the mean
value of the force f0 on the packing fraction can be
obtained by Taylor expanding Eq. (5) up to the first order
in Δϕ, we have f0 ¼ Δϕ=2ϕc. This yields a theoretical
prediction for the average coordination in the system

z ¼ 3½1þ erfðCΔϕ=ηÞ�; ð13Þ

with C−1 ¼ 0.4440ϕc. Since all coordination related quan-
tities can be obtained from the underlying force distribution
pðjfjÞ, this theory predicts that the average coordination as
well as the susceptibilities for different packing fractions can
be collapsed with the scaling variable η=Δϕ, as has been
observed numerically in previous studies [26]. We plot the
variation of the average coordination with polydispersity
along with the above theoretical prediction in Fig. 4. Once
again this theory does well in tracking the behavior of this
nontrivial global parameter, and indeed predicts the scaling
with η=Δϕ perfectly. However, we note that the numerical
values of z obtained from simulations display a small
deviation from the predicted theoretical curve. We attribute
this to the system spanning rearrangements induced by
contact breaking events which cannot be exactly modeled
within a linear framework. In the SupplementalMaterial [29]
we provide details of this nonlinear contact breaking process
observed in the simulations.
Discussion.—In this Letter we have presented exact

results for the fluctuations of particle positions and inter-
particle forces in jammed soft particle crystals. The limit of
small disorder allowed us to express the local force balance
conditions as a set of linear equations relating the particle
coordinates and the particle radii. Exploiting the crystal
periodicity of the original lattice, the leading order coef-
ficients of the fluctuations of positions, forces, and relative
bond angles could be analytically predicted. This allowed
us to express the distribution of the components of the
forces perpendicular to the lattice directions as a product of
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two Gaussian variables, which displays non-Gaussian
fluctuations.
Since analytic results are rare in the study of disordered

jammed matter, it is surprising that many properties of
disordered crystals are amenable to theoretical computa-
tion. At higher disorder strengths, enough bonds break in
the system, and the angular fluctuations become decon-
fined, which could be considered to be a nonlinear effect.
Indeed this system exhibits a nontrivial phase transition to a
disordered amorphous phase with increasing disorder [26].
This transition is characterized by diverging fluctuations in
coordination numbers over different realizations, and it
would be interesting to understand this behavior by study-
ing interactions between defects in the near-crystalline
system. Finally, it would also be interesting to use the
techniques developed in this paper to predict how micro-
scopic constraints of force balance in such athermal
materials give rise to an emergent elasticity at large length
scales [36], with nontrivial stress transmission and rheo-
logical properties.
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