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Emergent power-law interactions in near-crystalline membranes
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We derive exact results for the fluctuations in energy produced by microscopic disorder in near-crystalline
athermal systems. Our formalism captures the heterogeneity in the elastic energy of polydisperse soft disks
in energy-minimized configurations. We use this to predict the distribution of interaction energy between two
defects in a disordered background. We show that this interaction energy displays a disorder-averaged power-law
behavior 〈δE〉 ∼ �−4 at large distances � between the defects. These interactions upon disorder average also
display the sixfold symmetry of the underlying reference crystal. Additionally, we show that the fluctuations in
the interaction energy encode the athermal correlations introduced by the disordered background. We verify our
predictions with energy-minimized configurations of polydisperse soft disks in two dimensions.
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Introduction. Disordered amorphous materials exhibit het-
erogeneity in their elastic properties and arise in several
physical as well as biological contexts. Examples include
jammed systems and granular materials [1–4], densely packed
tissues, cellular membranes [5–7], and systems displaying
glassy behavior [8]. Such materials are classified as athermal,
as they are only weakly affected by ambient thermal fluctua-
tions, being governed at the local scale by the constraints of
mechanical equilibrium [9–11]. These local constraints lead
to randomness at the microscopic scale and thus disordered
athermal systems are not described by the usual elasticity
theories in continuum [12–14], instead exhibiting emergent
elasticity properties upon disorder average [15]. Extending the
techniques of continuum elasticity to include the presence of
structural disorder, as well as developing a continuum theory
describing the mechanics and elasticity of disordered amor-
phous solids, remains an outstanding challenge [14–20].

The dynamics of athermal systems is governed primar-
ily by the motion in phase space through energy-minimized
configurations and therefore characterizing their energy land-
scape is of central importance. Localized sources of stress
play a key role in determining the energy density and also lead
to heterogeneous elastic properties of amorphous materials.
Interactions between stress defects in such systems involve
the elasticity of the entire network [21], which is sensitively
dependent on disorder. An average over disorder can lead
to effective or emergent interactions that arise in many mi-
croscopic theories of matter [22–25]. Disordered athermal
materials therefore provide an interesting arena where emer-
gent interactions mediated by an elastic embedding material
arise [26]. Characterizing the spatial distribution of the elas-
tic energy as well as the fluctuations in the energy density
produced by the underlying disorder is an important ingredi-
ent in any coarse-grained Hamiltonian-based elasticity theory.
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Although continuum elasticity theories describe the behavior
of systems at large length scales, they ignore the disorder
present at the granular level. A microscopic derivation of
interaction energies between defects is therefore useful in
characterizing such energy landscapes that are also of funda-
mental importance in describing the dynamics of amorphous
materials. However, the complexity of the energy landscape
and the associated states of mechanical equilibrium makes
such computations a challenging task.

In this context, near-crystalline jammed systems serve as
extremely useful theoretical models with which to study the
elasticity properties of disordered athermal materials. Near-
crystalline jammed materials are often able to capture several
nontrivial properties of amorphous solids [27–32] and pro-
vide a route towards a unified framework for crystalline and
amorphous elasticity. For example, random spring networks
have continued to serve as useful building blocks with which
to understand such complex many-particle systems [33].
Lattice-based models of elasticity, consisting of a crystalline
arrangements of soft particles, are also routinely employed to
understand elasticity properties as well as their breakdown at
the amorphous scale [28,34].

Several studies have sought to describe the interaction be-
tween defects within the framework of continuum elasticity
[12,35–37], which displays a power-law behavior at large
distances [21,38–45]. A crucial question therefore is whether
such elastic interactions can emerge with the introduction
of structural disorder in the system. However, despite the
importance and several previous studies, an exact prediction
of the energy of interaction between defects in disordered
elastic materials at the grain level has not been reported. In this
regard, exactly solvable models provide a fascinating arena to
explore the short-length-scale physics of disordered materi-
als. A prime candidate are near-crystalline jammed systems,
where several exact predictions incorporating the effects of
microscopic disorder can be made due to the simplicity of the
contact network [29,46–49].

In this Letter we present exact results for the fluctuation in
energy produced by microscopic disorder in near-crystalline
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athermal systems. Our formalism predicts the exact energy
of a system of soft disks with the quenched disorder in the
particle sizes. Using this, we derive the average interaction en-
ergy between defects placed at different locations in a elastic
membrane, which displays an emergent power-law behavior
at large distances. We also predict the exact distribution of the
energy of interaction between two defects in the polydisperse
background. Our results demonstrate that fluctuations in the
interaction energy between defects encode the effects of the
athermal disorder in the polydisperse backgrounds, a feature
absent in thermal fluctuations. Our theoretical results also pro-
vide insight into the orientation dependence of the interactions
between elastic inclusions in near-crystalline systems.

Disordered athermal crystals. We study a system com-
prised of minimum-energy configurations of soft disks inter-
acting through the well-studied one-sided potential [50,51]

Uσi j (�ri j ) =
{

K
α

(
1 − |�ri j |

σi j

)α
for ri j < σi j

0 for ri j > σi j .
(1)

Here �ri j = �r j − �ri is the vector distance between the ith and
jth particles located at positions �ri and �r j , respectively, and
σi j = σi + σ j is the sum of their individual radii. We set the
effective stiffness of the interactions to K = 1 for simplicity.
Although our results are valid for general α > 1, we present
results for the harmonic case (α = 2). Notably, the disorder
in this pairwise interaction is encoded in the quenched radii
{σi}. The interparticle forces are then given by �fi j = K

σi j
(1 −

|�ri j |
σi j

)α−1r̂i j , where r̂i j is the unit vector in the �ri j direction.
We begin with a collection of equal-size soft disks with σi =
σ0 = 1/2. The minimum energy configuration is a crystalline
state with the positions of the centers {�r (0)

i } forming a tri-
angular lattice. The marginal crystal, with packing fraction
φc = π/

√
12 ≈ 0.9069, has no overlaps between particles

and zero interparticle forces. We work with overcompressed
configurations φ > φc and the energy in the initial crystalline
state E (0)

i j is equal at each bond i j. The total energy of the
crystalline state is (see the Supplemental Material [52])

E (0) = 1

2

N∑
i=1

5∑
j=0

E (0)
i j = 3N

2

(
1 −

√
φc

φ

)2

, (2)

where N is the number of particles in the system. The su-
perscript (0) denotes the crystalline state with equal-size
particles. Next we introduce disorder in the system by varying
the radii of the particles as

σi = (1 + ηξi)σ0 = σ0 + δσi. (3)

Here ξi are independent and identically distributed random
variables. We choose a uniform underlying distribution of
ξi ∈ [− 1

2 , 1
2 ] [28]; however, our results are valid for any un-

derlying distribution in the particle sizes. Our present work is
focused on the regime of small polydispersity in the particle
sizes, in which contacts between particles are rarely broken.
Nevertheless, our predictions work fairly well in a regime
where few contacts are broken (see the Supplemental Material
[52]).

Exact displacement fields. We begin by deriving exact
displacement fields in energy-minimized configurations with

small disorder in particle sizes. For each realization of the
quenched disorder, the system is allowed to relax into an
energy-minimized state, which is accomplished using the
FIRE algorithm [53] in our numerical simulations. These
configurations therefore satisfy the conditions of mechanical
equilibrium, i.e.,

∑
j f x

i j = 0 and
∑

j f y
i j = 0, for each particle

at site i ≡ �r. Here f x(y)
i j are the x(y) components of the inter-

particle force between particles i and j in contact. Therefore,
in order to characterize the behavior of such a system, one
needs to simultaneously solve all the force balance equations,
which along with the force law yields a unique solution for
particle displacements [29,46]. This can be accomplished with
a systematic perturbation expansion about the crystalline or-
dered state, to linear order as well as higher orders [29,46,47].
When disorder is introduced into the system, the positions
of the particles deviate from their crystalline values {�r (0)

i } =
{x(0)

i , y(0)
i } to a new mechanical equilibrium configuration

{�r (0)
i + δ�ri} = {x(0)

i + δxi, y(0)
i + δyi}. The displacements can

be expressed as a formal expansion

δ�ri = δ�r (1)
i + δ�r (2)

i + δ�r (3)
i + · · · , (4)

where {δ�r (n)
i } = {δx(n)

i , δy(n)
i } represent the nth-order displace-

ment fields of magnitude O(ηn). We focus on the terms up
to second order δxi = δx(1)

i + δx(2)
i and δyi = δy(1)

i + δy(2)
i ,

which contribute to the leading-order terms in the energy of
the system. As the coefficients in the perturbation expansion
are drawn from the underlying crystalline arrangement, the
force balance equations can be solved hierarchically in Fourier
space to obtain the displacement fields at every order [29].
The incremental radii {δσ } and the lower-order displacement
fields act as sources that generate the displacement fields at
higher orders. At linear order, the displacements in Fourier
space as a response to the disorder {δσi} can be expressed as
δr̃μ,(1)(�k) = G̃μ(�k)δσ (�k) [29]. Here δσ̃ (�k) = ∑

�k ei�k·�rδσ (�r),
δrμ refers to δx and δy for μ = x, y, respectively, and G̃μ(�k)
represent the response Green’s functions in Fourier space. The
reciprocal lattice vectors for the triangular lattice arrangement
are �k ≡ (kx, ky) ≡ ( 2π l

2L , 2πm
L ) [54].

Energy of a disordered configuration. Importantly, the exact
displacement fields can be used to compute the excess energy
produced by an arbitrary configuration of excess radii over
the crystalline background. The energy Ei j = U (�ri j ) of each
bond i j can be expressed as a perturbation expansion in the
displacement fields as

Ei j = E (0)
i j +

∑
μ

eμ
i jδrμ

i j +
∑

μ

∑
ν

eμν
i j δrμ

i jδrν
i j

+ eσ
i jδσi j + eσσ

i j δσi jδσi j, (5)

where the indices μ, ν ≡ x, y, and δx(y)i j = δx(y) j − δx(y)i

represent the relative displacement fields up to all orders. The
coefficients eμ

i j and eμν
i j can be expressed purely in terms of the

reference crystalline structure and are therefore translationally
invariant, i.e., they do not depend on the site index i. Here E (0)

i j
represents the energy of each bond i j in a pure crystal with no
polydispersity in particle sizes. As the excess energy of the
system incorporates second-order terms, we group terms in
Eq. (5) that contribute up to second order. The excess energy
of each bond above the crystalline value can then be expressed
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FIG. 1. (a) Plot of the interaction kernel γ2(�k) in Fourier space,
displaying the underlying crystalline symmetries. (b) Average en-
ergy of interaction between defects placed a distance �� ≡ (X,Y )
apart. The average interaction energy displays positive and negative
regions, reflecting the underlying crystalline background.

to leading order as δEi j = Ei j − E (0)
i j = T (1)

1,i j + T (2)
1,i j + T (1)

2,i j .
We have explicitly

T (1)
1,i j = ex

i jδx(1)
i j + ey

i jδy(1)
i j + eσ

i jδσi j,

T (2)
1,i j = ex

i jδx(2)
i j + ey

i jδy(2)
i j ,

T (1)
2,i j = exx

i j δx(1)
i j δx(1)

i j + exy
i j δx(1)

i j δy(1)
i j + eyy

i j δy(1)
i j δy(1)

i j

+ exσ
i j δx(1)

i j δσi j + eyσ
i j δy(1)

i j δσi j + eσσ
i j δσi jδσi j, (6)

where the superscripts of T represent the order of the displace-
ment field solution contributing to the energy and subscripts
represent the order of the energy expansion. For example, T (1)

2,i j
represents the second-order term in the energy expansion us-
ing the linear-order solution to the displacement fields. These
terms are easily summed by taking Fourier transforms of the
relevant fields. Interestingly, the contribution from the term
containing the second-order displacement fields is precisely
zero, i.e.,

∑
i j T (2)

1,i j = 0 (see the Supplemental Material [52]).
The contributions from the other terms are∑

i j

T (1)
1,i j = γ1δσ̃ (0),

∑
i j

T (1)
2,i j =

∑
�k

γ2(�k)δσ̃ (�k)δσ̃ (−�k),

(7)

respectively, where γ1 = ∑
j 2eσ

i j and the exact expression for

the interaction kernel in Fourier space γ2(�k) is provided in
the Supplemental Material [52]. Interestingly, this function
displays the underlying crystalline symmetries as shown in
Fig. 1(a), which displacement correlations at linear order do
not [47]. Finally, grouping terms and dividing by 2 to avoid
double counting of bonds, the excess energy of an arbitrary
configuration of defects is then

δE ({δσi}) = 1
2

⎛
⎝γ1δσ̃ (0) +

∑
�k

γ2(�k)δσ̃ (�k)δσ̃ (−�k)

⎞
⎠. (8)

We note that this expression provides the exact energy of a
disordered configuration, given the incremental sizes {δσi} of
the particles.

Disorder-averaged defect interactions. We next use our for-
malism to compute the energy of interaction between defects
in a disordered background arising from polydispersity in
particle sizes. We consider two particles with larger radii δσ1

FIG. 2. Section of an energy-minimized configuration of a dis-
ordered jammed crystal with two defects. Disorder is introduced
into the particle radii (with initial values σ

(0)
i = 1/2), with a poly-

dispersity scale η = 5 × 10−6. The defect particles have an excess
size 5 × 10−3. (a) Displacements δ�r from the crystalline positions
are localized near the defects. (b) Excess interaction energy δEI

2d

between the defects is more heterogeneously distributed.

and δσ2 in excess of the polydispersity scale, placed a relative
distance �� apart. We place the defects at positions �0 = (0, 0)
and �� = (�x,�y); therefore δσ̃ (�k) = ∑

�r δσ (�r) exp(i�k · �r) =
δσ1 + δσ2 exp(i�k · ��). The energy of the system for the con-
figuration with two defects can be expressed as E = E (0) +
δE1d(�0) + δE1d( ��) + δEI

2d(�0, ��), where each of the terms
depends on the quenched disorder arising from the polydis-
persity {δσi}. Here δE1d(�0) and δE1d( ��) represent the excess
energy associated with the defects 1 and 2 placed in the
quenched background, respectively, and δEI

2d(�0, ��) repre-
sents the energy of interaction between the defects in the
presence of the quenched disorder. We therefore have

δEI
2d(�0, ��) = δE2d(�0, ��) − δE1d(�0) − δE1d( ��). (9)

The displacement fields as well as the interaction energy of a
disordered configuration with two defects using the expres-
sion (9) are plotted in Fig. 2. For large distances between
defects (| ��| → ∞), δE2d(�0, ��) → 0, and the total energy
of the system can be expressed as E∞ = E (0) + δE1d(�0) +
δE1d( ��). Therefore, the energy of interaction between two
defects can be obtained as δEI

2d(�0, ��) = E − E∞. As E∞ is
not accessible for finite system sizes, we consider the largest
possible separation between defects. When the two defects
are at a relative separation ��, we choose E∞ ≡ E�Lmax

, where
�Lmax represents the largest distance along ��. The energy of
interaction then takes the form δEI

2d( ��) = E �� − E�Lmax
. This

energy of interaction fluctuates for different realizations of
the underlying disorder in particle sizes. Crucially, the fluctua-
tions of δEI

2d in Eq. (8) are symmetric about the mean (see the
Supplemental Material [52] for details), leading to 〈δEI

2d〉 =
δEI

2d(η = 0), where 〈 〉 represents the disorder average over
realizations and δEI

2d(η = 0) represents the energy of the two
defects in the crystalline background. Using Eqs. (8) and (9)
(see the Supplemental Material [52]), the average energy of
interaction for a finite system can be expressed as〈
δEI

2d(�0, ��)
〉 = δσ1δσ2

∑
�k

γ2(�k)[cos(�k · ��) − cos(�k · �Lmax)].

(10)
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The presence of the δσ1δσ2 term in this expression implies
that the defects display both positive and negative interaction
energies, depending on the positive or negative incremental
sizes of the defects. Additionally, as the interaction kernel
γ2(�k) possesses the crystalline symmetries, the average in-
teraction energy also displays the sixfold symmetry of the
underlying crystalline background, with positive and negative
interactions along the lattice and off-lattice angles, respec-
tively. We plot the disorder-averaged interaction energy for
arbitrary separations �� = (X,Y ) in Fig. 1(b). Studies of in-
duced dipole interactions in continuum elasticity have also
revealed such an angular dependence of the interaction energy
[21]. However, our results demonstrate that these interactions
also emerge upon disorder average, with individual configu-
rations displaying large heterogeneity, which we characterize
below.

We next extract the asymptotic behavior of the average
interaction energy at large defect separations. We consider the
infinite-system-size limit where the summation in (10) can be
converted to an integral. The average energy of interaction
between two defects can then be expressed as

〈
δEI

2d

〉 = δσ1δσ2

4π2

∫ π

−π

∫ π

−π

γ2(�k) cos(�k · ��)dkxdky. (11)

The evaluation of this integral is rather involved and we pro-
vide the derivation in the Supplemental Material [52]. We
focus on defects separated in the x direction, and the final form
of the interaction energy in the large-distance limit (� → ∞)
is given by

〈
δEI

2d

〉 � C δσ1δσ2

�4
, C = 24

√
3(1 − 2ε)2(ε − 1)

π (3 − 4ε)2
. (12)

Here ε = 1 − R0, where R0 represents the separation be-
tween particles in the initial triangular arrangement with R0 =√

φc/φ. In Fig. 3 we plot the numerically obtained interaction
energies between two defects placed in the x direction for
φ = 0.92. We find that the average interaction predicted by
our theory emerges as more realizations of the disorder are
considered. We also demonstrate the convergence of the aver-
age interaction energy at large separations to the asymptotic
power-law behavior predicted in Eq. (12).

Fluctuations in interaction energy. Finally, we turn our
attention to the fluctuations in the interaction energy between
defects, which can be used to characterize the emergence
of the power-law interaction at large separations. Using the
expressions (9) and (10), the variance of the energy of interac-
tion for an infinite system with two defects placed at a distance
�� is given by (see the Supplemental Material [52] for details)

〈(
δEI

2d − 〈
δEI

2d

〉)2〉 = V η2

48

∑
�k

γ2(�k)γ2(−�k)

× [
δσ 2

1 + δσ 2
2 + δσ1δσ2 cos(�k · ��)

]
.

(13)

Interestingly, this variance in the interaction energy differs
from the variance of the excess energies of the individual
defects, as it depends on the distance ��. This implies that
the fluctuations in the interaction energy produced by two

FIG. 3. Average interaction energy between two defects in a
disordered background. The points represent data from simulations,
while the solid red line represents our theoretical prediction for the
interaction energy in Eq. (10). The numerically obtained energy
converges to the theoretical prediction with an increasing number
of configurations Nc. The average energy displays an asymptotic
asymptotic �−4 behavior at large separations. The inset shows the
distribution of interaction energy between two defects placed at a
distance of two lattice spacings apart for five different polydispersi-
ties. This energy is Gaussian distributed and matches our predictions
for the mean and variance in Eqs. (10) and (14) exactly. Here we
choose δσ1 = δσ2 = 5 × 10−3 and φ = 0.92.

defects encodes the correlations produced by the microscopic
disorder. In the inset of Fig. 3 we plot the distributions of
the interaction energy along with the above theoretical pre-
dictions for five different η, displaying a near-exact match.
The theoretical framework developed above is exact in the
limit when no contacts are broken in the system. However,
even at higher polydispersity with a small number of broken
contacts, our predictions yield accurate results. Since contact
breaking events affect the local elasticity properties in their
neighborhood, deviations from our exact predictions are ex-
pected as a large number of contacts break in the system (see
the Supplemental Material for details [52]).

Discussion. In this Letter we have presented exact results
for the fluctuations in energy of near-crystalline athermal
systems. This was enabled by an exact characterization of
the displacement fields for small disorder, which satisfies the
microscopic force balance constraints. We used this frame-
work to derive the average energy of interaction between
defects in the presence of quenched disorder in particle sizes.
Remarkably, the nontrivial power-law decay with distance
approximately equal to �−4 of continuum elasticity is recov-
ered in this limit [21,38]. Our results represent a microscopic
derivation of this induced dipole effect in a disordered back-
ground. Moreover, our formulation allows us to predict the
fluctuations in the energy of interaction, which matches our
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numerical results from energy-minimized configurations of
disordered athermal crystals exactly. The average energy of
interaction displays an interesting angular dependence that
encodes the symmetries of the underlying crystalline back-
ground. Our theoretical framework is exact in the regime of
small polydispersity, where all contacts are intact, and the sys-
tem can be treated as a disordered spring network. However,
with increasing polydispersity, contacts between particles are
lost. Nevertheless, with a few broken contacts in the sys-
tem, the large-scale elasticity properties of the network are
unaffected and our predictions match well with data from sim-
ulations (see Fig. S3 in the Supplemental Material [52]). At
large polydispersity, the model under consideration displays
a transition to an amorphous state, with large heterogeneity
in the contact numbers of particles [28]. Additionally, for
very large disorder, decreasing the packing fraction can lead

to unjamming, where the contact network is isostatic. Such
situations do not possess the symmetries of the crystalline
state and therefore are not captured within the perturbative
framework developed in this study. It would be interesting
to analyze the effects of larger disorder in the system, in
order to understand how rotational symmetry is recovered in
the amorphous state, the nature of which continues to be the
subject of intense scrutiny.
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