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Disorder perturbation expansion for athermal crystals
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We introduce a perturbation expansion for athermal systems that allows an exact determination of displace-
ment fields away from the crystalline state as a response to disorder. We show that the displacement fields in
energy-minimized configurations of particles interacting through central potentials with microscopic disorder
can be obtained as a series expansion in the strength of the disorder. We introduce a hierarchy of force-balance
equations that allows an order-by-order determination of the displacement fields, with the solutions at lower
orders providing sources for the higher-order solutions. This allows the simultaneous force-balance equations
to be solved, within a hierarchical perturbation expansion to arbitrary accuracy. We present exact results for an
isotropic defect introduced into the crystalline ground state at linear order and second order in our expansion.
We show that the displacement fields produced by the defect display interesting self-similar properties at every
order. We derive a |δr| ∼ 1/r and |δ f | ∼ 1/r2 decay for the displacement fields and excess interparticle forces
at large distances r away from the defect. Finally, we derive nonlinear corrections introduced by the interactions
between defects at second order in our expansion. We verify our exact results with displacement fields obtained
from energy-minimized configurations of soft disks.
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I. INTRODUCTION

Athermal materials represent a class of disordered sys-
tems where large-scale properties are only weakly affected
by ambient thermal fluctuations. Such behavior emerges in
many disordered systems when cooled to low temperatures
[1]. These systems display arrested dynamics and can be
described purely by their energy or enthalpy minimized states
[2–5]. Being governed purely by local constraints of mechani-
cal equilibrium, athermal systems display amorphous disorder
that arises from the many possible arrangements of particles
in minimum energy configurations. Such amorphous packings
are inhomogeneous at the local scale and consequently are
not described by the usual elasticity theories in continuum
[6]. Since the thermal motion of the constituent particles is
irrelevant, athermal materials are not governed by fluctuation
dissipation relations [7], and therefore offer interesting arenas
to study nonequilibrium behavior. Many real-world systems
can be classified as athermal, and they arise frequently in
physics and biology. Examples include jammed packings of
particles [8–17], low temperature glasses [18,19], as well as
densely packed tissues [20].

A fundamental type of disorder that arises in jammed
athermal systems is polydispersity in particle sizes [11,21,22],
which leads to amorphous energy-minimized structures. This
variation in particle sizes give rise to sources of localized
stress within the material and are usually referred to as stress
defects [23,24]. Such defects play an important role in the bulk
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properties as well as the dynamics of amorphous systems. At
the continuum scale stress defects have been modeled using
bulk properties such as the elastic moduli of the medium and
defect [25,26], however theories that incorporate microscopic
disorder in the material are still missing. When the finite
sizes of particles are considered, constructing coarse grained
elasticity theories that account for disorder at the granular
level becomes hard [27]. At the local scale, the nonlinearities
involved in mechanical equilibrium conditions become impor-
tant, as they have to be simultaneously satisfied by the entire
configuration. This has made the characterization of athermal
disorder and consequently the construction of statistical me-
chanical theories challenging [28–31].

Since the coupled nonlinear equations of force balance at
the microscopic scale are challenging to solve, many prop-
erties of athermal materials are only accessible numerically
through sophisticated minimization procedures. Theoretical
studies of force-balanced networks have focused on diffusive
models for scalar forces [32,33], as well as vectors along
fixed lattice directions [29]. However, incorporating force bal-
ance with continuous vectors within a microscopic model has
remained elusive. In this context, models of disordered ather-
mal materials that can be exactly solved are important tools
with which to understand athermal disorder as well as the
sensitive deviations from linear elasticity that such materials
display. A particularly appealing class of systems are disor-
dered athermal crystals where the periodicity of a reference
configuration can be exploited [22,34], and consequently they
offer a paradigm where exact results for disordered athermal
systems can be obtained.

In this paper we develop a systematic perturbation expan-
sion [35,36] about the crystalline ordered state as a response
to microscopic disorder for near-crystalline jammed systems.
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Such near-crystalline systems display glassy and jamming
features although they are highly ordered [37–39]. We in-
troduce a hierarchy of simultaneous equations arising from
microscopic force balance at each site, which can be solved at
each order in the expansion. This allows an exact determina-
tion of the displacement fields that develop as a response to the
disorder. We illustrate our techniques with an application to a
model of polydispersed soft disks, where quenched disorder is
introduced into the particle sizes, parametrized by a polydis-
persity parameter. We illustrate the convergence properties of
such an expansion by a detailed analysis of a single defect in-
troduced into a crystalline background. We also theoretically
predict the displacement fields produced by a single defect in
such a crystalline arrangement up to second order. We find that
these displacement fields display a remarkable self-similar
behavior, with the solutions at higher orders in the perturba-
tion theory resembling rescaled solutions at lower orders. To
illustrate the nontrivial nature of the higher-order terms in the
perturbation expansion, we provide experimentally testable
predictions arising from second-order corrections, that are not
captured by continuum elasticity theories.

The plan of this paper is as follows. In Sec. III we develop a
hierarchical perturbation expansion about the crystalline state,
that allows us to exactly solve the equations of force balance
and obtain the displacement fields to arbitrary accuracy. In
Sec. IV we examine the displacement fields generated by our
expansion at linear order. We also examine the higher-order
solutions, providing exact equations up to second order. In
Sec. V we contextualize our results in a model crystal com-
posed of deformable disks, interacting through a paradigmatic
soft-sphere Hamiltonian. Next, we examine the displacement
fields produced by introducing a single defect into this system
in Sec. VI. We derive exact results for these displacement
fields at second order. We also examine the excess forces
produced by this defect in Sec. VII. In Sec. VIII we derive
the large length-scale behavior of the displacement and excess
force fields produced by the single defect. We also discuss
the universal features of our results, and their relation to con-
tinuum elasticity. Finally, in Sec. IX, we study the nature of
the nonlinear interactions between particles generated in our
perturbation expansion, through the study of the displacement
fields created by two defects in the crystalline system. We
also provide an experimentally testable prediction which can
be used to extract such nonlinear interactions in athermal
crystals. Finally, we conclude in Sec. X and provide avenues
for further research.

II. ATHERMAL CRYSTALS

The ground state of a system of particles interacting
through short ranged central potentials is a triangular lattice
arrangement [40]. The introduction of disorder can lead to
fluctuations in the positions, and consequently elastic prop-
erties such as the local shear modulus [41,42]. Many studies
have considered the effect of small disorder about the crys-
talline state, whose periodicity facilitates an exact theoretical
treatment of their properties. However, when disorder is in-
troduced into an athermal system, such as in amorphous
configurations, developing theories that predict macroscopic
properties becomes challenging [39,43,44]. In such crystals,
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FIG. 1. The lattice convention used in this paper. We place the
sites of the triangular lattice on a 2L × L rectangular grid, with the
triangular lattice sites i at position �ri ≡ (X,Y ) such that mod(X +
Y, 2) = 0. The lattice sites (particles) are represented by filled blue
circles, and the lattice constant in the crystalline arrangement is R0.
Each particle i has six neighbors which are labeled j = 0 to 5. The
bond angles between these particles i and j with respect to the x axis
are given by, θ0

i j = 2π j
6 . As a response to the disorder, the particles are

displaced to new locations (green circles). Here δx and δy represent
the displacement of the particles from their original positions along
the x and y directions, respectively. The directions parallel (r̂‖) and
orthogonal (r̂⊥) to the lattice directions are represented with blue
arrows.

the contribution of lattice phonons is suppressed, and crys-
tallization results from energy minimization, and they exhibit
properties of athermal materials. Many examples of such dis-
ordered near-crystalline systems exist including glasses with
high crystalline order [45–47], polycrystals [48,49], as well
as colloidal crystals [50]. In such systems, the changes in the
interparticle potentials introduced through quenched disorder
affects their large-scale properties when force-balance condi-
tions are exactly imposed, leading to amorphous structures.
This leads to elastic heterogeneity at the microscopic scale,
and therefore continuum elasticity frameworks are inapplica-
ble in such materials.

In this work we consider prestressed crystals [22], where
finite forces exist between the particles in the crystalline state.
This is accomplished by the boundary conditions that confine
the system. Examples include Wigner crystals, where parti-
cles interacting through central potentials crystallize under
confinement at high densities [51] and jammed soft particle
packings [21,39]. We model such systems by considering a
triangular lattice of particles with a lattice constant R0 (see
Fig. 1). For ease of computation we place the sites of the
triangular lattice on a 2L × L rectangular grid with the lattice
sites �ri ≡ (X,Y ) by maintaining mod(X + Y, 2) = 0 [52] as
shown in Fig. 1. Although, we use this convention in our
computations, all the plotted figures represent our results on
the actual triangular lattice. Thus the reciprocal lattice vector
can be written as

�k ≡ (kx, ky) ≡
(

2π l

2L
,

2πm

L

)
, (1)
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and the volume of the system is V = 2L2. We also define fun-
damental lattice translation vectors �r0 = (2, 0), �r1 = (1, 1),
�r2 = (−1, 1), �r3 = (−2, 0), �r4 = (−1,−1), �r5 = (1,−1).

III. DISORDER PERTURBATION EXPANSION

We begin by analyzing the response of the crystalline state
to the presence of small amounts of disorder. The energy-
minimized configuration with no disorder in the microscopic
potential is the triangular lattice arrangement of particles (see
Fig. 1). Our formulation considers any central force law with
microscopic disorder, that causes a perturbation of the system
away from the crystalline state. We consider particles interact-
ing through pairwise central potentials of the form

u(�ri j, {ζi}) = F (|�ri j |, {ζi}). (2)

Here �ri j = �r j − �ri is the vector distance between the parti-
cles i and j located at positions �ri and �r j , respectively. In
this paper, we focus our discussion considering the pairwise
central potential is short ranged. The variables {ζi} represent
quenched scalar variables at every site, which can be tuned
to create pertubations about the crystalline state. Additionally
we assume that the bond energy u(�ri j, {ζi}) associated with
pairs of particles i and j, is symmetric with respect to the
scalar disorder at each site, i.e., it is a function of δζi + δζ j .
In Secs. V–VIII we describe an application of our theory for
such a potential, a system of polydispersed soft disks where
the quenched variable {ζi} is identified with the radii of the
particles. The total energy is represented as a sum over all
interacting pairs of particles, which can be expressed as a sum
of their bond energies,

U ({ζi}) = 1

2

∑
i j

u(�ri j, {ζi}). (3)

Next, Eq. (2) can be used to derive the interparticle forces as

�fi j (�ri j ) = −∂|�ri j |F (|�ri j |, {ζi})r̂i j, (4)

where r̂i j is the unit vector along the interparticle distance vec-
tor. We can decompose the forces along the x and y directions
as �f = ( f x, f y). Crucially for central potentials the vector �fi j

reverses sign under index interchange i ↔ j.
We focus specifically on states in mechanical equilib-

rium, i.e., energy-minimized configurations. Our formulation
applies for attractive as well as repulsive potentials. Each
configuration of the disordered system has contact forces { �fi j}
between particles i and j. The ground states of the system
consist of configurations with each particle in force balance.
We have ∑

j

f x
i j = 0,

∑
j

f y
i j = 0, ∀ i. (5)

Here f x(y)
i j are the x(y) components of the forces between

particles i and j, and the sum is over all particles j in contact
with particle i. In the next section we use the perturbed solu-
tions described above to solve these force-balance equations
at each order. The perturbation away from the crystal can be
parametrized by the scalar variable at each site as

ζi = ζ0 + λδζi. (6)

Here, the variable λ represents a tuning parameter that con-
trols the strength of the quenched disorder in the system,
λ = 0 corresponds to the crystalline state.

As a response to the presence of disorder, the positions
of the particles deviate from their crystalline values �r (0)

i =
{x(0)

i , y(0)
i } to a new mechanical equilibrium configuration �ri =

{xi, yi}. We define the vector displacement field {δ�ri} from the
crystalline state at every site i as

�ri = �r (0)
i + δ�ri. (7)

A crucial aspect of our analysis is the decomposition of the
displacement fields into their components along the fixed co-
ordinate directions x, y, ... as {δ�ri} ≡ {δxi, δyi, ...}. This allows
us to exactly determine the displacements in the presence
of disorder. This can be accomplished since the perturbed
positions can be used to generate the excess forces through
the microscopic force law in Eq. (4). In d dimensions, the Nd
component displacement field vector can then be uniquely de-
termined by the Nd equations of force balance in the system.
In this paper, we present results focused on two dimensional
systems (d = 2), however our techniques can be extended to
higher dimensional systems as well. The perturbed positions
at each site i can be expressed as

xi = x(0)
i + δxi,

yi = y(0)
i + δyi. (8)

The forces �fi j = ( f x
i j, f y

i j ) between any two particles i and j
also change in response to this perturbation in the positions.
We have

f x
i j = f x(0)

i j + δ f x
i j,

f y
i j = f y(0)

i j + δ f y
i j, (9)

where { f x(0)
i j , f y(0)

i j } are the forces along the x and y directions
between particles i and j in the crystalline ordered state. It is
also convenient to define relative displacements between two
neighboring particles,

δxi j = δx j − δxi, (10)

δyi j = δy j − δyi,

as well as a corresponding sum involving the quenched ran-
dom variables at neighboring particles,

δζi j = δζ j + δζi. (11)

Our analysis begins with the expansion of the interparticle
forces in terms of the perturbed positions. In previous work,
the linear-order solutions of the displacement fields was de-
rived, for disorder introduced into the particle sizes [22,34].
Here, we provide a generalized version of the theory for differ-
ent types of disorder and underlying interparticle potentials.
We also extend the framework to include higher-order terms
in the perturbation expansion. The force �fi j between particles i
and j can be Taylor expanded about its value in the crystalline
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ground state as

δ f x
i j = Cxx

i j δxi j + Cxy
i j δyi j + Cxζ

i j δζi j

+Cxxx
i j δxi jδxi j + Cxxy

i j δxi jδyi j + Cxyy
i j δyi jδyi j

+Cxxζ
i j δxi jδζi j + Cxyζ

i j δyi jδζi j + Cxζ ζ
i j δζi jδζi j + . . .

δ f y
i j = Cyx

i j δxi j + Cyy
i j δyi j + Cyζ

i j δζi j

+Cyxx
i j δxi jδxi j + Cyxy

i j δxi jδyi j + Cyyy
i j δyi jδyi j

+Cyxζ
i j δxi jδζi j + Cyyζ

i j δyi jδζi j + Cyζ ζ

i j δζi jδζi j + . . .

(12)

The coefficients Cαβ
i j and Cαβγ

i j do not depend on the
particle index i, as they are translationally invariant, being
expressible purely in terms of the reference crystalline state.
The general coefficient in the expansion at first order is given
by

Cαβ
i j = −

∂
[
F

( rα
i j

ri j

)]
∂rβ

∣∣∣∣∣
rβ(0)

i j

, (13)

where β ≡ x, y, .., ζ accounts for the spatial as well as disor-
der indices and rβ(0)

i j represents the bond variables between
particles i and j with rx

i j ≡ xi j = x j − xi, ry
i j ≡ yi j = y j −

yi, ..., and rζ
i j ≡ ζi j = ζ j + ζi. Similarly, rβ(0)

i j represents the
values of these quantities in the crystalline state. We note
that the coefficients relating only to the spatial components
Cxx

i j ,Cxy
i j ... are equivalent to the elements of the Hessian matrix

of the system [53]. Next, the general coefficient at second
order is given by

Cαβγ
i j = −

∂2
[
F

( rα
i j

ri j

)]
∂rβ

i j∂rγ

i j

∣∣∣∣∣
rβ(0)

i j ,rγ (0)
i j

. (14)

Here ri j =
√∑

α rα
i j r

α
i j represents the magnitude of the

distance vector �ri j . The higher-order coefficients can be
obtained in a similar manner. The interparticle forces, be-
ing drawn from the central potential have the form f x(y)

i j =
κ (xi j, yi j, ζi j )

x(y)i j

ri j
, which is antisymmetric upon exchange of

index i ↔ j. Therefore, the terms at every order in the above
force expansion should be antisymmetric with respect to this
index interchange. Since δx(y)i j is antisymmetric under this
interchange at all orders and δζi j is symmetric, the nth order
coefficients Cαβγ ...

i j is antisymmetric if the combined factors of
δx, δy, and δζ associated with the coefficient are symmetric
and vice versa.

Next, we expand the perturbed positions away from the
crystalline state as an expansion in the disorder tuning param-
eter λ as

xi = x(0)
i + λδx(1)

i + λ2δx(2)
i + λ3δx(3)

i + . . .

yi = y(0)
i + λδy(1)

i + λ2δy(2)
i + λ3δy(3)

i + . . . (15)

Here {δx(n)
i , δy(n)

i } represent the nth order displacement fields,
which are of magnitude O(λn). We also define the relative

displacements at every order:

δx(1)
i j = δx(1)

j − δx(1)
i ,

δy(1)
i j = δy(1)

j − δy(1)
i ,

δx(2)
i j = δx(2)

j − δx(2)
i ,

δy(2)
i j = δy(2)

j − δy(2)
i ,

... (16)

Similarly, the change in forces in Eq. (4) can also be expressed
as an expansion in the parameter λ, given by

δ f x
i j = λδ f x(1)

i j + λ2δ f x(2)
i j + λ3δ f x(3)

i j + O(λ4),

δ f y
i j = λδ f y(1)

i j + λ2δ f y(2)
i j + λ3δ f y(3)

i j + O(λ4). (17)

Inserting the expressions in Eqs. (15) and (16) into Eq. (17),
and matching terms at first order, we obtain the change in
interparticle forces at linear order along the x and the y di-
rections. We have

δ f x(1)
i j = Cxx

i j δx(1)
i j + Cxy

i j δy(1)
i j + Cxζ

i j δζi j,

δ f y(1)
i j = Cyx

i j δx(1)
i j + Cyy

i j δy(1)
i j + Cyζ

i j δζi j . (18)

Similarly, matching terms at second order in Eq. (17), we
arrive at the second-order change in forces

δ f x(2)
i j = Cxx

i j δx(2)
i j + Cxy

i j δy(2)
i j + Cxxx

i j δx(1)
i j δx(1)

i j

+Cxxy
i j δx(1)

i j δy(1)
i j + Cxyy

i j δy(1)
i j δy(1)

i j + Cxxζ
i j δx(1)

i j δζi j

+Cxyζ
i j δy(1)

i j δζi j + Cxζ ζ
i j δζi jδζi j,

δ f y(2)
i j = Cyx

i j δx(2)
i j + Cyy

i j δy(2)
i j + Cyxx

i j δx(1)
i j δx(1)

i j

+Cyxy
i j δx(1)

i j δy(1)
i j + Cyyy

i j δy(1)
i j δy(1)

i j + Cyxζ
i j δx(1)

i j δζi j

+Cyyζ
i j δy(1)

i j δζi j + Cyζ ζ

i j δζi jδζi j, (19)

The higher-order terms in this perturbation expansion can be
obtained in a systematic manner as described above, with the
coefficients depending only on the higher-order derivatives of
the force law at R0, interparticle separation in the reference
crystalline state.

IV. HIERARCHICAL FORCE BALANCE

In this section we use the perturbation expansion of the
positions and forces developed above to derive the displace-
ments of the particle positions away from the crystalline
ordered state. This is accomplished by imposing the simul-
taneous force-balance conditions in Eq. (5) at every order.
This provides enough equations to determine the displacement
fields at each order. We show below that the displacement
fields at every order can be determined uniquely within a
hierarchical scheme, in which the solutions at lower orders
act as “sources” that generate the displacement fields at higher
orders.

A. Linear order

We begin by imposing the force-balance conditions at first
order in our expansion. Considering only terms up to linear
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order in Eq. (5), we arrive at the following set of equations
representing force balance along the x and y directions, re-
spectively,∑

j

(
Cxx

i j δx(1)
i j + Cxy

i j δy(1)
i j + Cxζ

i j δζi j
) = 0, ∀ i,

∑
j

(
Cyx

i j δx(1)
i j + Cyy

i j δy(1)
i j + Cyζ

i j δζi j
) = 0, ∀ i, (20)

where the coefficients Cβγ

i j depend only on the lattice constant
R0 and the neighbor j. For a system of N particles, there
are 2N force-balance constraints at every order. To calculate
the displacement field for the entire system at a given or-
der, one needs to solve these 2N equations simultaneously,
which requires the inversion of a 2N × 2N matrix. This is
challenging for a system with a large number of particles.
However, as the coefficients Cαβ

i j are translationally invariant,
a Fourier transform of the above equations helps to block
diagonalize this matrix, into 2 × 2 blocks corresponding to
each reciprocal lattice point �k. The Fourier transforms of the
changes in positions and radii can be defined as

δx̃(1)(�k) =
∑

�r
exp(i�k.�r)δx(1)(�r),

δỹ(1)(�k) =
∑

�r
exp(i�k.�r)δy(1)(�r),

δζ̃ (�k) =
∑

�r
exp(i�k.�r)δζ (�r). (21)

Here �r labels the sites of the triangular lattice whereas �k are the
reciprocal lattice vectors defined in Eq. (1). We note that the
discrete Fourier transform defined above involves the original
crystalline positions �r ≡ �r (0)

i , which we use interchangeably
as the site index �r ≡ i. It is also convenient to define the basic
translation coefficients in Fourier space (using the notation in
Fig. 1)

F j (�k) = exp(−i�k.�r j ), (22)

where �r j are the fundamental lattice translation vectors. Next,
multiplying Eq. (20) by exp(i�k.�r) and summing over all sites
�r ≡ i leads to the following matrix equation at every recipro-
cal lattice point �k:[

Axx(�k) Axy(�k)
Ayx(�k) Ayy(�k)

][
δx̃(1)(�k)
δỹ(1)(�k)

]
= −δζ̃ (�k)

[
Dx(�k)
Dy(�k)

]
. (23)

We can interpret the matrix A as an inverse Green’s function
of the system in Fourier space. The matrix elements of the
inverse Green’s function have the following explicit represen-
tations:

Axx(�k) = −
5∑

j=0

[1 − F j (�k)]Cxx
i j ,

Axy(�k) = −
5∑

j=0

[1 − F j (�k)]Cxy
i j ,

Ayx(�k) = −
5∑

j=0

[1 − F j (�k)]Cyx
i j ,

Ayy(�k) = −
5∑

j=0

[1 − F j (�k)]Cyy
i j . (24)

Similarly we have

Dx(�k) = −
5∑

j=0

[1 + F j (�k)]Cxσ
i j ,

Dy(�k) = −
5∑

j=0

[1 + F j (�k)]Cyσ
i j . (25)

B. Response Green’s functions

The Green’s function can be expressed as a matrix:

G̃ = A−1 =
[

G̃xx(�k) G̃xy(�k)
G̃yx(�k) G̃yy(�k)

]
. (26)

The elements G̃μν can in turn be expressed in terms of the
coefficients Aμν , which depend on the underlying potential
through the coefficients Cαβ

i j . We next define source terms in
Fourier space as

S̃x(1)(�k) = −Dx(�k)δζ̃ (�k),

S̃y(1)(�k) = −Dy(�k)δζ̃ (�k). (27)

Inverting Eq. (23), and using the above source, leads to an
expression for the Fourier transformed displacement fields at
first order in terms of the Fourier transform of the quenched
disorder {δζ̃ (�k)}. We have

δx̃(1)(�k) = [G̃xx(�k)S̃x(1)(�k) + G̃xy(�k)S̃y(1)(�k)],

δy(1)(�k) = [G̃yx(�k)S̃x(1)(�k) + G̃yy(�k)S̃y(1)(�k)]. (28)

The displacement fields at linear order can then be computed
as an inverse Fourier transform, yielding

δx(1)(�r) =
∑

�r′
Gxx(�r − �r′)Sx(1)(�r′) +

∑
�r′

Gxy(�r − �r′)Sy(1)(�r′),

δy(1)(�r) =
∑

�r′
Gyx(�r−�r′)Sx(1)(�r′) +

∑
�r′

Gyy(�r−�r′)Sy(1)(�r′).

(29)

The real space Green’s functions in the above expression are
easily computed as an inverse transform of the Fourier space
expressions in Eq. (26) as

Gμν (�r) = 1

V

∑
�k

e−i�k.�rG̃μν (�k). (30)

In Sec. VIII we show that in the small k limit, G̃μν (�k) ∼
1/|k|2, implying a Gμν (�r) ∼ log(|r|) behavior at large dis-
tances �r. These Green’s functions in real space have been
plotted in Fig. 2. The functions Gxy(�r) = Gyx(�r) display a
quadrupolar structure at large distances, as opposed to the
sixfold symmetry of the underlying triangular lattice.
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FIG. 2. The Green’s functions of the response Gμν (�r) in real
space. (a) Gxx (�r), (b) Gxy(�r), (c) Gyx (�r), (d) Gyy(�r). The transverse
Green’s functions (Gxy and Gyx) have different limits in the r → ∞
limit along different directions. All the Green’s functions display a
∼ log(|r|) dependence in the r → ∞ limit. These Green’s functions
provide the solution to the displacement fields at all orders, with
modified sources at each order. The behavior of these functions gen-
erates the long distance behavior of δx(y)(�r) ∼ 1

r of the displacement
fields away from a stress defect, for general pairwise potentials.

C. Second order

Similarly, we can impose the force-balance conditions at
second order in our expansion, and extract the displacement
fields as a solution of the corresponding simultaneous equa-
tions. Considering only terms at second order in Eq. (5), we
arrive at the second-order force-balance equations along the x
and y directions, respectively,

∑
j

(
Cxx

i j δx(2)
i j + Cxy

i j δy(2)
i j + Cxxx

i j δx(1)
i j δx(1)

i j

+Cxxy
i j δx(1)

i j δy(1)
i j + Cxyy

i j δy(1)
i j δy(1)

i j + Cxxζ
i j δx(1)

i j δζi j

+Cxyζ
i j δy(1)

i j δζi j + Cxζ ζ
i j δζi jδζi j

)
= 0, ∀ i,

∑
j

(
Cyx

i j δx(2)
i j + Cyy

i j δy(2)
i j + Cyxx

i j δx(1)
i j δx(1)

i j

+Cyxy
i j δx(1)

i j δy(1)
i j + Cyyy

i j δy(1)
i j δy(1)

i j + Cyxζ
i j δx(1)

i j δζi j

+Cyyζ
i j δy(1)

i j δζi j + Cyζ ζ
i j δζi jδζi j

)
= 0, ∀ i.

Once again at second order we have 2N simultaneous equa-
tions to solve. From Eq. (31), it is clear that the first-order
solutions serve as the source for the second-order fields.
These source terms in real space can be expressed as (with

�r ≡ i)

Sx(2)
i =

∑
j

(
Cxxx

i j δx(1)
i j δx(1)

i j + Cxxy
i j δx(1)

i j δy(1)
i j + Cxyy

i j δy(1)
i j δy(1)

i j

+Cxxζ
i j δx(1)

i j δζi j + Cxyζ
i j δy(1)

i j δζi j + Cxζ ζ
i j δζi jδζi j

)
,

Sy(2)
i =

∑
j

(
Cyxx

i j δx(1)
i j δx(1)

i j + Cyxy
i j δx(1)

i j δy(1)
i j + Cyyy

i j δy(1)
i j δy(1)

i j

+Cyxζ
i j δx(1)

i j δζi j + Cyyζ
i j δy(1)

i j δζi j + Cyζ ζ
i j δζi jδζi j

)
. (31)

The Fourier transforms of the second-order source terms can
be defined as

S̃x(2)(�k) =
∑

�r
exp(i�k.�r)Sx(2)(�r),

S̃y(2)(�k) =
∑

�r
exp(i�k.�r)Sy(2)(�r). (32)

Using the above expressions, and following the same pro-
cedure as for linear order, we arrive at the following force
balance equations in Fourier space at second order:[

Axx(�k) Axy(�k)
Axy(�k) Ayy(�k)

][
δx̃(2)(�k)
δỹ(2)(�k)

]
=

[
S̃x(2)(�k)
S̃y(2)(�k)

]
. (33)

We note that the matrix A in the above equation is the same
matrix that appears at first order in Eq. (23). Next, we can
invert Eq. (33) and express the displacement fields using the
Green’s functions as[

δx̃(2)(�k)
δỹ(2)(�k)

]
=

[
G̃xx(�k) G̃xy(�k)
G̃xy(�k) G̃yy(�k)

][
S̃x(2)(�k)
S̃y(2)(�k)

]
. (34)

The second-order displacement fields in Fourier space can
then be written as

δx̃(2)(�k) = [G̃xx(�k)S̃x(2)(�k) + G̃xy(�k)S̃y(2)(�k)],

δỹ(2)(�k) = [G̃yx(�k)S̃x(2)(�k) + G̃yy(�k)S̃x(2)(�k)]. (35)

We therefore arrive at the following expressions for the dis-
placement fields at second order

δx(2)(�r) =
∑

�r′
[Gxx(�r − �r′)Sx(2)(�r′) + Gxy(�r − �r′)Sy(2)(�r′)],

δy(2)(�r) =
∑

�r′
[Gyx(�r − �r′)Sx(2)(�r′) + Gyy(�r − �r′)Sy(2)(�r′)].

(36)

The Green’s functions that appear above are the same as the
Green’s functions in the linear-order solution in Eq. (29).
However, unlike at first order, the second-order solutions are
expected to display nonlinear effects arising from the disorder
as the first-order displacement fields are coupled in the source
terms in Eq. (31). We discuss such effects in detail in Sec. IX.

D. Higher orders

The higher-order terms in this expansion can now be an-
alyzed in a similar manner. The same recursive scheme can
be applied at higher orders, with the sources involving the
solutions to the displacement fields at lower orders. For ex-
ample, the equations of force balance at third order can be
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written in terms of the solutions at first and second order.
Interestingly, due to the recursive structure of our perturbation
expansion, the Green’s function that appears at all orders are
exactly the same. The source terms at higher orders couple the
lower-order solutions and hence display nonlinear behavior.

V. POLYDISPERSED SOFT DISKS

In this section, we apply our perturbation expansion to
a physically relevant system: soft disks with small polydis-
persity in particle sizes. We begin with a triangular crystal
composed of deformable disks interacting via one sided pair-
wise potentials that is now paradigmatic in the study of soft
particles and deformable foams [11,54]. The form of the po-
tential is

Vσi j (�ri j ) = K

α

(
1 − |�ri j |

σi j

)α

for ri j < σi j,

= 0 for ri j > σi j . (37)

Here �ri j = �r j − �ri is the vector distance between the particles i
and j located at positions �ri and �r j , respectively. σi j = σi + σ j

is the sum of the radii σi and σ j of the two particles. Here K
represents an overall stiffness constant, in the subsequent dis-
cussions we set K = 1 for simplicity. The interparticle forces
are then given by

�fi j = K

σi j

(
1 − |�ri j |

σi j

)α−1

r̂i j, (38)

where r̂i j is the unit vector along the �ri j direction. In this
work we present results for the harmonic potential, setting
α = 2. Our results can easily be generalized to other forms
of the interparticle potential. When all the radii are equal, the
minimum energy configuration of the system is the crystalline
state with the particles forming a triangular lattice. Choosing
all the radii σi to be equal to σ0, the magnitude of the contact
force in the crystalline state f0 depends on the packing frac-
tion φ = 1

V

∑
i πσ 2

i , and is given by f0 = 1
2σ0

(1 − √
φc/φ).

Here φc is the packing fraction of the marginal crystal with
no overlaps between particles, and therefore no interparticle
forces. This occurs in the hexagonally close packed structure,
with φc = π/

√
12 ≈ 0.9069. It is also convenient to define a

parameter ε, that quantifies the overcompression of the system

ε = 1 − R0 = 1 −
√

φc

φ
. (39)

The quantity ε therefore defines the length scale of overlap
between particles in the pure crystalline arrangement. Next, a
perturbation away from the crystalline state can be caused by
a change in the radii at each site

σi = σ0 + λδσi. (40)

Therefore, we can identify the radii of the particles as the
quenched random variables that appear in the perturbation
expansion in Sec. III. We have

ζ ≡ σ. (41)

The displacement fields in this system can then be derived
using the techniques presented in Sec. III, For the harmonic

case (α = 2) the coefficients Cαβ
i j that appear in the Green’s

function have particularly simple forms, and are given in the
Appendix. The Green’s functions for this system in Fourier
space are given by

G̃xx(�k) = �1
(1 − ε)

�1�2 − �2
3

,

G̃xy(�k) = �3
(1 − ε)

�1�2 − �2
3

,

G̃yx(�k) = �3
(1 − ε)

�1�2 − �2
3

,

G̃yy(�k) = �2
(1 − ε)

�1�2 − �2
3

, (42)

where the functions �1, �2, �3 have the following forms:

�1 = (3 − 4ε) cos(kx ) cos(ky) − 2ε cos(2kx ) + 6ε − 3,

�2 = (1 − 4ε) cos(kx ) cos(ky) + 2(1 − ε) cos(2kx ) + 6ε − 3,

�3 =
√

3 sin(kx ) sin(ky). (43)

VI. SINGLE DEFECT: SERIES SOLUTION FOR
DISPLACEMENT FIELDS

In this section, we use the perturbation theory developed
in Secs. III and IV to compute the displacement fields gen-
erated by the presence of a single defect in the crystalline
background. To model such a situation, we increase the ra-
dius of a single particle by an amount δσ at a position �R in
the crystalline arrangement. This causes an excess outward
displacement δ�r ≡ {δx, δy} of each grain as a response to
the increase in the radius of the defect particle. Such inho-
mogeneities in materials are termed stress defects, since the
defect causes an outward stress away from it. In the continuum
elasticity framework, the stress and displacement are related
through a stress geometry equation involving the elastic mod-
uli, which can then be used to solve for a displacement field. In
our case of a lattice of finite-sized particles, the displacements
give rise to forces through a microscopic force law, which
through force-balance conditions leads to a unique solution
for the displacement fields. In addition, since we solve the
equations of force balance simultaneously, our formulation
can also be used to incorporate disorder at the microscopic
scale.

In continuum elasticity, the displacement fields �u ≡ δ�r
arising due to localised excess forces can be obtained using
the well-known Lamé equation, which in two dimensions is
[6]

μ∇2�u(�r) + (λ + μ) �∇[ �∇ · �u(�r)] = − �f (�r), (44)

where μ and λ are the Lamé coefficients derived from the
elastic moduli of the solid. The field �f (�r) represents the body
force acting on the system at position �r. Using the known
elastic moduli for the triangular geometry, one can therefore
obtain the displacement fields in the presence of external
forces using Eq. (44). The generalization of this procedure to
the case of a single stress defect can be obtained by solving the
homogeneous case of Eq. (44) in a cylindrical geometry with a
uniform normal force applied at the inner boundary. However,
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(a) (b) (e) (f)

(c) (d) (g) (h)

FIG. 3. The displacements of each grain away from their crystalline positions, produced by a single defect. Here each point in the xy plane
represents the original crystalline position of the grain. (a) The displacement of each grain along the x direction obtained from the simulations.
(b) The displacement of each grain along the x direction obtained from the perturbation expansion at linear order. (c) The displacement of
each grain along the y direction obtained from the simulations. (d) The displacement of each grain along the y direction obtained from the
perturbation expansion at linear order. (e) The displacement fields along the x direction δx − δx(1) with the linear-order solutions subtracted
from the displacements obtained from simulations. (f) The displacement of each grain along the x direction obtained from the perturbation
expansion at second order. (g) The displacement fields along the y direction δy − δy(1) with the linear-order solutions subtracted from the
displacements obtained from simulations. (h) The displacement of each grain along the y direction obtained from the perturbation expansion
at second order. Note the difference in the magnitudes between the solutions at first and second order.

it as yet unclear how such Lamé equations emerge from a
microscopic treatment of the finite-size of the particles, which
can cause sensitive corrections to the continuum predictions.
Our exact framework therefore provides an interesting route
to verify the isotropic elasticity of a medium composed of
finite-sized units. We show that the case of a triangular lat-
tice arrangement yields displacement fields which display the
underlying lattice symmetries at short length scales. However,
in Sec. VIII we show that the exact displacement fields at large
distances away from a single defect obey the above continuum
equations. The linear displacement fields along with Eq. (44)
enables us to derive the macroscopic elastic moduli in terms
of the coefficients obtained from the underlying interpaticle
potential. The higher-order solutions in our expansion can
therefore be used to predict nonlinear corrections to contin-
uum elasticity that arise in athermal systems.

A. Linear order

We begin by placing a single defect particle with a larger
radius σ0 + δσ at the origin. The quenched disorder field is
therefore nonzero only at the single site and is given by

σ (�r) = σ0 + δσδ(�r), (45)

leading to a constant source field in Fourier space δσ̃ (�k) =
δσ . We first derive the displacement fields generated by the
defect at the origin using the perturbation theory at linear
order. It has been shown recently that mechanical equilibrium
at linear order leads to nontrivial effects on fluctuations and
correlations in athermal near-crystalline systems [22,34]. The
field in Eq. (45) can be used as a source in Eq. (29). This
yields the displacement fields at linear order {δx(1), δy(1)}. We

next compare these with displacement fields obtained from
a numerically minimized configuration of a single defect in
the crystalline background. In Figs. 3(a) and 3(c) we plot
the x-displacement fields and y-displacement fields obtained
from the numerical simulations. We also plot the linear-order
displacement fields δx(1) and δy(1) obtained from the pertur-
bation expansion using Eq. (29) in Figs. 3(b), and 3(d). The
displacement fields obtained from our numerical minimiza-
tion match exactly with the displacement fields computations
at linear order. The difference between these two arises in the
second-order terms in our perturbation expansion.

B. Second order

We next study the difference between the displacements
obtained from our numerical minimization using the FIRE
[55] algorithm and the predictions of our perturbation theory
at linear order. We compute the second-order displacement
fields along the x direction δx(2) and y direction δy(2) using
Eq. (36). This involves the displacement fields at first order
{δx(1), δy(1)}, which can be used to create the source term at
second order using Eq. (31). The coefficients Cαβγ

i j that appear
in these source terms are given in the Appendix. This yields
the displacement fields at second order {δx(2), δy(2)}, using
the Green’s function formalism in Eq. (36). We next compare
these theoretical results at second order, with the difference
between the displacement fields obtained from numerical
minimization and the theoretically computed linear-order
displacements {δx − δx(1), δy − δy(1)}. These are plotted in
Figs. 3(e) and 3(g). The theoretical predictions of the second-
order displacement field is displayed in Figs. 3(f) and 3(h).
The displacement fields obtained from numerical minimiza-
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(a) (b)

FIG. 4. Displacement fields produced by a single defect at third
order, obtained by subtracting the first and second-order solutions of
the perturbation expansion from the numerically obtained displace-
ments (a) along the x direction δx–δx(1)–δx(2) and (b) along the y
direction δy–δy(1)–δy(2). These displacement fields resemble the first
and second-order solutions, with a rescaling factor.

tion match with our theoretical predictions at second order
exactly. The difference between these two arises in the third-
order terms in our perturbation expansion. Remarkably, these
second-order displacement fields are very similar to the dis-
placement fields obtained at first order, with a scaling factor
O(δσ ). We discuss the origin of such behavior in our pertur-
bation expansion in Sec. VIII.

C. Third order

Following our method in Sec. IV C, the equations of force
balance at third order can next be written in terms of the
solutions at lower orders. Once again, we can obtain these
solutions, using the Green’s function formalism, with the
sources at third order involving the displacement fields at first
and second order. This procedure is straightforward, and we
have not attempted to extract the displacement fields at third
order theoretically. Instead, we have numerically extracted the
displacement fields at third order by subtracting the theoreti-
cally obtained lower order solutions δx(y)(1) and δx(y)(2) from
the actual displacements δx(y) obtained in the numerically
minimized configuration with a single defect. The quanti-
ties δx − δx(1) − δx(2) and δy − δy(1) − δy(2), which represent
the third-order solutions, are plotted in Figs. 4(a) and 4(b),
respectively. Once again, we find that the third-order displace-
ment fields produced by a single defect in our perturbation
expansion display very similar behavior to the first-order dis-
placement fields, with a scaling factor O(δσ 2).

VII. FORCES PRODUCED BY A DEFECT

We next analyze the change in interparticle forces caused
by the presence of a single defect in the system. Since the
force at each bond depends on the displacements of the
corresponding particles, we can use the displacement fields
as predicted from our theory to calculate the interparticle
forces at all orders. The change in interparticle forces between
particles i and j can be computed at linear order from the
expressions in Eq. (20). We have

δ f x(1)
i j = 1

V

∑
�k

{[
Cxx

i j δx̃(1)(�k) + Cxy
i j δỹ(1)(�k)

]
[1 − F j (�k)]

+Cxσ
i j [1 + F j (�k)]δσ̃ (�k)

}
exp(−i�k.�ri ),

(a)

(c) (d)

(b)

FIG. 5. The components of the interparticle forces parallel to the
original lattice directions f‖ and perpendicular to the lattice direc-
tions f⊥. (a) Plot of ln(|δ f‖|) at each bond produced by a single
defect plotted at their original crystalline positions obtained from
simulations. (b) ln(|δ f‖|) at each bond produced by a single defect
obtained from the perturbation expansion at linear order. (c) ln(|δ f⊥|)
at each bond produced by a single defect obtained from simulations.
(d) ln(|δ f⊥|) at each bond produced by a single defect obtained
from the perturbation expansion at linear order. Note the order of
magnitude difference in δ f⊥ and δ f‖.

δ f y(1)
i j = 1

V

∑
�k

{[
Cyx

i j δx̃(1)(�k) + Cyy
i j δỹ(1)(�k)

]
[1 − F j (�k)]

+Cyσ
i j [1 + F j (�k)]δσ̃ (�k)

}
exp(−i�k.�ri ). (46)

To better elucidate the nature of the forces in this athermal
crystalline system, we define the parallel and perpendicular
components of the interparticle forces with respect to the
original lattice directions r̂‖ and r̂⊥ as f‖ and f⊥ (see Fig. 1).
The deviation of these forces from their crystalline values δ f‖
and δ f⊥ can be thus be expressed as

δ f‖ = | fi j | cos
(
θi j − θ0

i j

) − f0,

δ f⊥ = | fi j | sin
(
θi j − θ0

i j

)
, (47)

where | fi j | represents the magnitude of the force between
particles i and j, θi j is the bond angle between i and j, and
θ

(0)
i j is its value in the crystalline ordered state. Using this

decomposition we find that although both |δ fx| and |δ fy| have
magnitudes of the same order, surprisingly the δ f⊥ caused by
a single defect is much smaller in magnitude in comparison to
δ f‖. To display this difference, in Figs. 5(a) and 5(c) we plot
ln(|δ f‖|) and ln(|δ f⊥|), respectively, at each bond produced
by a single defect from our simulations, while in Figs. 5(b)
and 5(d) we plot ln(|δ f‖|) and ln(|δ f⊥|), respectively, from the
theoretically computed interparticle forces. This difference
in the magnitude of the parallel and orthogonal components
of forces produced by a single defect is the origin of con-
strained fluctuations in the orthogonal components of forces
in minimally polydispersed disordered crystals [22]. As super-
position holds at linear order, the fluctuations in δ f⊥ produced
by multiple defects, are also restricted. It should be noted that
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this effect only emerges by exactly solving all the equations
of force balance simultaneously.

VIII. LARGE DISTANCE ASYMPTOTICS

In this section, we analyze the large distance behavior
of the solutions to the displacement fields. We focus on the
linear-order solutions and derive the continuum behavior of
the displacement field produced by a single defect in the
system. To obtain the large distance behavior as r → ∞, we
analyze the solutions of the displacement fields in the small
k → 0 limit. It is convenient to work in radial coordinates
in Fourier space [�k = (k, ψ )]. The Green’s functions of the
response given in Eq. (42) can be simplified in the small k
limit (k → 0) to yield

G̃xx(k, ψ, ε) = − 2(ε − 1)(4ε cos(2ψ ) + 8ε − 3)

k2(16ε2 − 16ε + 3)(cos(2ψ ) + 2)2
,

G̃xy(k, ψ, ε) = − 2
√

3(ε − 1) sin(2ψ )

k2(16ε2 − 16ε + 3)(cos(2ψ ) + 2)2
,

G̃yy(k, ψ, ε) = −2(ε − 1)(4(ε − 1) cos(2ψ ) + 8ε − 5)

k2(16ε2 − 16ε + 3)(cos(2ψ ) + 2)2
,

(48)

with G̃yx = G̃xy. These Green’s functions in Fourier space
have the form G̃μν = g̃μν (ψ,ε)

k2 . The prefactor g̃μν (ψ, ε) de-
pends on the overcompression ε and hence on the packing
fraction φ. This asymptotic behavior in Fourier space leads to
a prediction of Gμν (�r) ∼ log(|r|) for large distances r for all
the Green’s functions in real space. These Green’s functions
in real space have been plotted in Fig. 2.

Next, the linear-order source terms can be extracted from
the functions Dx and Dy given in Eq. (25), which in the small
k limit can be simplified as

Dx(k, ψ, ε) = i6(1 − 2ε)k cos ψ,

Dy(k, ψ, ε) = i2
√

3(1 − 2ε)k sin ψ. (49)

Finally, using the expressions in Eqs. (48) and (49) we arrive
at the first-order displacement fields in Fourier space in the
small k limit. We have

δx̃(1)(k, ψ, ε) = iδσ
12

k

(1 − ε)(1 − 2ε)

3 − 4ε

cos(ψ )

2 + cos(2ψ )
,

δỹ(1)(k, ψ, ε) = iδσ
4
√

3

k

(1 − ε)(1 − 2ε)

3 − 4ε

sin(ψ )

2 + cos(2ψ )
.

(50)

We next consider the large distance behavior in the continuum
limit, where r/R0 → ∞, as well as N → ∞. The displace-
ment fields at large distances r away from the defect can then
be expressed as

δx(1)(r, θ ) = 2

4π2

∫ π

−π

dψ

∫ ∞

0
δx̃(1)(k, ψ ) exp(−i�k.�r)kdk,

δy(1)(r, θ ) = 2

4π2

∫ π

−π

dψ

∫ ∞

0
δỹ(1)(k, ψ ) exp(−i�k.�r)kdk.

(51)

FIG. 6. The displacement fields produced by a single defect for
two different sizes of the defect, δσ = 0.005 and δσ = 0.01. The
points represent the displacement fields obtained from simulations,
and the solid lines represent our theoretical predictions at linear
order. (a) The magnitude of the displacements fields |δx|, at distances
measured along the 0◦ angle with respect to the x axis. (Inset)
These displacement fields scale linearly with δσ . (b) The magnitude
of displacement fields |δy|, at distances measured along the 60◦

angle with respect to the x-axis. (Inset) These displacement fields
scale linearly with δσ . The dashed lines represent our asymptotic
predictions at large distances, given in Eq. (52). The prefactor is
given by C = 2

√
3δσ (1−ε)(1−2ε)

π (3−4ε) . Here we choose φ = 0.92 which sets
ε = 7.14 × 10−3 using Eq. (39).

The factors of 2 that appear in the above expressions, repre-
sent the equal contributions to the integral from the singular
behavior of the Green’s functions in Eq. (42) at the points
(0,0) and (π, π ). Finally, evaluating the above integrals us-
ing the expressions in Eq. (50), we arrive at the following
asymptotic forms of the linear-order displacement fields at
large distances:

δx(1)(r, θ ) = Cδσ
cos θ

r
,

δy(1)(r, θ ) = Cδσ
sin θ

r
, (52)

where the prefactor C depends on the overcompression ε and
can be computed exactly. We have

C = 2
√

3(1 − ε)(1 − 2ε)

π (3 − 4ε)
. (53)

We therefore find that in the continuum limit, the displace-
ment fields at first order δ�r (1) decay isotropically outwards
from the defect as ∼ 1

r at large distances. We note that the
continuum limit solutions in Eq. (52) satisfy the Lamé equa-
tions in Eq. (44). From the self similarity of the higher-order
solutions at large distances, we expect the continuum limits
of the displacement fields at higher orders to also satisfy
Eq. (44). This leads to corrections to the Lamé coefficients and
consequently corrections to the elastic moduli that arise from
the higher orders in our perturbation expansion, which in turn
arise from the higher derivatives of the underlying interpar-
ticle potential. In Figs. 6(a) and 6(b) we plot the magnitude
of the x component of the displacement field along θ = 00

and the y-component of the displacement field along θ = 60◦,
with increasing distance away from the defect. We plot these
displacement fields for two different sizes of the defect δσ =
0.005 and δσ = 0.01. We also plot their scaling behavior with
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δσ along different angles θ in the insets of Figs. 6(a) and 6(b),
which are in agreement with our predictions in Eq. (52). We
also display the convergence of these results to our continuum
predictions in Eq. (52).

We note that our formalism can easily be generalized to
three dimensions, with the Green’s functions once again dis-
playing a 1/k2 dependence as in the case of a two-dimensional
system. However, Eq. (51) changes as an integration over a
three dimensional reciprocal space is required. This leads to
a 1/r2 scaling of the displacement fields for large values of
r. For a general d dimensional system, a 1/rd−1 behavior is
obtained.

Next, the asymptotic behavior of the excess forces can also
be computed from the displacement field at large distance.
Considering the forces between neighboring particles i and
j located at a large distance away from the defect, we have
ri � r j � r and θi � θ j � θ . Here ri = |�ri| is the distance of
the particle from the defect, and θi is the angle of the distance
vector �ri with respect to the x-axis. Using Eq. (52), the relative
displacements at linear order can be expressed as

δx(1)
i j = δx j − δxi = �r j · �∇δx(�r),

δy(1)
i j = δy j − δyi = �r j · �∇δy(�r), (54)

where �r j are the fundamental translation vectors of the lattice
with �r j = R0(cos θ0

i j x̂ + sin θ0
i j ŷ) and θi j = θ j − θi. Using the

expressions for the large distance behavior of the displace-
ment fields in Eq. (52), the relative displacements at linear
order can be simplified to the following form

δx(1)
i j (r, θ ) = −δσ

R0C
r2

cos
(
2θ − θ0

i j

)
,

δy(1)
i j (r, θ ) = −δσ

R0C
r2

sin
(
2θ − θ0

i j

)
. (55)

We can next use these to compute the asymptotic behavior of
the change in interparticle forces produced by a single defect
at linear order. Using the expressions in Eq. (55) in Eq. (18),
we arrive at the excess forces at large distances away from the
defect,

δ f x(1)
i j (r, θ ) = Bx

j (θ )
δσ

r2
,

δ f y(1)
i j (r, θ ) = By

j (θ )
δσ

r2
, (56)

where the constants are given by

Bx
j (θ ) = −R0C

[
Cxx

i j cos
(
2θ − θ0

i j

) + Cxy
i j sin

(
2θ − θ0

i j

)]
,

By
j (θ ) = −R0C

[
Cyx

i j cos
(
2θ − θ0

i j

) + Cyy
i j cos

(
2θ − θ0

i j

)]
.

(57)

In Fig. 7(a), we plot the |δ fx| along an angle θ = 00 with
respect to x axis for two different defect sizes δσ = 0.005 and
δσ = 0.01. Our simulation results match with our predictions
from the linear theory exactly, and display a |δ f x| ∼ 1/r2 be-
havior at large distances r away from the defect. In Fig. 7(b),
we plot the |δ fy| field at an angle θ = 60◦ with respect to the x
axis. Once again these display a |δ f y| ∼ 1/r2 behavior at large
distances r from the defect. We also plot the scaling behavior
of these excess forces with δσ along different angles θ in the

FIG. 7. The excess force at each bond produced by a
single defect for two different sizes of the defect, δσ =
0.005 and δσ = 0.01. The points represent forces obtained
from simulations, and the solid lines represent our theoreti-
cal predictions at linear order. (a) The magnitude of the ex-
cess force |δ fx| at each bond, for distances measured along
the 0◦ angle with respect to the x-axis. (Inset) These excess force
fields scale linearly with δσ . The plots display the excess forces for
the bond along j = 0. (b) The magnitude of the excess force |δ fy| at
each bond, for distances measured along the 60◦ angle with respect
to the x axis. (Inset) These excess force fields scale linearly with
δσ . The dashed lines represent our asymptotic predictions at large
distances, given in Eq. (56). The plots display the excess forces for
the bond along j = 1.

insets of Figs. 7(a) and 7(b), which are in agreement with our
theoretical predictions. We also display the convergence of
these results to our continuum predictions in Eq. (56). The
finite perpendicular components of the interparticle forces
produced by a single defect in the system can be attributed
to the finite size of the lattice which appears through the
vectors �r j in Eq. (54). It is interesting to note that such an
effect does not arise in continuum elasticity, as the solutions
in Eq. (52) predict purely radial forces away from the defect
in the continuum limit.

A. Universal behavior

Many of our results derived for the system of polydis-
persed soft disks are universal, with the microscopic details of
the model only changing the coefficients in the perturbation
expansion developed in Sec. III. However, the underlying
symmetries of the crystalline background persist in these coef-
ficients, which could lead to differing behavior at short length
scales. While at small distances, the nature of the underlying
lattice and the details of the force law are important, the large
distance behavior displays universal properties. As we have
shown in Sec. VIII, our displacement fields at linear order
do not display the hallmarks of the underlying lattice at large
length scales, displaying isotropic behavior which also agrees
with the predictions of continuum elasticity. However, as evi-
denced by the discussion of the higher-order coefficients Cαβγ

i j
in Sec. III, these symmetries could play an important role in
the corrections to universal behavior. The Green’s function
Gμν (�r) arising in our perturbation expansion can be derived
for any central potential in a similar manner as in Sec. V.
Additionally, since the solutions to the displacement fields at
all orders involve the same Green’s function, we can use the
properties of the higher-order sources to determine the univer-
sal scaling behavior at higher orders. Since the displacement
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fields produced by a single defect decay with distance, these
can be considered to be localized when the large length-scale
behavior is considered. Therefore, the source terms at higher
orders arising from a single defect are also localized. This
naturally leads to an explanation for the self similarity at all
orders of the displacement fields arising from a single defect
at large length scales.

The second-order and higher-order displacement fields
produced by a single defect in the crystalline background also
arise from localized sources, and are therefore expected to
decay as 1/r at large distances with “effective charges” that
control the magnitude at each order. Additionally, we expect
these higher-order displacement fields to be universal for all
central potentials, with the displacement fields decaying as
1/r away from a defect, with the prefactors dependent on
the underlying force law. Such behavior can in turn be de-
scribed by effective continuum equations at the coarse grained
scale, which involve renormalized coefficients that include the
higher terms in our perturbation theory. Although rotational
invariance emerges at the large length scales away from a
single defect in our theory, the higher-order interactions be-
tween them encode the crystalline symmetries of the initial
state, which we expect to persist in the large distance behav-
ior. This is in contrast to fully amorphous structures, where
the lack of a reference state precludes the identification of
such symmetries. We therefore expect rotational symmetries
to emerge at large length scales in such systems as the micro-
scopic disorder is increased. It would therefore be interesting
to understand how our perturbation expansion breaks down
as the disordered amorphous state is approached with larger
amounts of disorder in the system.

IX. NONLINEAR CORRECTIONS ARISING FROM
TWO DEFECTS

Finally, we provide interesting avenues to test nonlin-
ear corrections to continuum elasticity in near-crystalline
athermal systems. Having studied the displacement fields gen-
erated by a single defect in the crystalline background within
our perturbation expansion, we turn to a nontrivial applica-
tion of our theory, the case of two defects in a crystalline
background. The second-order corrections to the displace-
ment fields produced by a single defect displayed in Fig. 3
can be obtained by subtracting the linear-order solution from
the numerically minimized displacement fields, as described
in Sec. VII. Therefore, such a quantity is not directly ac-
cessible through numerical simulations or experiments. We
show below that such nonlinear corrections can naturally be
tested through numerically generated energy-minimized con-
figurations with two defects. The case of two defects therefore
serves as an illustrative example of the nontrivial exact predic-
tions of our theory.

The displacement fields generated by a single defect placed
at positions �0 and ��, respectively, can be expressed in terms
of our perturbation expansion as

δ�r�0 = δ�r (1)
�0 + δ�r (2)

�0 + δ�r (3)
�0 + . . . ,

δ�r �� = δ�r (1)
�� + δ�r (2)

�� + δ�r (3)
�� + . . . (58)

The left-hand side of the above equation represents the actual
displacement fields that can be generated by an exact min-
imization of the energy. The right-hand side represents the
series solution that can be extracted theoretically at each order.

Next, the displacement field arising from two defects
placed together in the system at positions (�0) and ( ��) can be
written in terms of our perturbation expansion as

δ�r�0, �� = δ�r (1)
�0, �� + δ�r (2)

�0, �� + δ�r (3)
�0, �� + . . . . (59)

As is apparent from the Green’s function formalism in
Eq. (29), the displacement field arising from multiple de-
fects at first order can be computed as a superposition of
the displacement fields arising from each defect individually.
Therefore,

δ�r (1)
�0, �� = δ�r (1)

�0 + δ�r (1)
�� . (60)

The second-order displacement fields arising from the two
defects cannot be computed as the superposition of the dis-
placement fields arising from each of them and therefore the
second-order fields for two defects cannot be described by the
two individual fields alone. This nonlinearity is encoded in
the source terms at second order derived in Eq. (31) which
involves a nonlinear coupling of the linear-order displacement
fields. Therefore, the second-order displacement fields arising
from two defects together do not obey superposition. A non-
trivial correction at second order can therefore be extracted
from the combination

δ�r�0, �� − δ�r�0 − δ�r �� = δ�r (2)
�0, �� − δ�r (2)

�0 − δ�r (2)
�� . (61)

Once again, the left-hand side and right-hand side of the above
equation represent quantities that can be extracted numerically
from energy-minimized configurations and from our perturba-
tion theory, respectively. We note that the quantity in Eq. (61)
arises purely at second order in our perturbation expansion.

(a) (b)

FIG. 8. Plot of the interaction in displacement fields due to two
defects in the crystalline background δ�r�0, �� − δ�r�0 − δ�r ��. Here the
field δ�r�0, �� represents the displacements obtained by placing two de-
fects at (0,0) and (�, 0) together, while δ�r�0 and δ�r �� are the individual
displacement fields generated by placing single defects at �r�0 = (0, 0)
and �r �� = (�, 0), respectively. The magnitude of this interaction is
small, which is due to the second-order nature of this quantity. This
naturally arises within our perturbation expansion, and matches with
the numerically generated fields exactly. Here the system size is
N = 50, and the defects are placed a distance � = 20 apart along
the x direction. These configurations have been shifted using periodic
boundary conditions to aid visualization. In our simulations in panel
(a), we ensure that |∑ j

�fi j | � 10−11 for each particle i, which is
necessary to extract the sensitive corrections presented in panel (b).
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Such a prediction can be tested experimentally in systems
where strains and forces can be measured, such as in photoe-
lastic disks. We expect the effect become more prominent as
one increases the size of the defect particles, with the intensity
of the effect scaling as δσ 2.

In Fig. 8 we plot the expression in Eq. (61) obtained from
an exact numerical minimization of the system using the
FIRE [55] algorithm. We also plot the theoretical quantity
in the right-hand side of Eq. (61) obtained from solving the
displacement fields up to second order derived in Eqs. (28)
and (35). This nontrivial interaction field obtained from simu-
lations matches exactly with our theoretical predictions. We
note that the interaction field in Eq. (61) predicted by our
perturbation expansion cannot be captured within a continuum
elasticity framework, as the corresponding Lamé equations in
Eq. (44) are linear. Therefore, such quantities can be used to
experimentally test for deviations from linear elasticity in such
athermal materials.

X. SUMMARY AND CONCLUSION

We have presented a new theoretical technique to exactly
extract the displacement fields in disordered athermal sys-
tems near the crystalline state. Our hierarchical perturbation
expansion about the crystalline state allows us to simulta-
neously solve the equations of force balance and obtain the
displacement fields as a series expansion to arbitrary accuracy.
We used this theory to study a physically relevant system
of polydispersed soft disks, with disorder introduced in the
radii of the particles. We illustrated our technique by exactly
computing the displacement fields produced by a single de-
fect introduced into the crystalline background, up to second
order. These solutions match exactly with displacement fields
extracted from our simulation of the energy-minimized con-
figuration with a single defect. Additionally, we illustrated
the remarkable self-similar structure of these solutions at ev-
ery order. Using our exact results, we derived a |δr| ∼ 1/r
and |δ f | ∼ 1/r2 decay for the displacement fields and excess
forces at large distances r away from the defect. Finally, we
provided an experimentally testable prediction of our theory,
the nonlinear interaction between two defects, that can be ex-
tracted purely from the observed displacement fields produced
by defects.

The perturbation expansion developed in this paper can
easily be extended to involve systems with other types of
microscopic disorder, such as spring networks with bond dis-
order, and also soft particle systems with external pinning
forces [34]. Our framework is quite general, and can also
be applied to any precompressed crystalline system with par-
ticles interacting through central potentials. The techniques
developed in this paper can be generalized to study other
two and three dimensional systems as well as quasi-one-
dimensional systems [56]. Our formalism can also be used
to study metamaterials which can be created with different
periodic backgrounds [57,58]. It would also be interesting to
generalize our techniques to systems with friction by incor-
porating a tunable roughness on the surface of the particles
[59,60]. In general, solving the force-balance equations in-
volves the inversion of a large disordered matrix, which has up
to now been difficult to formulate in terms of a coarse grained

theory involving the properties of the underlying particles. In
this regard our exact expansion techniques represent a useful
analytic tool with which to develop coarse-grained theories
for such materials.

Since the equations governing continuum elasticity are lin-
ear, disordered athermal materials which display detectable
nonlinear effects, provide an interesting arena to search for
higher-order corrections to linear elasticity. Incorporating mi-
croscopic disorder along with force balance at the local level
in disordered athermal materials continues to be a theoretical
challenge. This is made possible in the paradigm of crystals,
which allows an elegant representation of these microscopic
degrees of freedom in Fourier space. Since macroscopic
constitutive equations are not well-defined for disordered
amorphous solids, the formalism introduced in this paper that
allows for exact predictions in the presence of microscopic
disorder can be useful in understanding the emergence of
constitutive equations at large length scales [27].

Since Green’s function techniques find applications across
various fields of physics, and are the building blocks of more
complex emergent theories in continuum, it will be interesting
to use our framework to develop nonlinear elasticity theories
describing athermal materials [61]. It would also be inter-
esting to develop re-summation techniques to simplify the
higher-order terms that appear in these expansions. Finally,
our formulation can also be extended to incorporate disorder
in the entire system, at linear order [22,34], as well as higher
orders, to understand the emergence of amorphous properties
in athermal systems with increasing disorder.
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APPENDIX: EXPANSION COEFFICIENTS FOR
POLYDISPERSED DISKS

The linear-order coefficients in the perturbation expansion
for polydispersed disks can be expressed as (setting K = 1)

Cxx
i j (R0) = −R0 − σ0 + σ0 cos

( 2π j
3

)
4R0σ

2
0

,

Cxy
i j (R0) = − sin

( 2π j
3

)
4R0σ0

,

Cxσ
i j (R0) = (R0 − σ0) cos

(
π j
3

)
4σ 3

0

,

Cyx
i j (R0) = sin

( 2π j
3

)
4R0σ0

,

Cyy
i j (R0) = σ0 − R0 + σ0 cos

( 2π j
3

)
4R0σ

2
0

,

Cyσ
i j (φ) = (R0 − σ0) sin

( 2π j
3

)
4σ 3

0

.
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Since the second-order coefficients in the perturbation
expansion require an antisymmetrization over indices, it is
convenient to define the index j = mod( j + 3, 6), represent-

ing the neighbor of particle i in the opposite direction to j (see
Fig. 1). In this notation, we have

Cxxx
i j (R0) = R0

[
cos

( 2 jπ
3

) − cos
( 2 jπ

3

)] + 3
4

[
cos

( jπ
3

) − cos( jπ
) − cos

( jπ
3

) + cos( jπ )
]

8R2
0σ0

Cxxy
i j (R0

) = sin
(

π j
3 ) − 3 sin(π j) − sin

(
π j
3

) + 3 sin(π j)

16R2
0σ0

,

Cxyy
i j (R0

) = cos
(

π j
3

) + 3 cos(π j) + 4R0 sin
( 2π j

3

) − cos
(

π j
3

) − 3 cos(π j) − 4R0 sin
( 2π j

3

)
32R2

0σ0
,

Cxxσ
i j (R0) = 4R0 − 2σ0 + σ0

[
cos

( 2π j
3

) + cos
( 2π j

3

)]
16R0σ

3
0

,

Cxyσ
i j (φ) = sin

( 2π j
3

) − sin
( 2π j

3

)
16R0σ

2
0

,

Cxσσ
i j (φ) = (3 − 2σ0)

[
cos

(
π j
3

) − cos
(

π j
3

)]
32σ 4

0

,

Cyxx
i j (R0) = sin

(
π j
3

) − 3 sin(π j) + 4R0 sin
( 2π j

3

) − sin
(

π j
3

) + 3 sin(π j) − 4R0 sin
( 2π j

3

)
32R2

0σ0
,

Cyxy
i j (R0) = −cos

(
π j
3

) + 3 cos(π j) − cos
(

π j
3

) − 3 cos(π j)

16R2
0σ0

,

Cyyy
i j (R0) = −4R0

[
cos

( 2π j
3

) − cos
( 2π j

3

)] − [
sin

(
π j
3

) + sin(π j) − sin
(

π j
3

) − sin(π j)
]

32R2
0σ0

,

Cyxσ
i j (R0) = sin

( 2π j
3

) + sin
( 2π j

3

)
16R0σ

2
0

,

Cyyσ
i j (R0) = −4R0 + 2σ0 + σ0

[
cos

( 2π j
3

) + cos
( 2π j

3

)]
16R0σ

3
0

,

Cyσσ
i j (R0) = (3 − 2σ0)

[
sin

(
π j
3

) − sin
(

π j
3

)]
32σ 4

0
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