

Seminar

(De)lithiation Mechanism of Vanadium Sulfide, a Promising Conversion Electrode Material for Rechargeable Lithium Ion Batteries

Sylvia Britto

University of Cambridge, UK

The low theoretical capacities of the conventional LiCoO₂ cathode materials (120-150 mAh g⁻¹) and graphite anodes (372 mAh g⁻¹) used in rechargeable Li ion batteries fuels an intense search for alternative electrode materials capable of higher electrical storage capacities. One way of achieving a larger specific capacity is to explore materials that are capable of undergoing a wider change in oxidation states thereby allowing for the accommodation of more than one Li ion per transition metal ion leading to higher capacities. We have found that VS₄, which is found as the mineral patronite, also described as $V^{4+}(S2^{2-})_2$, has enormous potential as an electrode material in combination with graphite oxide, with preliminary electrochemical data indicating a remarkably high charge capacity close to 900 mAh/g. This material crystallizes in the monoclinic symmetry and is comprised of uncommon eight-coordinate V⁴⁺ ions coordinated to S2²⁻ dimers which are linked together as linear chains with alternating bonding (2.8 Å) and non-bonding contacts (3.1)Å) between the vanadium centers. The products of nano-sized and therefore discharge/charge are difficult to conventional crystallographic methods. characterize by Pair Distribution Function analysis combined with Solid State NMR and XANES indicate that the VS⁴ is partially reversible and undergoes a unique internal redox process during discharge in which electron transfer from the V to S leads to the breaking of sulfur dimers and formation of a tetrahedral intermediate.

Tuesday, Dec 22nd 2015

4:00 PM (Tea/Coffee at 3:45 PM)

Seminar Hall, TCIS