

Seminar

Programming non-equilibrium chemical dynamics with DNA strand displacement cascades

Niranjan Srinivas

California Institute of Technology (Caltech)

What separates "life" from "matter"? One perspective could be that life is matter embedded with sophisticated algorithmic control. Indeed, living systems use non-equilibrium chemical dynamics to implement and execute such algorithms for controlling physical processes (eg. the cell cycle). Therefore, understanding how to engineer dynamic chemical systems seems to be a necessary prerequisite for the long-term goal of designing and fabricating biochemical systems comparable to life in complexity.

In this talk I will describe our efforts to program complex chemical dynamics using synthetic DNA as an engineering material. In essence, given a set of chemical reaction equations and rate constants, which specify a prescribed dynamic behavior, we exploit a simple motif called DNA strand displacement to engineer a sequence of reaction cascades that, under certain conditions, can be shown to approximate the prescribed dynamic behavior. As a test case, I will describe our experimental efforts towards (and challenges in) engineering a chemical oscillator from scratch.

Thursday, May 1st 2014

11:30 AM (Tea/Coffee at 11:15 AM)

Seminar Hall, TCIS