

Seminar

Tuning Monolayers of MoS₂ for Electronics and Opto-Spintronics *via* Doping and Heterostructuring

Dipak Maity

TIFR, Hyderabad

Two-dimensional transition-metal dichalcogenide (TMDC) semiconductors like MoS₂ hold promise for next-gen devices, yet face hurdles in industrial applications due to imperfections of wafer-scale deposition techniques and contact impedance issues. On the other hand, monolayer MoS₂'s high Spin-Orbit Coupling (SOC) and inherent broken spatial inversion symmetry hold promise for valleytronics, while magnetic dopants induced magnetic ordering can introduce time-reversal symmetry breaking too. Our research was trying to address some such problems by optimising the growth conditions and controlling dopant concentrations. We could successfully grew large-scale monolayer MoS_2 (5mm*5mm) using a modified CVD setup, exhibiting enhanced electron transfer characteristics. We successfully tailored the electronic properties of monolayer MoS₂ and demonstrated an approach where we addressed the high Schottky barrier height (SBH) of conventional metallic contact Au/MoS_2 (~215 meV) junction by introducing an interfacial layer of degenerately-doped monolayer of MoS_2 (9 atomic% V doped MoS_2 , V-MoS₂), thereby reducing the SBH to (~ 9 meV). By doping V and Se into the MoS₂ lattice, we could demonstrate a system (V-MoSSe) having both valley shift and bandgap tunability. Furthermore, we demonstrated that V-doped MoS₂ functions as a magnetic spin Hall material, highlighting its potential for spin torque device applications. Potential of MoS_2 in conjunction with other protective layers such as fluorographene in strain dependent photodetector applications is also attempted, and will be briefly discussed.

Monday, Dec 16th 2024 11:30 Hrs (Tea / Coffee 11:15 Hrs) Auditorium, TIFRH